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Abstract

Let pt(a, b; n) denote the number of partitions of n such that the number of t-hooks is congruent to a mod b.
For t ∈ {2, 3}, arithmetic progressions r1 mod m1 and r2 mod m2 on which pt(r1, m1; m2n + r2) vanishes
were established in recent work by Bringmann, Craig, Males and Ono [‘Distributions on partitions arising
from Hilbert schemes and hook lengths’, Forum Math. Sigma 10 (2022), Article no. e49] using the theory
of modular forms. Here we offer a direct combinatorial proof of this result using abaci and the theory of
t-cores and t-quotients.
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1. Introduction and statement of results

A partition λ, which is a nonincreasing sequence of positive integers summing to some
integer n, can be represented visually by a collection of boxes arranged in left-justified
rows. The row lengths are arranged in nonincreasing order and correspond to the size
of each part of λ. Such a presentation is called the Ferrers–Young diagram for λ. In
such a diagram, we may refer to the cells by their place in this array; we will denote
the cell in row i and column j by (i, j).

We define the hook of (i, j) to be the collection of cells (a, b) such that a = i and
b ≥ j or a ≥ i and b = j. The length of such a hook is the cardinality of this set, which
we will denote by h(i, j). We will call a hook a t-hook if its length is divisible by t.
For example, the hook lengths h(i, j) for the partition 3 + 2 + 1 are labelled in their
respective cells as
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A study of hook numbers enriches many areas where partitions naturally arise.
For instance, recall that the partitions of n parametrise the irreducible complex
representations of the symmetric group on n letters. Moreover, the degree of such a
representation ρλ : Sn → GL(Vλ) is given by the Frame–Thrall–Robinson hook length
formula: if λ is a partition of n and pλ is an irreducible complex representation of Sn
as above, then

dim(Vλ) =
n!∏

h(i,j)∈H(λ) h(i, j)
,

where H(λ) is the multiset of hook lengths of cells in the Ferrers–Young diagram for
λ [4].

Further, recall the famous q-series identities of Euler and Jacobi:

q
∞∏

n=1

(1 − q24n) = q − q25 − q49 + q121 + q169 − · · ·

q
∞∏

n=1

(1 − q8n)3 = q − 3q9 + 5q25 − 7q49 + 11q121 − · · · .

These identities appear as specialisations of the Nekrasov–Okounkov hook length
formula, which is derived by taking a z-deformation of the generating function for the
partition function. In particular, for any complex number z,

∞∏
n=1

(1 − qn)z−1 =
∑
λ

q|λ|
∏

h(i,j)∈H(λ)

(
1 − z

h(i, j)2

)
.

This result, in which hook lengths appear prominently, constitutes a significant
generalisation of many new and classical number-theoretic results on q-series.

We are motivated to explore the number of t-hooks across all partitions of size n
in an attempt to obtain an analogue of Dirichlet’s theorem on primes in arithmetic
progressions. There has been recent work on the distribution of partitions where the
number of t-hooks lie in a fixed progression and it turns out that, unlike Dirichlet’s
theorem, equidistribution does not hold in general. Going beyond unequal distribution,
there are situations where such counts are identically zero. For example, Table 1 shows
results of [1] for congruence classes of the number of 2-hooks mod 3 for selected
integers n.

This example highlights one of the more striking instances of the unequal distri-
bution of t-hooks that has been observed in recent work (see [1, 3]). In particular,
these results construct arithmetic progressions where these counts are identically zero.
The existing proofs make use of the theory of theta functions to find exact formulae
for the asymptotic behaviour of the number of t-hooks in a particular arithmetic
progression. In this note, however, we argue the following result directly by appealing
to the combinatorial study of hook lengths through abaci.
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TABLE 1. 2-Hooks modulo 3.

n p2(0, 3; n) p2(1, 3; n) p2(2, 3; n)

300 ≈ 0.7347 ≈ 0.2653 0
...

...
...

...
600 ≈ 0.6977 ≈ 0.3022 0
900 ≈ 0.6837 ≈ 0.3163 0

...
...

