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CONVERGING FACTORS FOR SOME ASYMPTOTIC MOMENT
SERIES THAT ARISE IN NUMERICAL QUADRATURE

AVRAM SIDI
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Abstract

In this work the asymptotic behavior of the partial sums of the divergent asymptotic
moment series 2% \ MiA'> where \i.l are the moments of the weight functions w{x) = x"e~x,
a > - 1 , and w(x) = x"Em(x), a > - 1 , m + a > 0, on the interval [0, oo), is analyzed.
Expressions for the converging factors are derived. These converging factors form the
basis of some very accurate numerical quadrature formulas derived by the author for the
infinite range integrals / " w(x)f(x) dx with w(x) as given above.

1. Introduction

Recently a new approach to numerical quadrature has been presented by the

author, see [5]. In this approach numerical quadrature formulae Ik[u] for the

integral I[u], where

I\u\ = / w(x)u(x)dx,

0-1)
Ik[u] = 2 Aklu(xkl),

i=\

are derived by forming a sequence of rational approximations Hk(z), k = 1,2,...,

to the function H(z), where

1= 1 * '
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224 Avram Sidi |21

The function H(z) is analytic in the complex z-plane cut along the interval [a, b\.
We shall not deal with the motivation of this approach in this work, as that has

been done in detail in [5]. We shall only state that from the motivation in the
work above one could conclude heuristically that Ik[u] would be a good ap-
proximation to I[u] if Hk(z) is a good approximation to H(z) in the complex
z-plane cut along [a, b], and that Jk[u] -» /[«] quickly as k -* oo if Hk(z) -» H(z)
quickly as k -* oo in the complex z-plane cut along [a, b].

The rational approximations Hk(z) in [5] are obtained by applying some
modified version of the ^-transformation of [1] to the moment series of H(z),
namely to the series

OO

H{z)~2-,, asz-oo,z<2[a,fc], (1.3)
i=i z

where /x, are the moments of w(x),

(*)*'"'<*«. i = l , 2 , . . . . (1.4)

It can easily be seen that if [a, b] is finite, then the series (1.3) converges for
| z |>max( | a | ,\b\). If, however, [a, b] is infinite, like [0, oo), then (1.3) is a
divergent asymptotic series.

As explained in [5] (see also [3] and [4], in which convergence properties of the
^-transformation are analyzed), the ^-transformation, when applied to the se-
quence of the partial sums of the infinite series in (1.3), produces very good
approximations to H(z), provided that

where Rn are numbers related to the moments, and /(_>>)> a s a function of the
continuous variable^, has an asymptotic expansion of the form

f(y)~2 ~, as^oo, (1.6)
y

and is infinitely differentiable up to_y = oo. We notice that the term Rnf(n) in
(1.5) serves as a "converging factor" for the series in (1.3).

For a = 0, b = 1, and w(x) = (1 - x)ax^(-logx)' , a + v > - 1 , 0 > - 1 , it
has been shown in [5] that (1.5) holds with Rn = l/(ntt+"+1z") and

where

*(0=[0 - e-)/t}ae-f/{\ - e-'/z) = 2 ft*';
i=0
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13] Asymptotic moment series 225

hence (1.6) is also satisfied with f(y) ~ 2JL0£i(a + v + O V / a s y ~* °°> f°r ^
z £ [0,1]. (Actually Rn, /(«), g(O, and g, should be written as Rn(z), f(n, z),
g(t, z), and g,(z). However, z is fixed and we do not perform any operation with
respect to z. Hence we omit z without fear of confusion.) This expansion can be
obtained by applying Watson's lemma, see [2, page 71], to the integral representa-
tion of f(y). Since (1.5) and (1.6) are satisfied, the numerical quadrature formulae
for this VV(JC) turn out to be very accurate. For more details and numerical results
see [5].

We note that f(y)/y is the Laplace transform of a function <p(t) which is
analytic at t = 0 and has a Maclaurin series with a finite radius of convergence
(that of the Maclaurin series of g(t)). This follows from a more general result
which is given in the appendix to the present work.

