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1. INTRODUCTION 

The topic of this review encompasses all aspects of pulsation theory, for the 
radiation field is never negligible in stellar stability problems, on the contr
ary, it is usually the primary destabilizing factor through its thermal effects, 
and modifies the envelope structure and stability through its dynamic effects. 
The impossibility of a general review of such a broad topic is apparent, and I 
will concentrate in this talk on the most striking aspect of pulsating stars: 
nonlinear effects in the outer layers. To focus the discussion, I will address 
primarily two problems of current interest: shock development driven by the 
pulsating velocity field, and time dependent turbulence in the ionization 
zones. The emphasis will be on methodology rather than specific problems and 
developments. 

2. OVERVIEW 

We will consider the problem of radial pulsation in low modes, with special 
attention to the various effects of the radiation field. Figure 1 depicts in a 
pictorial fashion some of these effects and their location in the star. They 
may be categorized as follows: 

1. Radial pulsational instabilities, generally driven in the ionization 
zones. 

2. Thermal (secular) instabilities associated with the nuclear burning 
region in the core. 

3. Non-radial instabilities, including convection, affecting the surface 
layers or the core. 

4. Radiation pressure effects on the static structure, stability proper
ties, and flow in the atmosphere. 

5. Wave behavior at the photosphere and in the atmosphere, especially shock 
development. 

All of these processes are dependent either directly or indirectly on proper
ties of the radiation field, and show marked changes in their characteristics as 
radiation increases in importance. 

The set of equations that describe the general stellar oscillation problem 
have been discussed recently by B. Mihalas (1984), based on earlier work by 
Castor (1972), and Buchler (1979). The main equations are those of conservation 
of momentum and energy for both the gas and the radiation field. These equations 
require some type of closure assumption, such as the Eddington approximation, to 
relate P to E. Usually, more drastic assumptions are made, in order to elimin
ate the integral terms in these equations, the most popular is the diffusion 
approximation, valid at large optical depth. As a step in this direction, we 
may retain the distinction between the mean intensity, J, and the equilibrium 
value, B, to obtain the "nonequil ibrium diffusion" approximation (Mihalas, 
1984). 
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Fig. 1. Schematic representation of a star, showing the structural components 
on the left, the principal instabilities along the bottom, and various 
processes that tend to be strongly dependent on radiation effects. 

Taking the process one step further, we obtain the complete equilibrium diffu
sion treatment (J=B). This treatment is inapplicable at small optical depth, 
but is often used in this case nonetheless owing to its simplicity: radiation 
quantities appear directly as correction terms in the gas dynamic equations, and 
they are trivial to compute. The only physical input needed is the Rosseland 
mean opacity. The primary effect of the radiation field enters through the flux 
divergence term, which represents a "non-adiabatic" energy exchange with gas. 
The magnitude of this "non-adiabaticity" is given by the ratio of the thermal 
timescale (time needed to radiate away all of the thermal energy in a layer) to 
the dynamic timescale (free-fall time). This is the "thermal" effect of the 
radiation field responsible for pulsational instability in most classes of vari
able stars. The second effect of the radiation is the direct contribution to 
the pressure and internal energy, affecting not only the work done during a pul
sational cycle, but the static structure of the star as well. 

Table 1 lists some of the work in this field according to the type of model 
and the radiation treatment employed. This is not intended to be a complete 
list, nor is it a full description of the contribution of the workers listed. 
It does show that the models fall into two general categories: envelope models 
and atmosphere models -- to my knowledge no model of the entire system has ever 
been attempted. We also see that the majority of the results in this field have 
been obtained with the equilibrium diffusion treatment, although a few more acc
urate models have been computed. 
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Table 1 

TREATMENT OF PHOTOSPHERE AND RADIATION 
IN NONLINEAR PULSATION MODELS 

(not a complete list) 

I...Envelope Models (Photosphere = outer boundary) 