...
...

4500 ≈ 0.6669 ≈ 0.3330 0
4800 ≈ 0.6669 ≈ 0.3330 0
5100 ≈ 0.6668 ≈ 0.3331 0

THEOREM 1.1 [1, Theorem 1.3]. Let (·/�) denote the Legendre symbol and ord�(n) the
�-adic valuation of n. Then the following statements hold.

(1) If � is an odd prime and a1, a2 are integers for which (−16a1 + 8a2 + 1/�) = −1,
then p2(a1, �; �k + a2) = 0.

(2) If � ≡ 2 mod 3 is prime and a1, a2 are integers for which ord�(−9a1+3a2+1) = 1,
then p3(a1, �2; �2k + a2) = 0.

EXAMPLE 1.2. Let � = 5, a1 = 1 and a2 = 1. Observe that (−16a1 + 8a2 + 1/5) = −1
and ord5(−9a1 + 3a2 + 1) = 1. Thus, if n ≡ 1 mod 5, we have p2(1, 5, n) = 0; that is,
there does not exist a partition λ of n where the number of 2-hooks of λ is equivalent
to 1 mod 5. Likewise, if n ≡ 1 mod 25, then p3(1, 25; n) = 0.

In the following sections, we make use of a well-known bijection between integer
partitions and their decompositions into t-cores and t-quotients. We are then able to
approach the theorem directly using the theory of abaci and a naturally appearing
positive definite binary quadratic form intimately related to the problem.

2. Nuts and bolts

2.1. Cores and quotients. Fix an integer t. A partition which does not contain any
t-hooks is called a t-core. We may construct a t-core λ̃ from an arbitrary partition λ by
removing rim t-hooks from the Ferrers–Young diagram of λ. Moreover, this t-core is
unique. To this end, [5] describes an algorithm for finding both the core and quotient
of a partition by systematically removing rim-hooks from λ to build a t-quotient and
arrive at the t-core of a partition.

The following is a well-known bijection which identifies a partition with its t-core
and a t-tuple of partitions called its t-quotient. In particular, let P denote the space
of all partitions, ct(P) all t-core partitions and qt(P) the space of t-quotients, which is
isomorphic to the direct product of t copies of P. With this notation, there is a bijection
ϕ : P→ ct(P) × qt(P) given by

https://doi.org/10.1017/S0004972722000739 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000739


[4] Hooks in integer partitions 435

ϕ(λ) = (λ̃, λ0, . . . , λt−1).

In particular,

|λ| = |λ̃| + t ·
t−1∑
i=0

|λi|. (2.1)

This decomposition is classical and gives rise to the fact that for a given partition λ,
the size of its corresponding t-quotient given by

∑t−1
i=0 |λi| is a count of the number of

t-hooks contained in λ (for example, see [8, Theorem 3.3]). To make full use of the
content of this bijection, we will revisit this result in the context of abaci theory.

2.2. Abaci. We may encode the data of a partition λ of n in an abacus. To do this,
let λ = {λ1 ≥ λ2 ≥ · · · λs > 0}. For 1 ≤ i ≤ s, define the ith structure number Bi by
Bi = λi − i + s; that is, the structure number Bi is the hook number of the entry in
the ith row and first column of the Young diagram.

Now, create an abacus with t vertical runners labelled 0 through t − 1, each infinitely
long. We will place beads on the runners in accordance with the structure numbers.
In particular, the Bi are positive integers and thus there exist (by Euclidean division)
unique integers ri and ci such that

Bi = t(ri − 1) + ci, 0 ≤ ci ≤ t − 1, ri ≥ 1.

We place a bead representing Bi in the row and column position (ri, ci) on the abacus.
For example, consider the partition λ = (5, 3, 2, 1). We find B1 = λ1 − 1 + 4 =

5 − 1 + 4 = 8. Likewise, B2 = 5, B3 = 3 and B4 = 1. The corresponding abacus with
t = 3 is

1 · ◦ ·
2 ◦ · ◦
3 · · ◦

Conversely, given an abacus with beads in positions {(ri, ci)}, we can construct a
decreasing sequence B1 ≥ · · · ≥ Bk by defining Bi = t(ri − 1) + ci. Then we can find
a corresponding partition by setting λi = Bi + i − s.

