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We investigate the emergent three-dimensional (3-D) dynamics of a rapidly yawing
spheroidal swimmer interacting with a viscous shear flow. We show that the rapid yawing
generates non-axisymmetric emergent effects, with the active swimmer behaving as an
effective passive particle with two orthogonal planes of symmetry. We also demonstrate
that this effective asymmetry generated by the rapid yawing can cause chaotic behaviour
in the emergent dynamics, in stark contrast to the emergent dynamics generated by rapidly
rotating spheroids, which are equivalent to those of effective passive spheroids. In general,
we find that the shape of the equivalent effective particle under rapid yawing is different to
the average shape of the active particle. Moreover, despite having two planes of symmetry,
the equivalent passive particle is not an ellipsoid in general, except for specific scenarios
in which the effective shape is a spheroid. In these scenarios, we calculate analytically
the equivalent aspect ratio of the effective spheroid. We use a multiple scales analysis
for systems to derive the emergent swimmer behaviour, which requires solving a non-
autonomous nonlinear 3-D dynamical system, and we validate our analysis via comparison
to numerical simulations.

Key words: micro-organism dynamics, Stokesian dynamics, nonlinear dynamical systems

1. Introduction
Bulk properties of particle suspensions depend on particle orientation, and particle–
particle interactions can be neglected for sufficiently dilute suspensions (Leal & Hinch
1971; Saintillan & Shelley 2015). Hence, in many cases interaction with the local flow is a
key factor in particle orientation. For small enough particles, viscous effects dominate and
orientation is mainly forced by the local shear flow approximation. Thus, the rotational
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dynamics of single particles in viscous shear flows are of fundamental interest in fluid
mechanics.

A classic result in fluid mechanics is that passive spheroids undergo non-uniform
rotation in viscous shear flow. Their angular dynamics are governed by Jeffery’s equations
(Jeffery 1922; Taylor 1923), and their periodic but uneven rotations are called Jeffery’s
orbits. The precise nature of the Jeffery’s orbit depends on the spheroid aspect ratio
r ∈ (0,∞) via the quantity (r2 − 1)/(r2 + 1), with values of r further from unity causing
more uneven dynamics.

More generally, Jeffery’s equations hold for a wider class of particles beyond spheroids,
including passive axisymmetric objects (Bretherton 1962; Brenner 1964), parameterised
via a coefficient called the Bretherton parameter, B. The derived governing equations
for axisymmetric objects are equivalent to Jeffery’s equations when equating B =
(r2 − 1)/(r2 + 1). Therefore, axisymmetric objects with B ∈ (−1, 1) demonstrate angular
dynamics in shear flow equivalent to those of a spheroid with an aspect ratio of r =√
(1 + B)/(1 − B).
Asymmetry of particles can induce fundamentally different behaviours to axisymmetric

objects (Hinch & Leal 1979; Roggeveen & Stone 2022; Miara et al. 2024). For example,
helicoidal objects are governed by modified versions of Jeffery’s equations, with extra
terms characterised by two additional coefficients that account for chiral effects (Ishimoto
2020). In addition, the loss of axial symmetry caused by replacing spheroids with triaxial
ellipsoids, and more generally to particles with two orthogonal planes of symmetry, can
generate chaotic dynamics (Yarin, Gottlieb & Roisman 1997; Thorp & Lister 2019).

In the studies mentioned in the paragraph above, the particles are passive. However,
particle activity makes interactions with fluid flow much more complicated (Lauga &
Powers 2009; Wittkowski & Löwen 2012; Elgeti, Winkler & Gompper 2015; Saintillan
2018; Junot et al. 2019). Recent work deriving the emergent behaviour of single active
particles in shear flow has shown that self-propelled objects exhibiting fast-scale periodic
motion can generate emergent slow angular dynamics in shear flow (Ishimoto 2023). For
example, in two dimensions, the oscillatory yawing of ellipses (Walker et al. 2022), and, in
three dimensions, the constant rotation of spheroids and helicoidal objects (Dalwadi et al.
2024a,b). These studies use the method of multiple scales (Hinch 1991) to understand
the nonlinear interaction between the fast self-propulsion and slow shear flow, and
demonstrate that this interaction generates emergent angular dynamics equivalent to those
of a passive particle. The calculated shapes of these equivalent effective particles depend
on the type of fast motion and the original shapes. Notably, in these scenarios the effective
shape maintains the hydrodynamic symmetries of the original particle. The method of
multiple scales has also been used recently to understand the effective dynamics of
particles in unsteady flow fields (Ma, Pujara & Thiffeault 2022; Pujara & Thiffeault 2023;
Ventrella et al. 2023).

The specific type of activity we are interested in here is rapid yawing in three
dimensions. Undulatory motion can be observed in many microswimmers, especially
flagellates (Guasto, Rusconi & Stocker 2012), for example, Chlamydomonas (Leptos et al.
2023) and spermatozoon (Shaebani et al. 2020). The latter is particularly well studied
due to the implications for understanding sperm motility, impacting our understanding of
motility-based male fertility diagnostics, reproductive toxicology and basic sperm function
(Gaffney et al. 2011; Walker et al. 2020).

For simplicity and analytic tractability, we neglect the complexities of how exactly the
rapid motion arises at the microswimmer scale. With the goal of gaining insight into
how rapid microscale motion interacts with a far-field shear flow, we consider a simple
model of self-generated rapid yawing of a rigid spheroid in steady Stokes flow, with an
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accompanying self-generated translation. Some care must be taken in considering the limit
of rapid yawing while using steady Stokes flow, since very fast oscillations can induce the
inclusion of a time derivative via the unsteady Stokes equations (Clarke et al. 2005). We
justify our consideration of steady Stokes flow here by noting that the oscillatory Reynolds
number ΩL2/ν (where Ω is the frequency of rotation, L is the swimmer length and
ν is the kinematic viscosity of the fluid) is generally small for microswimmers, despite
their fast self-generated motions (Lauga 2020). Hence, while our rapid yawing analysis is
relevant for the typical parameter values of many microswimmers, we emphasize that it
would formally break down for very large rotation rates (e.g. 104 Hz for a bacterium with
a length scale of 10μm in water), when induced inertial terms would become important.

The emergent dynamics for yawing in three dimensions cannot be understood by simply
combining results for yawing in two dimensions and constant rotation in three dimensions,
for two main reasons. First, three-dimensional (3-D) orientation is governed by a system
of three nonlinear equations, in comparison to just a single nonlinear equation in two
dimensions. Second, yawing corresponds to a time-dependent rather than constant angular
velocity, the latter being the case for constant rotation. This means that yawing in three
dimensions is governed by a non-autonomous nonlinear 3-D dynamical system at leading
order. Using a multiple scales analysis for systems, in this study we show that rapid
yawing generates asymmetric emergent effects that are not present in the original particle.
This emergent behaviour is fundamentally different to that arising from yawing in two
dimensions (Walker et al. 2022) and constant rotation in three dimensions (Dalwadi et al.
2024a,b). In particular, we demonstrate that the emergent asymmetry generated by rapid
yawing can result in chaotic dynamics, which is not possible for passive spheroids nor for
the emergent dynamics arising from rapid (constant) rotation.

We start in § 2 below by setting up the physical problem and equations of motion,
including in § 2.1 a short summary of the main results we derive subsequently. We present
our main analysis in § 3, where we derive the emergent rotational dynamics of the system,
relegating some of the technical details to Appendices A and B. In § 4 we demonstrate that
the asymmetry generated in the emergent equations can exhibit chaotic dynamics, which
is a fundamentally different behaviour to that seen for passive spheroids. We then derive
the emergent translational dynamics in § 5. Finally, we discuss our results and their wider
implications in § 6.