-> Equilibrium Diffusion 

Christy 
A. Cox, et. al. 
Stobie 
Stellingwerf 
von Sengbusch 
Stothers 
Fadeyev 
Aikawa 

1966 
1966 
1969 
1974 
1974 
1981 
1981 
1984 

RR Lyrae 
<all> 
Cepheids 
RR Lyrae, Cepheids 
RR Lyrae 
RR Lyrae, Cepheids 
Supergiants 
Supergiants 

-> Non-local Transfer Equation 

Castor 1967 RR Lyrae 

-> Non-equilibrium Diffusion 

Spangenberg 1975 RR Lyrae 

-> Multigroup Radiation 

Keller 1969 RR Lyrae 
Bendt & Davis 1971 Cepheids 

Karp 1974 Cepheids 

II...Atmosphere Models (Photosphere = inner boundary) 

-> Non-equilibrium Diffusion 

Hill 1972 RR Lyrae, Cepheids, Miras 

-> Radiation Pressure only 

Wood 1979 Miras 

As an example, Figure 2, from Stellingwerf (1974), shows the variation of the 
radial velocity of the outer zones of a nonlinear RR Lyrae model (every other 
zone shown, shifted), as well as the variation of the bolometric magnitude. The 
outgoing shock at phase 0.7-0.8 and the ingoing shock visible at phases 0.9-1.2 
show the movement of the hydrogen ionization zone in mass. Castor (1967) has 
studied the behavior of this ionization front and finds that it is a weak D type 
during the outgoing phase, and weak R type during the inward movement. The 
strong shock at phase 0.75 therefore precedes the ionization front into the neu
tral material, and undoubtedly continues to propagate into the atmosphere. The 
inward moving shock follows the front. 
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Fig. 2. Variation of the velocity of the outer zones and the luminosity of an 
RR Lyrae model envelope using the equilibrium diffusion treatment of 
the radiation field. 

This same model was computed by Spangenberg (1975) using the non-equilibrium 
diffusion treatment of radiation. Variation of the outer zone temperature, opa
city, and intensity are shown in Figure 3. The luminosity variations in the two 
models are remarkably similar, both in shape and in amplitude. The temperature 
variation in the first model, however, is tied to the fourth root of the lumin
osity, whereas, the non-equilibrium model shows much more structure in the temp
erature variation, as well as a large dip near the phase of rising light. 
Although the reality of these features is not clear, this certainly indicates 
that a careful numerical treatment is necessary to accurately obtain the varia
tion of the temperature in optically thin regions. 
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F ig. 3. Variation of the outer temperature, opacity, and luminosity in a non
l inear RR lyrae using the equil ibrium di f fus ion treatment of the radia
t ion f i e l d . 
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An interesting example of ionization front movement is shown in Figure 4, from 
Stellingwerf (1975), showing the variation of various quantities in a model 
showing a mixture of modes. Note also the smooth variation of the outer temper
ature. All of these models completely ignore the effects of convection, and 
this last case is unrealistic in that it lies near the red edge of the instabil
ity strip, where convective effects would be strong. 
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Fig. 4. Variation of outer zone parameters in a mixed-mode RR Lyrae model. 

To see the effect of the radiation pressure on the static structure of 
Cepheids, in Figure 5 (from Cox and Stellingwerf, 1979) shows the run of an 
adiabatic "gamma", the specific heat Cv, and the radiation pressure in a 
Cepheid model, and in "b" the same model structure computed without radiation 
pressure. These quantities are important contributors to the pulsational sta
bility of the star, and it is clear that the radiation pressure, which attains a 
value of about 25% of the total pressure over a limited layer in the star, does 
affect these quantities strongly, and in a destabilizing fashion. For compar
ison, Figure 6 shows the same information for a model differing only in effec
tive temperature from the previous case: this is a model of a Beta Cepheid. 
Clearly, the radiation pressure is more important in this case, reaching a value 
of about 30% of the temperature over wider range of temperatures. Its destabil
izing effect is also more pronounced, allowing a driving region to appear at 
logT = 5.1. The radiation pressure can also be shown to cause the instability 
strip to slant toward higher effective temperatures at higher luminosities, as 
observed for Beta Cepheids, rather than the opposite case as in the instability 
strip. The destabilization due to this mechanism seems, alas, to be too weak 
to overcome the envelope damping (Stellingwerf, 1978), but certainly could con
tribute to the instability of these stars. 