LEMMA 2.1. Removing a t-hook from a partition λ is equivalent to sliding a bead up
one row on the abacus representing λ.

PROOF. Let {B1, B2, . . . , Bk} be a set of structure numbers for the partition λ. Removing
a rim t-hook T from λ is equivalent to subtracting t from some structure number B�,
resulting in the set of structure numbers {B1, . . . , B�−1, B� − t, B�+1, . . . , Bk} for λ \ T
[7, Lemma 2.7.13].

By construction, the bead position on the abacus for B� is given by (r�, c�), where
B� = t(r� − 1) + c�. Then

B� − t = t(r� − 1) + c� − t = t(r� − 2) + c� = t((r� − 1) − 1) + c�,
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and so removing a t-hook has the effect of sliding a bead up one row on the
abacus. �

Since rows in the abacus representing the partition λ are labelled with nonnegative
integers, and sliding a bead upward on the abacus fixes the column while subtracting
one from the row number, the process of removing t-hooks can only be done finitely
many times before arriving at an abacus representing the t-core of λ.

Furthermore, since removing a t-hook corresponds to sliding a bead upward on
the abacus, an abacus representing a t-core partition has no gaps between beads in
any column, and any nonempty column has a bead in the first row [9, Theorem 4].
Following this observation, we may restate (2.1) in terms of the t-hooks contained in λ.

COROLLARY 2.2. Let ht(λ) denote the number of t-hooks contained in λ and let λ̃
denote its t-core. Then |λ| = |λ̃| + t · ht(λ).

We may thus denote the abaci of t-cores by t-tuples of nonnegative integers,
indicating the number of beads in each column. However, there are multiple abaci
which represent a single t-core partition.

LEMMA 2.3 [9, Lemma 1]. The two abaci

A1 = (a0, a1, . . . , at−1) and A2 = (at−1 + 1, a0, a1, . . . , at−2)

represent the same t-core partition.

By repeatedly applying the above lemma, we may find a unique abacus repre-
sentation for a given t-core containing zero beads in the first column. Thus, a tuple
(0, a1, . . . , at−1) uniquely represents a t-core.

2.3. Structure theorem for 2- and 3-cores. We now specialise to the cases where
t is two or three. Using the theory of abaci, we are able to completely classify 2- and
3-core partitions by looking at the divisors of 8n + 1 and 3n + 1, respectively.

THEOREM 2.4. Let ct(n) denote the number of t-core partitions of n.

(1) We have c2(n) = 1 if 8n + 1 is an odd square, and 0 otherwise.
(2) We have c3(n) =

∑
d|3n+1(d/3). In particular, c3(n) � 0 if and only if for all primes

p ≡ 2 mod 3, ordp(3n + 1) is even.

REMARK 2.5. The equality in (1) is classical by considering the self-conjugate
partitions arising from triangular numbers. The equality in (2) was first proven in [6]
by comparing coefficients of closely related modular forms.

SKETCH OF PROOF. The case t = 2. First, we show that n is a triangular number if
and only if 8n + 1 is an odd square. A triangular number has the form n = k(k + 1)/2
for some integer k. Then

8n + 1 = 8 · k(k + 1)
2

+ 1 = 4k(k + 1) + 1 = 4k2 + 4k + 1 = (2k + 1)2.
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Certainly, if n is a triangular number, we have a partition λwhere the the parts are given
by λi = k − i + 1 for 1 ≤ i ≤ k, where n = k(k + 1)/2. We can check that this partition
is indeed a 2-core by simply noting every hook is symmetric, so the hook length is of
the form 2k + 1 for suitable k.

Now suppose λ is a 2-core partition of n. Then some abacus A = (0, a) uniquely
represents λ and has the shape

1 · ◦
...