2. Problem set-up
We consider the dynamics of a self-propelling rigid spheroid in a viscous (Stokes) fluid
with an imposed far-field shear flow. We work in dimensionless quantities, scaling time
with the inverse shear rate of the imposed far-field flow and space with the equatorial
radius of the spheroid. The distance from the centre of the spheroid to its pole along
the symmetry axis is r , and the spheroid self-generates a fast periodic yawing within
a swimmer-fixed plane containing its symmetry axis. This yawing manifests through an
unsteady angular velocity Ω(t) in a quiescent fluid, where t denotes time. The fast yawing
means that the orientation of the swimmer varies rapidly in the laboratory frame. The
spheroid also self-generates a translation V (t), periodic in a swimmer-fixed reference
frame we define below, and with the same period as the yawing.

We define the spheroidal axis of symmetry via a swimmer-fixed axis of ê1, and define
the self-generated yawing through its angular velocity Ω(t), which is perpendicular to ê1.
We then define ê2 to be the direction of Ω , and write

Ω(t)=ΩA cos (Ωt) ê2, (2.1)
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Figure 1. Schematic of (a) physical set-up and (b) Euler angle definitions, with laboratory (ei ) and swimmer-
fixed (êi ) frames denoted by black and green arrows, respectively. The Euler angle rotations in (b) occur in
the order φ, θ , ψ . The swimmer self-generates a rapid yawing via the time-dependent angular velocity Ω(t)=
ΩA cos(Ωt)ê2 (curved purple arrows), a time-dependent translational velocity V (t) (straight purple arrow in
panel a) and interacts with a far-field shear flow u = ye3 (blue arrows).

where Ω � 1 is the fast frequency of the yawing and A is the amplitude of the yawing.
Finally, we define ê3 = ê1 × ê2. We define the orthonormal basis of the laboratory frame
to be {e1, e2, e3}, orientated in terms of the far-field shear flow that has velocity field
u(x, y, z)= ye3 for coordinates (x, y, z) in the laboratory frame. These definitions are
illustrated in figure 1. In this swimmer-fixed basis we also prescribe the translational
velocity

V (t)=
3∑

i=1

Vi (t)êi , with Vi (t)= ai + bi cos (Ωt − δi ) , (2.2)

where, in the êi direction, ai is the average translational velocity, bi is the amplitude of the
translational velocity oscillation and δi is the phase shift of this oscillation.

A key goal of our subsequent analysis is to understand the dynamics of the particle as it
interacts with the far-field flow. To quantify these, we use Euler angles θ ∈ [0, π) (pitch),
ψ mod 2π (roll) and φ mod 2π (yaw), illustrated in figure 1(b), formally defined via an
xyx-Euler angle transformation

ê(θ, ψ, φ)= M(θ, ψ, φ)e, (2.3a)

where ê := (ê1, ê2, ê3)
ᵀ is the swimmer-fixed basis, which depends on the orientation,

e := (e1, e2, e3)
ᵀ is the laboratory basis, and we define

M(θ, ψ, φ) :=
⎛⎝ cθ sφsθ −cφsθ

sψsθ cφcψ − sφcθ sψ sφcψ + cφcθ sψ
cψsθ −cφsψ − sφcθcψ −sφsψ + cφcθcψ

⎞⎠ , (2.3b)

using the shorthand notation sθ = sin θ , etc. Then, applying the model derivation of
Dalwadi et al. (2024a,b) to the motion (2.1), the resulting rotational dynamics for a
spheroid in shear flow with self-induced yawing are

dθ
dt

=ΩA cos (Ωt) cosψ + g1(θ, φ; B), (2.4a)

dψ
dt

= −ΩA cos (Ωt)
cos θ sinψ

sin θ
+ g2(θ, φ; B), (2.4b)
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dφ
dt

=ΩA cos (Ωt)
sinψ
sin θ

+ g3(φ; B), (2.4c)

with arbitrary initial conditions. Here, the first terms on the right-hand sides represent
the fast yawing motion, and the remaining functions gi (i = 1, 2, 3, here and henceforth)
represent the slow interaction with the far-field shear flow. The functions gi that quantify
this interaction are

g1 = − B

2
cos θ sin θ sin 2φ, g2 = B

2
cos θ cos 2φ, g3 = 1

2
(1 − B cos 2φ) ,

(2.5)

where B(r)= (r2 − 1)/(r2 + 1) is the Bretherton parameter (Bretherton 1962), which
takes values B ∈ (−1, 1) for a spheroid. If there were no yawing (A = 0), the system (2.4)
would reduce exactly to Jeffery’s equations for the orientation of a passive spheroid in
shear flow (Jeffery 1922). We emphasize that the right-hand sides of Jeffery’s equations
(2.5) are independent of the spheroid roll ψ , illustrating their axisymmetry.

The translational dynamics for the centre of mass of the spheroid (X = X e1 + Y e2 +
Z e3) in shear flow with self-induced translation are

dX
dt

= V (t)+ Y e3, (2.6)

with initial conditions X(0)= 0, noting that we are free to prescribe the origin of the
laboratory frame to be at the initial spheroid centre of mass without loss of generality. Note
that V (t), defined in (2.2), is only a straightforward oscillation in the swimmer frame, and
that (2.6) is strongly coupled to the angular dynamics via the evolution of the spheroid
orientation through (2.4). However, the reverse is not true – the angular dynamics (2.4)
and (2.5) do not depend on the translational dynamics (2.6). As such, it will be helpful
to first consider the angular dynamics in our analysis, then to investigate the translational
dynamics.

The full dynamics of the non-autonomous nonlinear dynamical system (2.4)–(2.6) in
the fast yawing limit Ω � 1 (black lines in figure 2) have two main effects that occur
over distinct times cales. These are (a) yawing over a fast t = O(1/Ω) time scale and
(b) shear interaction over a slow t = O(1) time scale. In this study we investigate the
emergent dynamics of (2.4)–(2.6) in the fast yawing limit where Ω � 1 (and all other
parameters are of O(1)). This is a singular perturbation problem where the fast oscillatory
effects are maintained over the slow shear time scale, i.e. the emergent dynamics cannot
be obtained by simply ignoring the slow evolution due to the shear interaction (see red
lines in figures 2 and 3). We therefore use the method of multiple scales to calculate the
emergent effects.

2.1. Summary of main results
We show that the rotational dynamics of rapidly yawing spheroids in three dimensions do
not act as effective passive spheroids in general, in contrast to recent results for yawing in
two dimensions (Walker et al. 2022) and constant rotation in three dimensions (Dalwadi
et al. 2024a). While we show that the orientation of active spheroids here can be related to
an equivalent passive particle, this effective particle only has two planes of symmetry in
general, thereby losing axial symmetry. This difference in the symmetries of the effective
particle is particularly notable because passive particles with two planes of symmetry
have been shown to demonstrate chaotic dynamics (Yarin et al. 1997; Thorp & Lister
2019). However, the classic (3-D) Jeffery equations for passive spheroids are integrable
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Figure 2. Numerical solutions of the full rotational dynamics (2.4) and (2.5) (solid blue lines), compared with
(a) ignoring the slow evolution, by setting gi = 0 in (2.4) (solid red lines) and (b) the asymptotic solutions,
consisting of the leading-order solutions we derive in (3.5) and the emergent slow evolution equations we
derive in (3.17), where the latter are solved numerically (dotted black lines). We use parameter values B = 0.9,
A = 2 andΩ = 3 with initial conditions (θ, ψ, φ)= (π/6, π/12, π/12). We see that the emergent (asymptotic)
dynamics we derive in the limit of large Ω agree well with the full dynamics, even for moderate values of Ω .

(Jeffery 1922), constraining the dynamics to a two-dimensional (2-D) surface in phase
space and, therefore, ruling out chaos (Thorp & Lister 2019).