In a recent work, [6], very accurate numerical quadrature formulae for infinite
range integrals with a — 0, b = oo, and weight functions w(x) = xae~x, a > - 1 ,
and w(x) = x"Em(x), a > - 1 , m + a > 0, where Em(x) is the exponential in-
tegral, have been developed using the approach of [5]. These formulae are based
on the results of Section 2 and Section 3 of the present work, which show that
also in these cases the functions H(z) satisfy (1.5) and (1.6). Furthermore, for
Re z < 0, it is shown t\vdXf{y)/y for these cases are Laplace transforms of entire
functions <p(0, which, we believe, should be of some importance in the con-
vergence analysis of Hk(z) to H(z).

2. The case w(x) = x"e~x, a. > -1

Let w(x) — xae~x, a > - 1 . Then from (1.4) we have

Hi= [°°e-xxa+i-xdx = (a + i - 1)!, / = 1 , 2 , . . . . (2.1)
•'o

By substituting the relation
i " " I vi—1 1 v n - l

-J—= 2 — + -n^r—r (2-2)
Z — X T? z< Z" 1 - X/Z V 'i= i

and (2.1) in (1.2), we have

where

r {2A)
')=rT=77Idx

Jo 1 X/Z
which is analytic for all z not on the positive real axis.
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All we have to analyze then is J(p, z). Now for R e z < 0 , we have
Re[eiarg(~z)(l - x/z)] > 0 whenever 0 < x < oo. It then follows that

1 - x/z
(2.5)

— z

where the integral is taken along the straight line path L in the T-plane, which
starts at T = -z and extends to T = oo, and along which arg T = arg(—z), see
Figure 1. Substituting (2.5) in (2.4), and changing the order of integration, we
have

J{p,z) = e~z Cdr e~r rdx e-^/^x",
J-z J0

(L)

which, upon using the fact that
/•oo

I e-'Jo
Re/>0,

becomes

! • / > + ' '

(2.6)

(2.7)

(2.8)

where T1, for s real, is taken to be positive real for T positive real, with its branch
cut along the negative real axis, i.e., TS = | T |V5arg(T), | arg(i-) |< TT, similarly for
( — z)s. The change of order of integration in (2.6) is allowed since the integrand is
absolutely integrable both at x — oo and T = ooeiarg(~z).

Now (2.8) can also be expressed as

~^4rr> (2-9)

where the integral this time is taken along the contour F that starts at T = -z and
approaches the real T-axis asymptotically, see Figure 1. Since the integral in (2.9)

I mr

Ret

Figure 1. The contours F and L in the T-plane for the case Re z < 0.
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151 Asymptotic moment series 227

converges both when Re z < 0 and Re z > 0, by analytic continuation, J(p, z) is
given by (2.9) for all z, such that z £ [0, oo).

LEMMA 1. Let C be a contour in the complex plane that extends from f to infinity
and define

M[F;S\=j~^dT. (2.10)

(O

Assume that along C the function F ( T ) is infinitely differentiable and that (S'F)(r)
= O(rq) as T -> oo along C, where the operators S' are defined as follows:
( S F ) ( T ) = TF' (T) , S°F = F, S'F = S(Sl~lF), i = 1,2,.... Then for any positive
integer N,

^ A i ' ^ 1 -^M[S^F;f]. (2.11)

PROOF. Integrating (2.10) by parts, we obtain

^ p l-M[SF; ?]. (2.12)

Equation (2.11) now follows by repeated application of (2.12) to S'F, i =
1,2 JV- 1.

COROLLARY 2. Let the contour C be such that

C•C j J ^
(C)

and let ( 5 ' F ) ( T ) = o(l) ay T -» oo along C, i = 0 ,1 ,2 , . . . . 77ie« M[F; f], ay
q -» oo, /iay a« asymptotic expansion given by

» i=0 9

PROOF. It is enough to show that in (2.11)

S"M[SNF; f] = O{q~l) as fl -» oo. (2.15)

Now from (2.12)

fW[5"F; S] = ( 5 ^ ) ( r ) + ifw[S^+1F; f]. (2.16)

Since (5'ir)(T) = o(l) as T -» oo along C for any /, there exist finite positive
constants A, such that X, = max T e c | ( S ' F ) ( T ) | , i — 0,1, Substituting in
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(2.16) the integral representation of M[SN+]F; f ] and taking the modulus of both
sides, we obtain

p. >•] i s jh i + x *+ ' | vy, f00 _\dr\

(O
Using now (2.13) in (2.17), the result follows.