https://doi.org/10.1017/S0252921100086012 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100086012


42 

1.0 

0.5 

0 
k0 

0.5 

0 
4.0 4.5 5.0 5.5 

LOG T 

Fig. 5. Structure of an envelope of the Cepheid model: (a) including radiation 
pressure, and (b) with radiation pressure suppressed. Plotted are: 
specific heat (solid line), adiabatic exponent (dashed line), and radi
ation pressure (dot-dashed line). 

i — i | i i i i — | i — i i — i — | — r -

DRIVE—- DAMP - -
i, m m 

-^ J r3-i 

i 1 1 1 1 1 i 1 i 1 1 1 1 r -

| ;JVI : 

§1 Cy^Cy.max 

I 1 I I ll_J L _ J J I L . _ l L - _ i _ : 

4.5 5.0 5.5 6.0 
LOGT 

Fig. 6. Same as figure 5, but for a hotter model, near the Beta Cepheid region 
of the HR diagram. 

3. ATMOSPHERIC EFFECTS: SHOCK DEVELOPMENT 

It is well known that any sort of turbulence near the photosphere may launch 
outgoing radiative/acoustic waves that grow in amplitude due to the exponential 
density gradient, and may become shocks. The large scale periodic motions pre
sent in pulsating stars is an extreme example of this phenomenon: in many types 
of oscillating stars very strong shock waves are generated each period and can 
profoundly change the atmosphere's properties. This process probably represents 
a dissipative energy loss to the pulsation, and this energy is carried into the 
atmosphere to raise its temperature, modify the density structure, and in some 
cases perhaps drive a stellar wind. 

The increase in shock strength with radius does not continue indefinitely. 
Figure 7 shows the modulus and phase of an eigenfunction obtained by linear 
analysis of an extended isothermal atmosphere (from Stellingwerf and Buff, 
1982), compared with the (high frequency) WKB result. Two effects are apparent 
in this simple case: a rapid growth in the amplitude at small radii, caused by 
the stratification, and a subsequent decline, due to spherical effects. Peak 
amplitude occurs at the sonic radius Rs = GM/2c , where c is the isothermal 
sound speed. The mode depicted is constrained to be a standing wave by boundary 
conditions, but in fact a consequence of the weakening gravity at large radii is 
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a drop in the acoustic cutoff frequency, and a gradual conversion of the eva
nescent pulsation motion into traveling waves as the radius increases. These 
traveling waves show the same amplitude variation as seen in Figure 7 in the 
linear (small amplitude) limit. 
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Fig. 7. Oscillation eigenfunction for an extended isothermal atmosphere, show
ing the modulus and phase of the velocity and density variations. 

The development of the outgoing shock in an RR Lyrae model can be seen in 
Figure 2. Hill (1972) studied the dynamics of the radiating shock in some 
detail as it develops in the atmoshere. Figure 8 is taken from Hill (1975), and 
shows the movement of mass shells in the (Lagrangian) model of the Cepheid Beta 
Dor. The shock development in this model is rather complicated, and certainly 
this is caused in part by the rigidly prescribed piston motion at the base of 
the atmosphere. This is not a periodic solution, and, indeed, periodicity may 
be impossible to attain in a Lagrangian model due to long period motion of the 
outer layers, and possible ejection of the outer zones (Wilson and Hill, 1976). 