Therefore, with the benefit of hindsight, it is helpful to record here the rotational
dynamical equations for the appropriate class of asymmetric passive particles that will
emerge; particles with two orthogonal planes of symmetry (Bretherton 1962; Brenner
1964; Harris, Nawaz & Pittman 1979; Thorp & Lister 2019). These can be written as
modified versions of Jeffery’s equations ((2.4) with A = 0) transformed via

gi (θ, φ; B) �→ g̃i (θ, ψ, φ; B1, B2, B3)= gi (θ, φ; B1)+ hi (θ, ψ, φ; B1, B2, B3),
(2.7a)

where the hi encode non-axisymmetric effects via their dependence on ψ , and are defined
as

h1(θ, ψ, φ; B1, B2)= B1 + B2

2
sθ sψ

(
cθ sψs2φ − cψc2φ

)
, (2.7b)

h2(θ, ψ, φ; B1, B2, B3)= B1 + B2 + B3

2
cθcψ

(
cθ sψs2φ − cψc2φ

)
+ B3

2
sψ

(
cψs2φ + cθ sψc2φ

)
, (2.7c)

h3(θ, ψ, φ; B1, B2)= B1 + B2

2

(
c2
ψc2φ − cθ sψcψs2φ

)
, (2.7d)
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Figure 3. Numerical solutions of the full translational dynamics (2.6), which also depend on the solution to the
full rotational dynamics (2.4)–(2.5) (solid blue lines), compared with (a) ignoring the slow evolution, by setting
gi = 0 in (2.4) (solid red lines), and (b) the asymptotic solutions, from the emergent slow evolution equations
we derive in (5.7), solved numerically (dotted black lines). We use the same parameter values as in figure 2,
and additionally V (t) is defined in (2.2), with (a1, a2, a3)= (−0.2, 0.5, 0.2), (b1, b2, b3)= (0.2, 0.6, 0.5),
(δ1, δ2, δ3)= (π/2, π/4,−π/4) and initial conditions X(0)= 0.

again using the shorthand notation sθ = sin θ , etc. Importantly, the transformation (2.7a)
introduces three independent coefficients Bi in place of B. For an ellipsoid, the governing
equations are the same as (2.7) (Hinch & Leal 1979), except that Bi are not independent. In
fact, Jeffery (1922) showed that an ellipsoid with axes a, b, c has the explicit relationship

B1 = c2 − b2

c2 + b2 , B2 = a2 − c2

a2 + c2 , B3 = b2 − a2

b2 + a2 , (2.8)

from which it follows (Bretherton 1962) that, for an ellipsoid, Bi must satisfy the
relationship

B1 B2 B3 + B1 + B2 + B3 = 0. (2.9)

For an axisymmetric ellipsoid with a = b (i.e. a spheroid), B1 = −B2 = B and B3 = 0,
causing hi = 0 in (2.7) and removing all non-axisymmetric effects, as expected.

In our analysis, we find that the average orientation (ϑ̄, Ψ̄ , ϕ̄) (defined appropriately
below) evolves over the t = O(1) scale, with emergent dynamics governed by

dϑ̄
dt

= g1(ϑ̄, ϕ̄; B̂1)+ h1(ϑ̄, Ψ̄ , ϕ̄; B̂1, B̂2), (2.10a)

dΨ̄
dt

= g2(ϑ̄, ϕ̄; B̂1)+ h2(ϑ̄, Ψ̄ , ϕ̄; B̂1, B̂2, B̂3), (2.10b)

dϕ̄
dt

= g3(ϕ̄; B̂1)+ h3(ϑ̄, Ψ̄ , ϕ̄; B̂1, B̂2), (2.10c)
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with gi and hi defined in (2.5) and (2.7), but now where B̂i are functions of A and B(r),
and do not generally satisfy (2.9). That is, we show that (i) a rapidly yawing active spheroid
generates a loss of axial symmetry in its emergent dynamics (via the hi terms), (ii) the
emergent dynamics are equivalent to those of an effective passive particle with two planes
of symmetry, and (iii) the effective shape is not an ellipsoid in general. The main part of our
analysis involves deriving (2.10) from (2.4) and (2.5), including explicit representations
of the average orientation (ϑ̄, Ψ̄ , ϕ̄) and the functions B̂i (A, B). We also show that the
emergent dynamics we derive can demonstrate chaos, and therefore, that these dynamics
can be fundamentally different to those for any passive spheroid.

Finally, we also determine the emergent translational dynamics over the t = O(1) scale.
Though we find that the spheroid translates with an effective velocity V̂ in addition to
a straightforward shear contribution, this effective velocity is not simply the average of
the physical velocity V (t) in the swimmer-fixed frame. Importantly, we show that phase
lags in the translational velocity oscillations can generate non-trivial contributions to the
effective translational velocity.

3. Deriving the emergent rotational dynamics

3.1. Framework for the method of multiple scales
We start by analysing the emergent rotational dynamics (2.4) and (2.5) in the limit of
rapid yawing, corresponding to Ω � 1. We use the method of multiple scales (Hinch
1991) to derive equations for the emergent behaviour. We introduce the ‘fast’ time scale
T = O(1) via T =Ωt , and refer to the original time scale t as the ‘slow’ time scale. Using
the method of multiple scales, we treat these two time scales as independent, transforming
the time derivative as

d
dt

�→Ω
∂

∂T
+ ∂

∂t
. (3.1)

Under the time derivative mapping (3.1), the dynamical system for the swimmer
orientation (2.4) is transformed to

Ω
∂θ

∂T
+ ∂θ

∂t
=ΩA cos T cosψ + g1(θ, φ; B), (3.2a)

Ω
∂ψ

∂T
+ ∂ψ

∂t
= −ΩA cos T

cos θ sinψ
sin θ

+ g2(θ, φ; B), (3.2b)

Ω
∂φ

∂T
+ ∂φ

∂t
=ΩA cos T

sinψ
sin θ

+ g3(φ; B). (3.2c)

We expand each dependent variable as an asymptotic series in inverse powers ofΩ and as
a function of both the fast and slow timescales, writing

y(T, t)∼ y0(T, t)+ 1
Ω

y1(T, t) as Ω → ∞, for y ∈ {θ, ψ, φ}. (3.3)

3.2. Leading-order analysis
Using the asymptotic expansions (3.3) in the transformed governing equations (3.2), we
obtain the leading-order (i.e. O(Ω)) system

∂θ0

∂T
= A cos T cosψ0,

∂ψ0

∂T
= −A cos T

cos θ0 sinψ0

sin θ0
,

∂φ0

∂T
= A cos T

sinψ0

sin θ0
.

(3.4)
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We derive an exact solution to the nonlinear, non-autonomous leading-order system (3.4)
in Appendix A, obtaining

cos θ0 = cos ϑ̄ cos f (T )− sin ϑ̄ cos Ψ̄ sin f (T ), (3.5a)

sin θ0 sinψ0 = sin ϑ̄ sin Ψ̄ , (3.5b)

tan(φ0 − ϕ̄)= sin Ψ̄ sin f (T )

sin ϑ̄ cos f (T )+ cos ϑ̄ cos Ψ̄ sin f (T )
, (3.5c)

defining

f (T ; A) := A sin T, (3.6)

and where ϑ̄(t), Ψ̄ (t) and ϕ̄(t) are the three slow-time functions of integration that remain
undetermined from our leading-order analysis. The goal of the next-order analysis in § 3.3
will be to derive the governing equations satisfied by ϑ̄ , Ψ̄ and ϕ̄. The three degrees of
freedom that arise from integrating (3.4) could be included as different combinations of ϑ̄ ,
Ψ̄ and ϕ̄ (for example, we could have used (ϑ̄, Ψ̄ ) �→ (ϑ̄, H), where H(t)= sin ϑ̄ sin Ψ̄ );
we choose the specific forms in (3.5) so that (ϑ̄, Ψ̄ , ϕ̄) is associated with (θ, ψ, φ)

and represents the average orientation direction of the spheroid over a single yawing
oscillation. That is, 〈êi (θ, ψ, φ)〉 ∝ êi (ϑ̄, Ψ̄ , ϕ̄), where we use the notation 〈·〉 to denote
the average of its argument over one fast-time oscillation, defined as

〈y〉 = 1
2π

∫ 2π

0
y dT . (3.7)