...
...

a · ◦

Note that Bi = 2(a − i) + 1, 1 ≤ i ≤ a, and that a is the number of parts of the partition.
Then recalling λi = Bi + i − a, we have λi = 2(a − i) + 1 + i − a = (a − i) + 1, and

n =
a∑

i=1

λi =

a∑
k=1

k =
k(k + 1)

2
.

The case t = 3. Every 3-core partition can be uniquely represented by an abacus of
the form A = (0, a, b) for some nonnegative integers a and b. Working backwards, we
obtain an expression for n in terms of the structure numbers determined by this abacus:

n =
a+b∑
i=1

λi

=

a+b∑
i=1

Bi +

a+b∑
i=1

i −
a+b∑
i=1

(a + b)

=

a+b∑
i=1

Bi +
(a + b)(a + b + 1)

2
− (a + b)2.

Now, we need only compute the structure numbers. We may do this by considering the
beads in column one and column two separately. We have

a+b∑
i=1

Bi =

a∑
i=1

(3(i − 1) + 1) +
b∑

j=1

(3( j − 1) + 2)

= 3 · a(a + 1)
2

− 2a + 3 · b(b + 1)
2

− b.

Combining with the above and simplifying, we ultimately arrive at

n = a2 − ab + b2 + b.

Define x := −a + 2b + 1, y := a + b + 1. Then

3n + 1 = x2 − xy + y2.
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We now have an expression for 3n + 1 in terms of a positive definite binary
quadratic form with discriminant D = −3. The ring of integers of the imaginary
quadratic number field K = Q(

√
−3) is given by Z[ω], where ω = (1 +

√
−3)/2. The

norm on Z[ω] simplifies to N(α + ωβ) = α2 − αβ + β2. The desired equality follows
from constructing a correspondence between ideals in OK with norm 3n + 1 as in the
proof of Theorem 4.1 in [2].

In particular, every ideal of OK is principal and factors uniquely into a product of
finitely many (not necessarily distinct) prime ideals. Then given an integer prime p that
divides 3n + 1, it follows that p is either congruent to 1 or 2 mod 3. In the latter case,
p is inert and the principal ideal (p) in OK is prime with norm p2. Such p must have
an even exponent in the prime factorisation of 3n + 1 in Z. To determine whether n
admits a 3-core partition, we may compute the prime factorisation of 3n + 1 in Z and
check for even exponents on all primes p where p ≡ 2 mod 3. �

3. Proof of Theorem 1.1

Suppose � is an odd prime. Write n = �m + a2 and suppose λ � n such that
h2(λ) = �k + a1, that is, h2(λ) ≡ a1 mod �. Denote |λ̃| by ñ. Using Corollary 2.2, we
may write

n = ñ + 2(�k + a1) = �m + a2

so ñ = −2a1 + a2 + �(m − 2k). Then,

8ñ + 1 = −16a1 + 8a2 + 1 + �(8m − 16k).

Now, 8ñ + 1 ≡ −16a1 + 8a2 + 1 mod �. If (−16a1 + 8a2 + 1/�) = −1, then 8ñ + 1
cannot be an odd square. Since λ̃ was assumed to be a 2-core, we have reached a
contradiction. Thus, no such λ can exist.

Next, suppose � is a prime which is 2 mod 3. Write n = �2m + a2 and suppose λ � n
such that h3(λ) = �2k + a1 or h2(λ) ≡ a1 mod �2. We may write

n = ñ + 3(�2k + a1) = �2m + a2

so ñ = −3a1 + a2 + �
2(m − 3k). Then

3ñ + 1 = −9a1 + 3a2 + 1 + �2(3m − 9k).

Now if ord�(−9a1 + 3a2 + 1) = 1, then � | −9a1 + 3a2 + 1 but �2 � −9a1 + 3a2 + 1.
Since �2 | �2(3n − 9k), we conclude that � divides 3Ñ + 1 but �2 does not. Since λ̃
was assumed to be a 3-core, we have reached a contradiction; therefore, no such λ can
exist. �
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