(2.17)

REMARK 3. Parametric representations for two types of contours C, for which
(2.13) is valid, are given below:
(Type 1) T = X,r, r real, 1 < r < oo,
(Type 2) C = C, U C2, where Ct is definedparametrically by T = fe'*,
min(0, 6O)^6 < max(0, 8O) for some fixed 0o such that 0 < | 8Q | < n, and C2 is
defined parametrically by r = $re'e°, r real, 1 < r < oo. For contours of Type 1

r<*> | dr | 1
\q+\

(C)

whereas for those of Type 2

_ l « o l

(C)

i/ie contour L in Figure 1 w a contour of Type 1 w/fA f = —z.

Going back to (2.9), we can see that the above lemma and its corollary can be
applied quite easily to the integral on the right hand side by letting F(T) = e~T,
q = p, and f = -z. Since the integrand is analytic everywhere except on the
branch cut along the negative real axis, the contour T can be deformed to a
contour of Type 2 as in Figure 2.

Inn

Figure 2. Deformation of F to a contour of Type 2.
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Applying now Lemma 1 and Corollary 2 to (2.9), we obtain

J{p, z) ~ -ze-'p\ 1 4 r f ™P - °°' (2-18)
i=0 P

where

( ^ ) V , i = 0 , l ,2 , . . . . (2.19)

Using the Maclaurin series expansion of ez, y,(z) can be expressed by the infinite
series

Y,(*)= 2 T7^> i = 0 , l ,2 , . . . . (2.20)
*=o *•

As explained in the Introduction, what goes into the T-transformation is a
converging factor in terms of an infinite series in inverse powers of y. Such an
expansion can also be found quite easily. Letting/? = a + y — 1, we can express
(2.9) in the form

J(a+y- l,i) = e-'(a+y-\)\(-z)'+^irdT^~T/X~l). (2.21)
J — z 1y

Applying now Lemma 1 and Corollary 2 with F{r) = e~7/j"~\ q—y and
I = -z, with the contour T deformed as above, we obtain

;=o y

where

d V e~T

(2.23)

We can therefore conclude that (1.5) and (1.6) are satisfied with

R = v " " l h = ̂ — (2.24)
nz" n v '

and

f(y)~{-z)a~Xe-z 2 - L ^ as>;^oo. (2.25)
1 = 0 /

REMARK 4. WTien Levin's t-transformation is applied to the sequence of the
partial sums of the series (1.3), one takes Rn = pjzn. From (2.18) we see that Rn

should actually be (nn/z")n~l. However, the results of using either Rn in the
T-transformation are about the same, see [5].
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We now wish to show that the function f(y) can be expressed in terms of a
Laplace transform of an entire function whenever Re z < 0. Making the change of
variable T = -ze* in the integral in (2.8), we obtain

J(p, z) = -ze'zp\ / "°V '*exp(ze £ )^ , (2.26)

or

J(a+y- l , z ) = -ze~z{a + y - l)! (^ e-
yih(t z) d£, (2.27)

•'o
where /i(£, z) = e(l~")£exp(ze£) is an entire function of £. Hence by (1.5) and
(2.24)

f(y) =-ze-*y Te-*h(lt z)dl,

which is a Laplace transform. Using Watson's lemma in (2.26) (or (2.27)), the
existence of the asymptotic expansions in (2.18) (or (2.22)) and the expressions
given in (2.20) and (2.23) can be re-established.