3.3. Next-order system
Our remaining goal is to determine the governing equations satisfied by the slow-time
functions ϑ̄(t), Ψ̄ (t) and ϕ̄(t). To do this, we must determine the solvability conditions
required for the first-order correction (i.e. O(1)) terms in (3.2) after posing the asymptotic
expansions (3.3). These O(1) terms are

∂θ1

∂T
+ (A cos T ) ψ1 sinψ0 = g1(θ0, φ0)− ∂θ0

∂t
, (3.8a)

∂ψ1

∂T
− (A cos T ) θ1

sinψ0

sin2 θ0
+ (A cos T ) ψ1

cos θ0 cosψ0

sin θ0
= g2(θ0, φ0)− ∂ψ0

∂t
, (3.8b)

∂φ1

∂T
+ (A cos T ) θ1

cos θ0 sinψ0

sin2 θ0
− (A cos T ) ψ1

cosψ0

sin θ0
= g3(θ0, φ0)− ∂φ0

∂t
. (3.8c)

To derive the required solvability conditions, we use the method of multiple scales for
systems; see, e.g., Dalwadi (2014, pp. 127–128) or Dalwadi et al. (2018, p. 22). Namely, the
solvability condition for the system L X = G can be found by calculating the solution of

L∗Y = 0, (3.9)

where L∗ is the matrix differential-algebraic linear adjoint operator. The requisite
solvability condition for (3.8) is then

〈Y · G〉 = 0. (3.10)

Generally, each linearly independent solution of the homogeneous adjoint problem (3.9)
will contribute one solvability condition. For (3.8), the homogeneous adjoint operator is
the transpose of the matrix operator taking the adjoint of each element, and is therefore
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L∗=
⎛⎜⎝ −∂T −A cos T sinψ0/sin2 θ0 A cos T cos θ0 sinψ0/sin2 θ0

A cos T sinψ0 −∂T +A cos T cos θ0 cosψ0/ sin θ0 −A cos T cosψ0/ sin θ0
0 0 −∂T

⎞⎟⎠.
(3.11)

Hence, this problem is not self-adjoint, i.e. L = L∗.
Even though the system (3.9) with operator (3.11) is non-autonomous, we are able

to solve it exactly by deducing appropriate nonlinear transformations. We present this
analysis in Appendix B, where we calculate that (3.9), (3.11) has general periodic solution

Y = C1

⎛⎝cos θ0 sinψ0
sin θ0 cosψ0

0

⎞⎠ + C2

⎛⎝ cosψ0
− sin θ0 cos θ0 sinψ0

0

⎞⎠ + C3

⎛⎝ 0
cos θ0

1

⎞⎠ (3.12)

for arbitrary constants C1, C2 and C3. The solution (3.12) can also be verified a posteriori
by direct substitution into (3.9), (3.11) and applying (3.4).

Finally, we derive our required solvability conditions by substituting the adjoint
solutions (3.12) into the general solvability condition (3.10), with G defined as the vector
right-hand side of (3.8), and setting the resulting coefficients of Ci to zero. This procedure
yields the following three solvability conditions:

〈θ0t cos θ0 sinψ0 +ψ0t sin θ0 cosψ0〉 = 〈g1 cos θ0 sinψ0 + g2 sin θ0 cosψ0〉 , (3.13a)

〈θ0t cosψ0 −ψ0t sin θ0 cos θ0 sinψ0〉 = 〈g1 cosψ0 − g2 sin θ0 cos θ0 sinψ0〉 , (3.13b)

〈ψ0t cos θ0 + φ0t 〉 = 〈g2 cos θ0 + g3〉 . (3.13c)

Here the subscript t denotes partial differentiation with respect to t . To derive the emergent
governing equations we seek, our remaining task is to evaluate the averages in (3.13) in
terms of the slow-time functions ϑ̄ , Ψ̄ and ϕ̄.

3.4. Evaluating the solvability conditions
Using our leading-order solutions (3.5), we evaluate the left-hand sides of (3.13) to
obtain

〈θ0t cos θ0 sinψ0 +ψ0t sin θ0 cosψ0〉 = ϑ̄t cos ϑ̄ sin Ψ̄ + Ψ̄t sin ϑ̄ cos Ψ̄ , (3.14a)

〈θ0t cosψ0 −ψ0t sin θ0 cos θ0 sinψ0〉 = ϑ̄t cos Ψ̄ − Ψ̄t sin ϑ̄ cos ϑ̄ sin Ψ̄ , (3.14b)

〈ψ0t cos θ0 + φ0t 〉 = Ψ̄t cos ϑ̄ + ϕ̄t . (3.14c)

After more algebra, we can also evaluate the right-hand sides of (3.13) to deduce that

g1 cos θ0 sinψ0 + g2 sin θ0 cosψ0

= − B

2

{
sϑ̄sΨ̄

[
c2
ϑ̄

c2
f − c2

Ψ̄
(1 + c2

ϑ̄
)s2

f

]
+ c3

ϑ̄
s2Ψ̄ s f c f

}
s2ϕ̄

− B

2

{
sϑ̄cϑ̄cΨ̄

(
c2Ψ̄ s2

f − c2
f

)
+

[
s2
ϑ̄

c2
Ψ̄

− c2
ϑ̄

c2Ψ̄

]
s f c f

}
c2ϕ̄ , (3.15a)
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g1 cosψ0 − g2 sin θ0 cos θ0 sinψ0

= B

2

{
sϑ̄cϑ̄cΨ̄

(
c2Ψ̄ s2

f − c2
f

)
+

[
s2
ϑ̄

c2
Ψ̄

− c2
ϑ̄

c2Ψ̄

]
s f c f

}
s2ϕ̄

− B

2

{
sϑ̄sΨ̄

[
c2
ϑ̄

c2
f − c2

Ψ̄
(1 + c2

ϑ̄
)s2

f

]
+ c3

ϑ̄
s2Ψ̄ s f c f

}
c2ϕ̄ , (3.15b)

g2 cos θ0 + g3 = 1
2

(
1 − B

{
(c2
ϑ̄

c2
Ψ̄

− s2
Ψ̄
)s2

f + s2
ϑ̄

c2
f + 2sϑ̄cϑ̄cΨ̄ c f s f

}
c2ϕ̄

)
+ BsΨ̄

[
cϑ̄cΨ̄ s2

f + sϑ̄c f s f

]
s2ϕ̄ , (3.15c)

using the shorthand notation sϑ̄ = sin ϑ̄ , etc., and where f is defined in (3.6). Then, noting
that 〈c f 〉 = J0(A) and 〈s f 〉 = 0, deduced via the integral representation of J0(A) (the
Bessel function of order zero) and parity arguments, we obtain〈

s2
f

〉
= 1

2
(1 − J0(2A)) ,

〈
c2

f

〉
= 1

2
(1 + J0(2A)) ,

〈
s f c f

〉 = 0. (3.16)

Taking the averages of (3.15) using (3.16) allows us to evaluate the right-hand sides of
the solvability conditions (3.13). Then, combining this result with (3.14) for the left-hand
sides of (3.13) and rearranging, we obtain

dϑ̄
dt

= − B J0(2A)

2
sϑ̄cϑ̄s2ϕ̄ − B(1 − J0(2A))

4
sϑ̄sΨ̄

(
cϑ̄sΨ̄ s2ϕ̄ − cΨ̄ c2ϕ̄

)
, (3.17a)

dΨ̄
dt

= B J0(2A)

2
cϑ̄c2ϕ̄ + B(1 − J0(2A))

4
sΨ̄

(
cΨ̄ s2ϕ̄ + cϑ̄sΨ̄ c2ϕ̄

)
, (3.17b)

dϕ̄
dt

= 1
2

(
1 − B J0(2A)c2ϕ̄

) − B(1 − J0(2A))