One striking feature of such models is their strong deviation from the linear 
results. Figure 9 shows the results of calculations by Wood (1979) of Mira 
atmospheres driven by large amplitude pulsations. The lines in these diagrams 
depict the motion of shocks as a function of time in the two cases of an adia
batic atmosphere (with specified temperature structure), and an isothermal 
atmosphere. In both cases the first shock is unique, subsequent shocks see a 
very different structure and move with changed velocity. In the isothermal case 
subsequent shocks move into material falling inward in the wake of the first 
shock and tend to merge, building a shell that will eventually be ejected. In 
the adiabatic case, the pulsation drives a steady wind. Radiative effects are 
important in all aspects of this process. 
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Fig. 8. Shock wave development in a Cepheid atmosphere. 

ADIABATIC: y = 5 /3 ISOTHERMAL: y = 1 

Fig. 9. Shock paths in adiabatic and isothermal atmospheres, shock radius 
versus time. 

Models such as these can be used to estimate the dissipation of energy in the 
atmosphere, but very little is known concerning the energetics of the complete 
system. From the point of view of the envelope motion, simple modification of 
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the outer boundary condition has been proposed, but is probably inadequate to 
model such a complicated system. A surprising result obtained by Aikawa (1984) 
is a destabilization caused by a running-wave outer boundary condition for 
supergiant oscillations, casting some doubt on the usual assumptions concerning 
the energy budget. What is needed to address these questions is a full model of 
the envelope/atmosphere system, using a Lagrangian grid inside the photosphere, 
and gradually changing to an Eulerian grid as the character of the motion 
changes to running waves. Such a computation, including a reasonable radiation 
treatment, is probably feasible with current computers. 

4. CONVECTION IN PULSATING STARS 

Throughout the development of pulsation theory during the past twenty years 
undoubtedly the most serious problem confronting the theory has been the ques
tion of convection in the ionization regions of the stellar envelope. The 
temperature gradient in these zones is strongly superadiabatic over very thin 
shells (thinner than a pressure scale height in some cases). The density is too 
low to allow effective convective transport. The resulting picture of thin, 
highly turbulent regions with possibly near-sonic fluid velocities, and substan
tial overshooting into stable layers, but still carrying only a small fraction 
of the energy flux, is not a pleasant one computationally. One is strongly 
tempted to simply ignore the problem. On the other hand, these ionization zones 
are precisely the seat of the pulsational instability itself, and certainly 
deserve careful treatment. 

Convection has two effects on pulsating stars: 1) modification of the static 
structure of the star (reducing the temperature gradient in the outer layers), 
and 2) modification of the time dependence (phase) of the flux in the outer 
layers. Baker and Kippenhahn (1965) included convective effects of the first 
type in models of Cepheids and found that the structural changes in the stars 
caused a neutralization of the pulsational instability in very cool models, but 
this effect occurred far to the red of the observed red edge of the instability 
strip, as shown in Figure 10 where the observed strip is labeled "OBS", and the 
Baker/Kippenhahn linear growth rates for the fundamental and first overtone 
modes are plotted versus effective temperature. 
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Fig. 10. Linear non-adiabatic growth rates of the fundamental and first over
tone modes of Cepheid models as computed by Baker and Kippenhahn in 
1966. Marked "OBS" is the observed width of the instability strip. 
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The early Cepheid models computed by Cox, et. al. (1966) included convection 
via a "phase lag" equation, in which the rate of change in the convective flux 
is limited to the eddy circulation time, and the limiting value is taken to be 
that of the mixing-length theory of Bohm-Vitense. Later work by Baker and Gough 
(1979) and Gonczi and Osaki (1980) showed that such a scheme is subject to an 
instability that causes unphysical fluctuations in the convective flux as a 
function of radius. 

The first computational models to actually demonstrate the quenching effect of 
convection at the red edge were the two-dimensional computations of Deupree 
(1977a-d). Later, Xiong (1980) using a more detailed local theory and 
Stellingwerf (1982a,b, 1984a-c) using a spherical model with nonlocal convection 
included via a diffusion term obtained similar results. These models also pre
dict a convective effect near the blue edge, but it is a destabilizing effect 
for these hotter models. It seems that the effects of convection in pulsating 
stars can be of either sign, rather than a purely stabilizing influence. 