3. The case w(x) = xaEm(x),a> \,m + a > 0

Let w(x) = x"Em(x), where Em(x) = /," (e~xl/tm)dt. Then for a > -1 and
m + a > 0

M , = / dxx°+-l( dt-—, (3.1)

which, upon changing the order of integration and using (2.7), becomes

(3.2)

Substituting again (2.2) in (1.2), and using (3.2), we obtain

H(z) = fX ^±dx = "2 ^ + ^ + " , - ^ > , (3.3)
•̂ o z •* , = i z ' z

where

which, upon changing the order of integration and then making the change of
variable xt = u in the integral with respect to x (t fixed), is seen to be

where J(p, z) is as defined in the previous section.
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We now consider the case Rez < 0. Since in (3.5) 1 < t < oo, for this case
Re(tz) < 0 too. Hence we can make use of the integral representation for J(p, z)
given in (2.26), with z replaced by tz. We then obtain

K(p, z) = -zp\j™ -^e-'2f^d^e-P^xp(tze^). (3.6)

Making the change of variable t = e" in (3.6), we have

K(p, z) = ~zp\ C'doe-(m+P-»°exp(-z£>°) C d£e-pi(*p{zei+a). (3.7)
Jo •'o

Making the further change of variables (£, a) -> (« , a'), where w = £ + a, and
a' = o, we can express (3.7) as

K(p, z) = -zp\ ndue-puexp(ze")B(o>, z), (3.8)
•'o

where

B(o>, z) = rdoe(l-m)aexp(-ze°). (3.9)
Jo

Note that B(u, z) is an entire function of u. Letting p = a + y — 1, and writing
the integrand in equation (3.8) in the form e~y"A{w, z), it is very easy to see that
A(u, z) is an entire function of <o, hence

( + > ^ ^ > a s ^ o o , (3.10)
y ,=0 y'

where

A similar result for the case Re z > 0 could probably be obtained, however this
seems to be rather complicated and shall not be pursued further in this work.

We have shown that, at least for Re z < 0, H(z) satisfies (1.5) with (1.6), where
^ n

 = [(a + M ~ I)!/2"]""1* s u ch that the expansion f(y)/y is the Laplace
transform of an entire function. Note that this Rn is independent of m and is the
same as that obtained for w{x) = xae~x, a > - 1 , whereas in the /-transformation
of Levin Rn = Mn/z", hence this Rn depends on m through /*„ = (a + n —
\)\/(m + a + n — 1). These observations have some important implications in
the development of the new numerical quadrature formulae as explained in [6].

Appendix

The Laplace transform u( p) of a function u(t) is defined by

e-"u(t)dt. (A.I)
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THEOREM. Let g(t) be an analytic function at t = 0 and let its Maclaurin series

S(') = I S,t' (A.2)
;=o

have radius of convergence p. Define

G{p) = Z[t°g{t);p\, « > - l . (A.3)

Then there exists a function h(t), which is analytic at t — 0 and has a Maclaurin
series with radius of convergence p, such that

h(p)=p'G(p). (A.4)

Actually for \ t\< p

hit) = 1 i^S,<' (A.5)
1 = 0

PROOF. We shall deal with the case — 1 < a < 0 first. Since — a — 1 > - 1 ,
p" = £[ f°~ 1 / ( —a — 1)!; p\. Hence p°G(p) is the Laplace transform of the
convolution

h(t) = { ' { t r ) r'g{T)dr. (A.6)
ô (-o - 1)!

Let t <p < p. Then substituting (A.2) in (A.6), and changing the order of
summation and integration, we obtain

This is allowed since the Maclaurin series of g(t) converges absolutely and
uniformly for | /1< p < p. Using the fact that the integral in the summation is a
convolution, (A.5) is easily obtained. Using the ratio test, the infinite power series
in (A.5) can be shown to have the same radius of convergence as that of (A.2),
namely p. This completes the proof for the case — 1 < a < 0.

If we let a = 0, then (A.4) and (A.5) reduce to h(t) = g{t), which is trivially
true. If a is a positive integer, (A.4) and (A.5) are again true, for in this case
/i(O = (da/dta)[t''g(t)). The case a > 0, a not an integer, can be dealt with as
follows: Define the function g(t) by t"g(t) — tsg(t), where a = a - [a] — 1.
Then - 1 < 6 < 0 and g(t) = /[o)+lg(/). Then as we have shown above, (A.4)
and (A.5) hold with a and g(t) replaced by a and g(t), respectively. Using the
definitions of a and g(t), (A.4) and (A.5) can now be easily obtained. This
completes the proof of the theorem.
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