4
cΨ̄

(
cΨ̄ c2ϕ̄ − cϑ̄sΨ̄ s2ϕ̄

)
, (3.17c)

which are the key results of our analysis; the emergent slow evolution equations we have
been seeking. Recombining the slow evolution equations (3.17) with the fast oscillations
(3.5), we see the leading-order solutions agree very well with the full dynamics (blue and
black lines in figure 2), even for values of Ω as low as 3. The agreement improves further
as Ω increases. Finally, we note that the emergent equations (3.17) have the functional
form we claimed in (2.10), with analytically derived representations for the coefficients
(illustrated in figure 4):

B̂1 = B J0(2A), B̂2 = − B

2
(1 + J0(2A)) , B̂3 = B

2
(1 − J0(2A)) . (3.18)

To summarise, we have demonstrated that the emergent rotational dynamics (3.17) gain
an effective asymmetry, with effective coefficients derived in (3.18). This is most explicitly
demonstrated through their dependence on Ψ̄ in the terms proportional to B(1 − J0(2A))
on the right-hand sides of (3.17). As discussed in § 2.1, the emergent dynamics (3.17)
are equivalent to those of a passive object with two orthogonal planes of symmetry. If
the effective coefficients (3.18) were independent then it would immediately follow from
the results of Yarin et al. (1997) and Thorp & Lister (2019) that chaotic behaviour was
possible. Since the effective coefficients (3.18) are not independent, it is not immediately
clear whether such behaviour is possible in the system we derive. In the next section we
demonstrate that chaotic behaviour is possible in the system (3.17) and (3.18).
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0
–1.0

–0.5

0

0.5

1.0

2 4

A
6 8 10

B1/Bb

B i
/
B

b

B2/Bb B3/Bb

Figure 4. The effective coefficients (3.18), obtained by comparing (3.17) with (2.10). The marked stars along
the x axis are the values of A at which (6.1) is satisfied (i.e. J0(2A)= 0) and, therefore, when the effective
shape is an ellipsoid. In fact, in these cases the effective shape is constrained further to a spheroid, whose
aspect ratio is given in (6.2).

4. Chaotic behaviour in the emergent dynamics
To investigate the possibility of chaos in the system (3.17) and (3.18), we follow Hinch &
Leal (1979) and Yarin et al. (1997) and Thorp & Lister (2019) and define an appropriate
Poincaré section. Specifically, we reduce the full 3-D continuous dynamics of (3.17) and
(3.18) to a 2-D discrete dynamical system in (Ψ̄ , ϑ̄) whenever ϕ̄ = nπ for non-negative
integers n. We can do this straightforwardly by solving (3.17a) and (3.17b) in terms of ϕ̄,
transforming the time derivatives via

d
dt

�→ dϕ̄
dt

d
dϕ̄
, (4.1)

and using (3.17c) to evaluate dϕ̄/dt > 0. The monotonic nature of dϕ̄/dt follows from
|B|< 1, and ensures that the transformation is well defined. For given system parameters A
(amplitude of yawing), B = (r2 − 1)/(r2 + 1) (Bretherton parameter in terms of spheroid
aspect ratio, r ), and initial conditions (Ψ̄0, ϑ̄0)= (Ψ̄ (0), ϑ̄(0)) (setting ϕ̄(0)= 0), this
generates an iteration (Ψ̄n, ϑ̄n).

In figures 5 and 6 we show Poincaré sections for A = 0 (i.e. classic Jeffery orbits) and
A = 0.25, respectively. These consist of a point shown for every iteration up to n = 500 for
different initial conditions. Periodic orbits in (Ψ̄n, ϑ̄n) repeat exactly, and are represented
by distinct points that repeat themselves after a finite number of iterations. Quasiperiodic
orbits appear as one-dimensional (1-D) curves, i.e. orbits consist of points that densely
cover a 1-D path but never exactly repeat themselves. These correspond to orbits with
more than one periodic component, but with incommensurate frequencies. Finally, chaotic
orbits appear as dense patchworks of points in a 2-D region of the Poincaré section.

For the classic Jeffery’s equations (for passive spheroids), the orbits are constant in ϑ̄
(figure 5). No chaos is possible in this case, which follows from the integrability of the
classic 3-D Jeffery’s equations constraining the dynamics to a 2-D surface in phase space.
The lack of chaotic dynamics for passive spheroids can be seen visually in figure 5. These
features are well known for passive spheroids, and have been explored in detail as part of
the more general analysis in Thorp & Lister (2019).

In contrast to the classic Jeffery’s equations, we see that chaos is possible for the more
general emergent equations we derive here (figure 6). Chaotic regions are plentiful in the
upper third of the figure. In the lower two-thirds of the figure, the behaviour is mainly
dominated by periodic and quasiperiodic orbits, and we note that these behaviours also
appear within islands in the upper third. The quasiperiodic behaviours include orbits that
sample all values of Ψ̄ ∈ [−π/2, π/2] and orbits that only take a subset of values therein.
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0 π/4–π/4–π/2

π/4ϑ
–

Ψ
–

π/2

π/2
0

Figure 5. Poincaré section for the classic Jeffery’s equations, which are equivalent to setting A = 0 in our
emergent equations (3.17) and (3.18). Using the Poincaré map outlined in the main text, we use A = 0, B = 0.99
and iterate up to n = 500. The full 2-D phase space is obtained by exploiting reflectional symmetry across
ϑ̄ = π/2 and translational symmetry in Ψ̄ �→ Ψ̄ + π . No chaos is possible for the classic Jeffery’s equations,
as observed here.

0 π/4–π4–π/2

π/4ϑ
–

Ψ
–

π/2

π/2
0

Figure 6. Poincaré section for the emergent dynamics (3.17) and (3.18). Using the Poincaré map outlined in
the main text, we use A = 0.25, B = 0.99 and iterate up to n = 500. The full 2-D phase space is obtained
by exploiting reflectional symmetry across ϑ̄ = π/2 and translational symmetry in Ψ̄ �→ Ψ̄ + π . Significant
regions of chaos are observed in the upper third of the figure.

Finally, in figure 7 we also show Poincaré sections for different values of A, starting with
the same initial condition. For lower values of A, the orbits are quasiperiodic. However,
the orbits demonstrate chaos as A increases, before returning to a quasiperiodic orbit as A
increases further.

Hence, we have shown that chaotic behaviour is possible in the emergent dynamical
system we have derived (3.17) and (3.18). This behaviour arises as a direct result of the
asymmetry that is generated by the rapid yawing of the active spheroids we consider.
This asymmetry does not arise for a rapid (constant) rotation of spheroids, for which
the emergent dynamics are equivalent to effective passive spheroids. In this latter case,
integrability of the system means that chaotic behaviour is not possible, as shown explicitly
in Thorp & Lister (2019).
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0 π/4–π/4–π/2

π/2

11π/20

9π/20

Ψ
–

π/2

ϑ
–

A = 0
A = 0.2
A = 0.25
A = 0.3
A = 0.5

Figure 7. Poincaré section for the emergent dynamics (3.17) and (3.18). Using the Poincaré map outlined in the
main text, we use B = 0.99 with initial conditions (Ψ̄0, ϑ̄0)= (0, 9π/20) (shown as a black asterisk) and iterate
up to n = 1000. We use A ∈ {0, 0.2, 0.25, 0.3, 0.5}, as described in the legend. For lower values of A, the orbits
are quasiperiodic. However, the orbit is chaotic at A = 0.25 and A = 0.3, before returning to quasiperiodicity
for A = 0.5.

5. Deriving the emergent translational dynamics
We now consider the emergent translational dynamics from the system (2.6) in the
large-Ω limit. The emergent translational dynamics we derive are significantly more
straightforward than their rotational equivalents. In multiple scales form, the time
derivative is again transformed via (3.1), and so (2.6) becomes

Ω
∂X
∂T

+ ∂X
∂t

= V (T )+ Y e3, (5.1)

emphasizing that X = X(T, t) in general, and explicitly writing the velocity V from (2.2)
in terms of the fast timescale as

V (T )=
3∑

i=1

Vi (T )êi , where Vi (T ) := ai + bi cos (T − δi ) . (5.2)

Expanding X ∼ X0 + (1/Ω)X1 and substituting into (5.1), the O(Ω) terms yield
∂X0

∂T
= 0, (5.3)

which is trivially solved by X0 = X0(t). At next order, the O(1) terms in (5.1) yield

∂X1

∂T
+ dX0

dt
= V (T )+ Y0e3, (5.4)

where we note that the dependence of V on êi in (5.2) means that V depends on the
leading-order Euler angles. These are defined via the fast oscillations (3.5) and the slow
evolution equations (3.17).