The growth rates of the first two modes with convection included are shown in 
Figure 11, adopted from Stellingwerf (1984a). The width of the instability 
strip is in good agreement with observations of cluster variables. The dashed 
curves represent possibilities for the growth rates of one mode toward the 
other, and determine the mode of pulsation (not yet computed). If the two 
dashed lines cross below the neutral stability line (as shown) a small hystere
sis region is expected, if they cross above neutral, then mixed mode behavior, 
as seen in M15 and M3 will result. 
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Fig. 11. Linear non-adiabatic growth rates of RR Lyrae models showing estimated 
switching rates between modes. 

The equations used in these models are given below. Equations 1-3 are the 
usual conservation laws of mass, momentum, and energy, with the addition of con
vective quantities: P^ = turbulent pressure, P^y = eddy viscosity, Et = 
turbulent kinetic energy, Fc = turbulent thermal flux, and Ft = turbulent 
kinetic energy flux. Equation 4 is the equation for the convective energy, 
including the effects of overshooting ("diffusion"), superadiabatic destabiliz-
ation ("driving"), and congressional effects ("pulsation interaction") — see 
Stellingwerf (1982a) for details. In these equations, the equilibrium radiation 
pressure and energy are included in P and E. The convective terms are highly 
nonlinear, and dynamic as well as thermal effects need to be included. In this 
treatment, the system of equations is closed by taking the fluctuating temper
ature T' in the driving term, EtQ, to be the mixing-length value. 
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Continuity: 

W + P'-<"> = ° (1) 

Momentum: 

^ - I v (P+Pt +Pt v) - v , 

Pt = P < ( U ' ) 2 > , 

P = - u ' St 9<u>/3r , 

(2) 

Thermal Energy: 

g F ( E + E t ) + ( P + P t + P t v ) ^ = 

Et = l /2<(u ' ) 2> , 

FC = Pcp<u' r > , 

F = 1/2 P < (u ' ) 2 u ' , 

i V -<Fr+W • (3) 

Convective Energy: 

D 
Dt 

(E ) = i_ (fJW — I 
t' 3r yN t 3r J 

Eddy 
Diffusion 

Driving Pulsation 
Interaction 

IL = Diffusion Scale Length, 

E t e " _ / G v VP <u'T'>/<(u') > ,,21/2 

Et = 1/2 <(u')
2> 

Since the convective zone lies just at the photosphere, the model results 
should be subject to observational verification. Figure 12 shows observations 
of Benz and Mayor (1982) of the Cepheids SV Vul and X Cyg using the CORAVEL 
instrument. Radial velocity is at the right, velocity dispersion (width of the 
correlation function, essentially an average line width) shown at right as 
crosses, and the dispersion expected from a non-turbulent atmosphere shown as 
boxes. In both cases we note a discrepancy between the two dispersions of about 
5 km/sec near the phase of minimun radius (phase 0.5) and a very rapid dis
appearance of this discrepancy soon thereafter. A similar behavior has been 
seen by Benz in RR Lyrae. (Benz and Stellingwerf, 1985). 
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Fig. 12. Observed variation of the radial velocity and the width of the veloc
ity correlation function (measure of turbulence) for the two Cepheids 
SV Vul and X Cyg as given by Benz and Mayor (1982). The boxes on the 
right represent the expected variation due to projection effects, 
while the x's give the observed variation. 

Figure 13 shows snapshots of the convective quantities in a nonlinear RR Lyrae 
model (Stellingwerf, 1984a): solid line is the rms convective velocity, dashed 
is the convective flux, stellar surface at the right. The phases of max and min 
radius are indicated. Notice the strong increase in the convection near minimum 
radius (phases 0.275-0.325) and the remarkably sudden drop to near zero convec
tion at phase 0.4, exaclty as seen in the Cepheid observations. Maximum veloc
ity in this model at the photosphere is 6 km/sec. Although one does not expect 
too much from such a simple model of a complex phenomenon, it does appear that 
at least the gross aspects of the convective motions are being handled cor
rectly. 
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loin. 