The emergent equations are obtained by averaging (5.4) over a 2π period in T .
Performing this procedure, the fast-time derivative of X1 vanishes (by design), and we
are left with

dX0

dt
=

〈 3∑
i=1

[ai + bi cos (T − δi )] êi (θ0, ψ0, φ0)

〉
+ Y0e3, (5.5)
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where we have replaced V (T ) in the average operator with its specific form via (5.2),
to emphasize the dependence of V (T ) on the leading-order spheroid orientation. To
evaluate this averaged velocity, we use the transformation between laboratory basis and
swimmer-fixed basis (2.3) to write êi explicitly in terms of (θ0, ψ0, φ0) and the laboratory
basis. Then, we combine this with our leading-order fast-time solutions (3.5) and directly
calculate the following averages:〈

ê(θ0, ψ0, φ0)
〉 = D ẽ(ϑ̄, Ψ̄ , ϕ̄), (5.6a)〈

ê(θ0, ψ0, φ0) sin T
〉 = A ẽ(ϑ̄, Ψ̄ , ϕ̄), (5.6b)〈

ê(θ0, ψ0, φ0) cos T
〉 = 0. (5.6c)

Here

D =
⎛⎝ J0(A) 0 0

0 1 0
0 0 J0(A)

⎞⎠ , A =
⎛⎝ 0 0 J1(A)

0 0 0
−J1(A) 0 0

⎞⎠ , ẽ(ϑ̄, Ψ̄ , ϕ̄)= M(ϑ̄, Ψ̄ , ϕ̄)e,

(5.6d)

noting the appearance of Bessel functions of order one in A, along with the Bessel
functions of order zero in D that we have already seen appear in the rotational dynamics
(though with a slightly different argument). Before we use these results to determine the
average translational dynamics, it is instructive to note that ẽ = (ẽ1, ẽ2, ẽ3)

ᵀ is defined as
the basis transformation M (defined in (2.3)) applied to the laboratory basis, but evaluated
using the slow evolution angles (ϑ̄, Ψ̄ , ϕ̄) instead of the rapidly varying full Euler angles
(θ, ψ, φ). That is, (5.6a) tells us that the average of the leading-order swimmer-fixed basis
〈ê〉 is the slow evolution angle basis, weighted by the diagonal matrix D. We can therefore,
in some sense, interpret (ϑ̄, Ψ̄ , ϕ̄) as an ‘average orientation’ of the spheroid over the fast
timescale.

Using the averaged results (5.6) in the solvability condition (5.5), we obtain the emergent
governing equation for the translational dynamics

dX0

dt
= V̂ + Y0e3, (5.7a)

where the effective self-generated translational velocity V̂ is defined as

V̂ = [a1 J0(A)+ b3 J1(A) sin δ3] ẽ1 + a2 ẽ2 + [a3 J0(A)− b1 J1(A) sin δ1] ẽ3. (5.7b)

Importantly, we see that the effective velocity is constant in the averaged swimmer-fixed
frame defined through ẽ(ϑ̄, Ψ̄ , ϕ̄). We discuss the implication of these results in § 6.

6. Discussion
We show that a rapidly yawing spheroidal swimmer interacting with a far-field shear
flow generates non-axisymmetric emergent effects in its rotational dynamics, equivalent
to those of a passive particle with two orthogonal planes of symmetry. With the caveat
that the effective coefficients we derive in (3.18) are not independent, our emergent
equations are equivalent to those that have been investigated in, e.g., Hinch & Leal (1979),
Thorp & Lister (2019) and Yarin et al. (1997). From these works, it is known that passive
particles with this type of asymmetry can behave very differently to passive spheroids. We
demonstrate that the emergent dynamics we derive here can exhibit chaotic behaviours, in
stark contrast to passive spheroids.
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Given that the effective coefficients we derive in (3.18) are not independent (notably,
B̂1 + B̂2 + B̂3 = 0), the effective shape described by our emergent equations is constrained
to particles with two orthogonal planes of symmetry. A basic class of objects with this
type of symmetry is ellipsoids. To check when our effective coefficients describe a passive
ellipsoid, we use (2.9) to derive the requirement

0 = B̂1 B̂2 B̂3 + B̂1 + B̂2 + B̂3 = −B3 J0(2A)
(

1 − J 2
0 (2A)

)
/4. (6.1)

Therefore, the equivalent effective particle described by the emergent evolution equations
(3.17) is not an ellipsoid in general, unless one of three specific conditions hold: (1) A = 0
(i.e. no yawing), (2) B = 0 (i.e. r = 1; the original spheroid is a sphere), or (3) J0(2A)= 0.
There are infinitely many discrete values of A that generate the non-trivial case (3); for
these scenarios we can use the relationship (2.8) between Bi and the ellipsoid axes to
deduce that the effective passive shape becomes a spheroid with axes â, b̂, b̂, where

â/b̂ =
√
(r2 + 3)/(3r2 + 1). (6.2)

Thus, in case (3) active prolate spheroids behave as passive oblate spheroids and vice versa.
Notably, the effective aspect ratio (6.2) is the same as that which arises for a spheroid
rapidly and uniformly rotating about an axis perpendicular to its symmetry axis (Dalwadi
et al. 2024a). This can be understood intuitively in the large-A limit, where J0(2A)→ 0,
for which the large-amplitude yawing has a similar effect to uniform rotation. However,
we emphasize that case (3) also occurs for the infinitely many finite roots of J0(2A)= 0.

The emergent loss of symmetry here is fundamentally different to the results of recent
studies of different types of rapidly moving rigid bodies, e.g. yawing in two dimensions
(Walker et al. 2022), and constant rotation in three dimensions (Dalwadi et al. 2024a,b).
While these studies do also show that their specific rapid motions in shear flow lead to
emergent dynamics, the effective passive shapes generated all preserve the hydrodynamic
symmetries of the original physical shapes. Moreover, the equivalence to an effective
passive spheroid is generic for periodically shape-deforming swimmers in two dimensions
(Gaffney et al. 2022). Our study shows that symmetry of the physical swimmer is not
maintained for rapid yawing in three dimensions.

Given the fundamental difference between our 3-D results (3.17) and the generic 2-D
behaviour (Gaffney et al. 2022), it is instructive to understand how our results collapse to
the 2-D case. By constraining the swimmer pitch and yawing motions to the shear plane
(θ =ψ = π/2 in the full dynamics (2.4)) and solely evolving the remaining equation for
φ, we reduce our set-up to the 2-D yawing problem considered in Walker et al. (2022).
This corresponds to fixing ϑ̄ = Ψ̄ = π/2 in the slow variables, under which the remaining
emergent equation for in-plane orientation ϕ̄ (3.17c) reduces significantly to

dϕ̄
dt

= 1
2
(1 − B J0(2A) cos 2ϕ̄) . (6.3)

Therefore, restricting motion to the 2-D shear plane means that the active spheroid behaves
as a passive spheroid with effective Bretherton parameter B J0(2A), in agreement with the
2-D results of Walker et al. (2022). Specifically, the emergent asymmetry generated in
the full 3-D emergent dynamics (3.17) vanishes in the constrained 2-D dynamics. Hence,
we may conclude that the emergent asymmetry that arises is a 3-D effect generated by
out-of-shear-plane interactions between the swimmer and the shear flow.

A natural question to ask is why do symmetries appear to be preserved in the emergent
dynamics arising from some types of self-generated motion? Intuitively, it seems as
though an important factor should be the average shape of a rapidly moving object,
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with any symmetries therein conserved in the emergent dynamics. For a spheroid rapidly
rotating at a constant rate about an axis fixed in the swimmer frame, the average shape is
axisymmetric and the emergent dynamics is equivalent to those of a passive axisymmetric
object (Dalwadi et al. 2024a). For the rapidly yawing spheroid considered here, the average
shape is not axisymmetric in general. However, the average shape does have two planes
of symmetry, and this symmetry is retained in the effective passive shape represented
by the emergent dynamics we derive here. Curiously, however, the average shape does
not tell the full story; it is not the shape of the equivalent passive object in general.
This can be demonstrated by considering the aspect ratio (6.2) of the effective passive
spheroid that arises when J0(2A)= 0 (including the large-A limit). In this scenario, the
effective aspect ratio (6.2) is bounded within (1/

√
3,

√
3), no matter how large or small

the physical aspect ratio r , and is therefore different from the average shape in general.
While this may seem surprising due to the linearity of the Stokes equations, the difference
occurs because the Stokes equations are not linear in geometry. The general nature of the
relationship between the average shape of the fast motion and any effective hydrodynamic
shape therefore remains an open question.

Given the technical nature of our analysis, it is instructive to consider further the
averages (3.13) required to determine the emergent equations. These averages are weighted
non-trivially in a manner that is systematically determined by solving the (non-self) adjoint
of the non-autonomous first-correction system (3.9), (3.11) in Appendix B. Requiring a
technical analysis to determine the appropriate averages to take is not unusual in nonlinear
multiple scales problems; since 〈ab〉 = 〈a〉〈b〉 in general, intuitive arguments that do not
properly account for nonlinearities may break down, and a key question in such problems
is often which average one should take. In fact, the averages that arise from our analysis are
more straightforward to interpret if we write the original functions gi from (2.5) (which
represent the slow interaction with the far-field shear flow) in terms of the angular velocity
components of the spheroid in the swimmer-fixed frame (ω̂1, ω̂2, ω̂3):

g1 = ω̂2 cosψ − ω̂3 sinψ, g2 = ω̂1 − g3 cos θ, g3 = ω̂2 sinψ + ω̂3 cosψ
sin θ

.

(6.4)

Substituting (6.4) into the right-hand sides of the averages (3.13), we see that the averages
are linear combinations of the averaged quantities〈

ω̂1
〉
,

〈
ω̂2 cos θ − ω̂3 sin θ cosψ

〉
,

〈
ω̂2 sin θ cosψ + ω̂3 cos θ

〉
. (6.5)

Therefore, (6.5) provides a more physical interpretation of the averages we have
systematically derived via our technical analysis; the appropriate averages are specific
combinations of the angular velocity components of the spheroid. Specifically, the
component along the symmetry axis (ω̂1) is averaged without modification, but the
components perpendicular to this axis (ω̂2 and ω̂3) must be weighted in a manner that
accounts for the plane of yawing.

We also derived the emergent translational dynamics (5.7) that arise from the
combination of rapid yawing with self-generated translation of the spheroid centre of
mass. We specifically consider self-generated motion that is oscillatory in a swimmer-fixed
frame, with the same period as the yawing. Importantly, the effective translational velocity
V̂ we derive in (5.7b) is constant in the average orientation basis vectors ẽi (ϑ̄, Ψ̄ , ϕ̄) fixed
in the average swimmer frame. We note that the effective velocity in the direction normal
to the yawing plane (V̂ · ẽ2) is simply the average of the full translational velocity (5.2)
in this direction. Therefore, the emergent translation in the direction normal to the yawing
plane is essentially unaffected by yawing (as expected intuitively) and, being independent
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of b2 and δ2 (the amplitude and phase shift of the oscillation in the direction normal to the
yawing plane), also ignores any oscillation of the translational velocity in this direction.
However, these properties do not carry over to the effective velocity in the yawing plane.

In the yawing plane, the emergent translational velocity has two key contributions. The
first is due to the average of the full translational velocity in this plane, weighted by J0(A).
Physically, this is due to the yawing causing the constant translation to generate a curved
trajectory in physical space, reducing the magnitude of the net translation over a yawing
period. The second is due to the interaction of the yawing motion with the oscillatory part
of the full translational velocity in the yawing plane. Importantly, this contribution can
only arise if the translational oscillations in the yawing plane are not in phase or antiphase
with the yawing oscillation (i.e. it requires the phase shifts in the yawing plane δ1, δ3 =
0, π ), as indicated by the dependence of the effective velocity V̂ on sin δ1 and sin δ3 (5.7b).
We also note that translational oscillations in one direction of the yawing plane generate
orthogonal contributions within the yawing plane, and these contributions are weighted
by J1(A). Physically, this is because yawing moves the swimmer-fixed basis in the yawing
plane orthogonally within the laboratory frame, and so phase differences of translational
oscillations in the swimmer frame can lead to orthogonal emergent contributions.

Since we have demonstrated that rapid yawing causes a spheroid to demonstrate rota-
tional dynamics equivalent to those for an effective object with two planes of symmetry,
and objects with this type of symmetry can have translation–rotation coupling, it is
interesting to note that this coupling does not arise in the emergent translational dynamics
here. That is, the rapid yawing by itself does not generate any emergent translation in
(5.7). However, if the spheroid self-generates oscillatory self-directed motion then this
can combine with the rapid yawing to generate orthogonal effective translation. We note
that this effect is independent of the shear flow in the sense that it would still occur for a
self-propelling spheroid in a fluid with no externally imposed flow, though it is implicitly
affected by the shear flow via the interacting flow effect on the slow evolution of (ϑ̄, Ψ̄ , ϕ̄).

Finally, we note that our results are straightforward to generalize to several other
scenarios. Since the translational results do not affect the leading-order rotational
dynamics, it is straightforward to incorporate different types of self-translation into our
results by calculating the resulting average in (5.5). For the rotational dynamics, the
simplest generalization is that our results hold immediately for rapidly yawing general
axisymmetric objects, now interpreting the Bretherton parameter as the measure of an
effective physical aspect ratio (Bretherton 1962; Brenner 1964). Our results can also be
extended to consider general periodic yawing functions, essentially replacingΩA cos(Ωt)
in (2.1) with a general periodic function Ω f ′(Ωt). In this case, all our analysis up to and
including (3.15) still holds, and the corresponding versions of the slow evolution equations
(3.17) can be obtained by simple evaluation of 〈s2

f 〉, 〈c2
f 〉 and 〈s f c f 〉 in terms of the

integrated function f (T ) (imposing f (0)= 0, and where T =Ωt).
For odd yawing functions, we have 〈s f c f 〉 = 0 and the appropriate emergent slow

evolution equations are (3.17), replacing J0(2A) with 〈e2i f 〉. If we additionally have
〈e2i f 〉 = 0 then we recover the non-trivial case (3) above; the effective shape again reduces
to a spheroid with axes â, b̂, b̂ and aspect ratio (6.2). In this scenario, the nonlinear
transformations

sϑ̄sΨ̄ �→ cϑ̄ , sϑ̄cΨ̄ �→ sϑ̄sΨ̄ , cϑ̄sΨ̄ sϕ̄ − cΨ̄ cϕ̄ �→ sϑ̄sϕ̄ (6.6)

recover Jeffery’s equations directly. That is, they transform (3.17) into (2.10) with
B̂1 = −B̂2 = −B/2 and B̂3 = 0. This observation provides a potential interpretation for
the generation of asymmetry. Namely, considering ei f = ξ + iη on the complex unit
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circle, 〈e2i f 〉 = 0 corresponds to 〈ξ2〉 = 〈η2〉 and 〈ξη〉 = 0, i.e. the mean square orientation
having no preferred direction. Hence, emergent asymmetry can arise when there is some
bias in the preferred mean square orientation of rapid motion.
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Appendix A. Solving the leading-order system (3.4)
In this appendix we solve the nonlinear, non-autonomous leading-order system (3.4). We
start by noting that the first two equations in (3.4) decouple from the third and exhibit
fast-time conserved quantities. To see this, we divide the second equation by the first to
obtain