Fig. 13. Snapshots of a convective envelope model of an RR Lyrae star at var
ious phases. Note the strong increase near minimum radius, and the 
subsequent rapid decline of the convection. 
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DISCUSSION 

SYLVIE VAUCLAIR: There is a class of pulsating stars that you did not mention 
in your talk and which is interesting from a physical point of view: The rap
idly oscillating Ap stars which have been observed by D. W. Kurtz since 1980. 
(Series of papers in MNRAS). Ten of these stars are now known. They lie on 
the main sequence within a narrow range of effective temperature (around 7000 
K). They have magnetic fields of = 500 - 1000 G which vary with time (this is 
explained in the oblique rotator model). They oscillate with periods between 4 
and 15 min, and the amplitudes vary in phase with the magnetic field. These 
observatons suggest that the pulsations are preferentially amplified along the 
magnetic axis and damped at the magnetic equator. N. Dolez, D. Gough and 
myself have shown (still unpublished) that these observations may be accounted 
for if these stars suffer a magnetically controlled wind of = 10"1 3 n yr" . 
In such a wind helium is left behind due to gravitational settling in the same 
way as in helium rich stars (Vauclair 1975). In these cooler stars the helium 
accumulation region lies deeper and doesn't appear at the surface, but we show 
that it can trigger the pulsations as observed by K-mechanism. 
STELLINGWERF: It seems likely that even weak magnetic fields can influence 
pulsation amplitudes appreciably, since this may be the cause of the Blazko 
effect in RR Lyrae Stars. 
H. GEHMEYR: You have talked a lot on Cepheids and RR Lyrae stars. Can you 
give some idea low to explain Miras, esp. by convection/puslation coupling? 
STELLINGWERF: I have not computed Mira models. As I mentioned, there is some 
evidence that convection may destabilze for very cool envelopes, but I have not 
seen this effect in RR Lyrae models. 
KARL-HEINZ A. WINKLER: How does one treat stellar winds in stellar pulsation 
theory? 
STELLINGWERF: They are usually ignored. Probably, no simple model will suf
ficed A full model with an extended atmosphere is needed. 
KARL-HEINZ A. WINKLER: Is the convective energy equation all terms are propor
tional to Et. That means that Et will always be 0 if it was on 0 every
where. Is this physical deficiency serious for the applications? 
STELLINGWERF: In this theory perturbations are needed to start the convection 
in unstable zones. In stable regions, the convective velocity decays, but 
remains nonzero due to the diffusion term. 
MIGUEL H. IBAUEZ S.: 1. In your equations I didn't see anywhere the cor
responding equation for the degree of ionization of Hydrogen but you are work
ing in just the range of temperature of T^IO^IO1* where the effects of hydrogen 
recombination are crucial. Have you any comment about this point? 

2. I have worked, for some time, the problem of thermochemical instabil
ities in hydrogen plasma, i. e., instabilities related with the hydrogen recom
bination process, and I have found that the plasma is highly unstable, at 
T=103-101* against formation of small elements (clumps). Do you take into 
account in your models such inhomogenities? 
STELLINGWERF: 1. In the detailed models, ionization is obtained via solution 
of the (SAHA) equation (LTE). For the simple models, ionization effects are 
lumped into the value of r1# 