∂ψ0

∂θ0
= − cot θ0 tanψ0. (A1)

Then, we can integrate (A1) directly to deduce that

sin θ0 sinψ0 = α(t), (A2)

where α(t) is a (slow-time) function of integration, i.e. a fast-time conserved quantity.
We then substitute (A2) into the third equation in (3.4) to obtain the governing equation

∂θ0

∂T
= A cos T

√
sin2 θ0 − α2(t)

sin θ0
, (A3)

which can be rearranged to obtain∫
sin θ0 dθ0√

1 − α2(t)− cos2 θ0
=

∫
A cos T dT = A sin T + β(t), (A4)

where β(t) is the second of three functions of integration. The integral on the left-hand
side of (A4) can be calculated by direct substitution of cos θ0 = √

1 − α2 cos u, yielding
the solution

cos θ0 =
√

1 − α2(t) cos(A sin T + β(t)). (A5)

Finally, we can solve the remaining leading-order equation by substituting (A2) and
(A5) into the third equation of (3.4) to obtain

∂φ0

∂T
= α(t)A cos T

1 − (1 − α2(t)) cos2(A sin T + β(t))
. (A6)

We can integrate (A6) directly using the substitution tan(A sin T + β)= α tan u, resulting
in the solution

α(t) tan(φ0 − γ (t))= tan(A sin T + β(t)), (A7)

where γ (t) is the third and final function of integration from the leading-order solution.
The leading-order solutions (A2), (A5) and (A7) are the general solutions to

the nonlinear, non-autonomous leading-order system (3.4). These are equivalent to
(3.5) after appropriately redefining the functions of integration (α(t), β(t), γ (t)) into
(ϑ̄(t), Ψ̄ (t), ϕ̄(t)). We redefine these fast-time conserved quantities so that the new
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functions of integration are equivalent to (θ, ψ, φ) in the limit A → 0, in which case we
expect to recover the original Jeffery’s equations ((2.4) with A = 0) with no fast-time
variation. Specifically, we use the following transformations:

α(t)= sin ϑ̄(t) sin Ψ̄ (t), (A8a)

tan β(t)= tan ϑ̄(t) cos Ψ̄ (t), (A8b)

tan γ (t)= cos ϑ̄(t) tan Ψ̄ (t) tan ϕ̄(t)− 1
cos ϑ̄(t) tan Ψ̄ (t)+ tan ϕ̄(t)

. (A8c)

Appendix B. Solving the adjoint system (3.9), (3.11)
In this appendix we solve the linear, non-autonomous adjoint system (3.9), (3.11) for Y =
(P, Q, R) with periodic boundary conditions. This solution will allow us to generate the
appropriate solvability conditions, and hence, emergent equations, via (3.10). We note that
the solution method we present here is a modified version of that in Dalwadi et al. (2024a)
for a similar (but autonomous) adjoint system.

Since we have a 3-D linear system, we seek three linearly independent solutions. We
start by considering the bottom row of L∗ in (3.11), which tells us that R = constant in all
solutions. We can reduce our task to solving a 2-D system by setting this constant equal to
zero in two of the linearly independent solutions, ensuring that the third solution will be
able to generate our solution basis for R. For this third solution, we explicitly write

R = C3, (B1)

where C3 is an arbitrary constant. Substituting (B1) into (3.9), (3.11), we obtain
dP

dT
= A cos T sinψ0

sin2 θ0
[−Q + C3 cos θ0] , (B2a)

dQ

dT
= A cos T

[
P sinψ0 + cosψ0

sin θ0
(cos θ0 Q − C3)

]
. (B2b)

Given that the right-hand side of (B2a) does not depend on P , it is convenient to introduce
Q = C3 cos θ0 + Q̃ to reduce the complexity of the system. In this case, the time derivative
generated by differentiating cos θ0 in (B2b) cancels exactly with the inhomogeneous term
on the right-hand side, and so (B2) becomes

dP

dT
= − A cos T sinψ0

sin2 θ0
Q̃, (B3a)

dQ̃

dT
= A cos T

[
P sinψ0 + cosψ0 cos θ0

sin θ0
Q̃

]
. (B3b)

That is, we have transformed (B2) into a homogeneous system, which has trivial solution
(P, Q̃)= (0, 0). Hence, we have generated one non-trivial solution to (3.9), (3.11),
namely

Y = C3(0, cos θ0, 1)ᵀ. (B4)

As noted above, the remaining two solutions can be determined by now setting C3 = 0
in (B2) to obtain the system

dP

dT
= − A cos T sinψ0

sin2 θ0
Q, (B5a)

1009 A27-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.217


Journal of Fluid Mechanics

dQ

dT
= A cos T

[
P sinψ0 + cosψ0 cos θ0

sin θ0
Q

]
. (B5b)

To derive two linearly independent solutions to (B5), we seek nonlinear transformations
to map the remaining adjoint problem (B5) into a homogeneous version of the first-
correction system (3.8). The reason this is helpful is because the linear operator of (3.8) is
a perturbed version of the (nonlinear) operator of the leading-order system (3.4). Hence,
perturbed versions of the solutions we derived to the leading-order system (3.5) will solve
the homogeneous version of the first-correction system (3.8). That is,

θ1 = 1
A cos T

∂θ0

∂T
= cosψ0, ψ1 = 1

A cos T

∂ψ0

∂T
= −cos θ0 sinψ0

sin θ0
(B6)

solve the homogeneous version of the first-correction system (3.8a), (3.8b).
To determine how to map (B5) into a homogeneous version of (3.8), we introduce the

transformations

P(T )= ζ1(θ0)P̃(T ), Q(T )= ζ2(θ0)Q̃(T ), (B7)

where ζi are the (as-of-yet) unknown nonlinear functions of θ0 we seek. Substituting (B7)
into (B5), we obtain

dP̃

dT
= −A cos T

[
ζ ′

1
ζ1

cosψ0 P̃ + ζ2

ζ1

sinψ0

sin2 θ0
Q̃

]
, (B8a)

dQ̃

dT
= A cos T

[
ζ1

ζ2
sinψ0 P̃ + cosψ0

(
cos θ0

sin θ0
− ζ ′

2
ζ2

)
Q

]
. (B8b)

Then, we compare (B8) to the homogeneous version of the first-correction system (3.8a),
(3.8b). We see that (P̃, Q̃)= (θ1, ψ1) when

ζ ′
1
ζ1

= 0,
ζ ′

2
ζ2

= 2 cos θ0

sin θ0
,

ζ2

ζ1
= sin2 θ0. (B9)

That is, when

ζ1 = C2, ζ2 = C2 sin2 θ0, (B10)

where C2 is an arbitrary constant. Then substituting (P̃, Q̃)= (θ1, ψ1) into (B7) and using
the results (B6) and (B10) gives us the second linearly independent solution:

Y = C2(cosψ0,− sin θ0 cos θ0 sinψ0, 0)ᵀ. (B11)

The third and final linearly independent solution to the adjoint problem (3.9), (3.11)
arises from comparing (B8) to the homogeneous version of the first-correction system
(3.8a), (3.8b) and now looking for (P̃, Q̃)= (ψ1, θ1). This requires

ζ ′
1
ζ1

= 0,
ζ ′

2
ζ2

= 2
cos θ0

sin θ0
,

ζ2

ζ1
= sin2 θ0, (B12)

which we can solve straightforwardly to obtain

ζ1 = C1 sin θ0, ζ2 = −C1 sin θ0. (B13)

Finally, substituting (P̃, Q̃)= (ψ1, θ1) into (B7) and using the results (B6) and (B13) gives
us the final linearly independent solution:

Y = C1(sin θ0 cosψ0, cos θ0 sinψ0, 0)ᵀ. (B14)
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Together, the three linearly independent solutions (B4), (B11), (B14) to the adjoint problem
(3.9), (3.11) give the general solution (3.12).
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