2. No. 
J. CHRISTENSEN-DALSGAARD: Concerning the observations of line broadening at 
minimum radius: This may partly be caused by velocity gradients in the stellar 
atmosphere, which would evidently give rise to some broadening. Have your 
taken this into account? 
STELLINGWERF: Velocity gradients above the photosphere contribute about 1-2 
km/sec to the broading, whereas, the turbulent contribution is 5-10 km/sec. 
J. CHRISTENSEN-DALSGAARD: I have some comments on your discussion of convec-
tion. First, a few philosophical remarks. We should remember that the pro
blems of convection are orders of magnitude more difficult than the problems of 
radiation hydrodynamics, with which the Colloquium is mainly concerned. With 
radiation hydrodynamics we know the equations, and the difficulty is how to 
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solve them, under circumstances that are sufficiently simple to allow a solu
tion. With convection, on the other hand, we do not have a consistent treat
ment based on fundamental principles. We have a number of simple models which 
appear to work well under some circumstances (often because they contain an 
adequate set of free parameters), but we have no confidence that the models are 
correct. Also it should be remembered that convection is only one form of 
three-dimensional instability affecting hydrodynamical structures and flows. 
There is little doubt that other three-dimensional instabilites, leading to 
equally complex and ill understood pheonomena, affect may of the other ojects 
discussed at this meeting (jets, supernovae, . . . ) ; this should be at the 
back of our minds when considering the results of the simple models now avail
able. To solve these problems will undoubtedly keep astrophysical hydro-
dynamicists busy well into the next century. 

Then a few comments on your discussion of convection in pulsating stars. 
It is probably fortuitous that Deupree obtained a reasonable red edge. The 
stability of a star is predominantly decided near the surface, where the scale 
of convection is probably of the order of a scale height, i.e., a very small 
fraction of the radius of the star; in contrast Deupree modeled the pulsation 
and convection with a very small number of meshpoints, thus totally failing to 
resolve the convection. Even with the expansion of computing power foreseen by 
Dimitri, a direct numerical attack on the coupled problem of convection and 
pulsation seems impractical. The time dependent mixing length theories by Unno 
and by Gough were derived consistently from a simple physical description of 
convection, and in that sense are internally consistent, even though their 
relation with reality may be somewhat tenuous. The oscillations found in the 
interior of the convection zone are not, as you implied, a numerical problem, 
but rather a mathematical property of the equations which Baker & Gough 
(although possibly not Gonzci & Osaki) resolved fully numerically. However, 
they are almost certainly unphysical, and in any case not consistent with the 
local approach used in the mixing length theory. On the other hand, they occur 
deep in the model, where the oscillations are nearly adiabatic, and so may not 
be very important for the stability at the red edge of the instability strip, 
when convection was taken into account in this manner. 

Finally, I should be interested in some remarks as to how your equation 
for the turbulent energy was derived, and how it relates to the real world. 
STELLINGWERF: The derivation of the model is given in the reference: 
Stellingwerf (1982a). 
STARRFIELD: 1. In pulsating central stars of Planetary Nebulae, the red edge 
of the instability strip is caused by the growing thickness of the surface con
vection zone. 

2. The cause of the 11 Ceti pulsations may be directly due to pulsation 
convection interactions. 
M. GEHMEYR: You showed that one needs some resolved theory for the convection/ 
pulsation coupling. To do the convection to radiation right you have to use 
proper values for the opacity. Especially, within ionization fronts <K(T)> = 
K(<T>). How did you take care of that fact? 
STELLINGWERF: Yes, the opacity average is quite likely the strongest source of 
error in this theory. Evaluation of the proper average of opacity and thermo
dynamic quantities is not straightforward, but may be implemented using a beam-
scheme. I am currently studying this problem. 
VINCENT ICKE: (In reply to Mihalas) There is definite evidence (circumstellar 
shells, UH/IR stars, etc.), that long period variability is connected with mass 
loss. But I don't know if that extends to the shorter periods discussed here. 
REUBEN OPHER: The probable model for the ejection of matter is fairly compli
cated^ An upcoming shock lifts matter to a given height which then falls back 
and is lifted up to even greater heights by a subsequent shock. This process 
continues, each time the matter is lifed up to greater heights by subsequent 
shocks, until it is ejected. Recent water maser work partially substantiates 
this model. 
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