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Abstract

We show how a short and elementary proof can be provided for a recently-published
inequality ([6], (4]) which has found a number of applications.

1. Introduction

Probability-measure inequalities for sum sets have found a number of applications, see,
for example, Brown and Williamson [3] for a coin-tossing application and Newhouse
[7] and Palis and Takens [8] in connection with dynamical systems. They are often
also intimately associated with combinatorial counting problems, as is the case in the
present context.

In 1974, G. Brown and W. Moran [1] showed that a key probability inequality for
uncountable sum sets could be deduced if a related counting inequality held for certain
discrete sum sets, and that this in turn would follow from the truth of the inequality

X%y + max[x*(1 = y)*, y*(1 = x)°] + A = 0)*(1 = )" = 1 o)

for 0 < x,y < land a = log, 3. Brown and Moran were unable to establish (1) at the
time. Quite a rich literature, an historical perspective on some of which is recounted
by Brown in [2], has developed around both (1) and the original problem.

Relation (1) possesses an m-variable generalization

m m—1 J m m
nx;’ + Zmaxnx;m l—I (1 — X)) + l—l(l —x)* > 1, @
i=1 = T = =it i=1
where 7 denotes a permutation of {1, ..., m} and
1 1
o = a(m) — _()_gﬂ-i-_).
mlog?2
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If the x; are ordered by
l>x>2...2x, 20,

this may be expressed more simply as
[y, oo xm) > 1, 3
where
fO o xm)y=xyooxpxox_(L=xn)" .+ A =x)" ... (1 =x,)%. (4)

It was established by Landau, Logan and Shepp [6] and independently by Brown,
Keane, Moran and Pearce [4].

This apparently new and superficially inoccuous inequality turned out to be quite
tricky to prove. As noted in [6]: “since the inequality seems to be a matter of real
variables, it is perhaps surprising that our proof is based on conformal mapping and
Hadamard’s three-circle theorem." The proof of [4] is more elementary.

In fact, in [6] the following extension of (3) is proved.
Suppose @ > 0and 1 > x; > ... > x, > 0 and let f be defined by (4). Then

f(x, ..., x,) = min[1, (m + 1)27]. )
Here we shall note that we can use the simple method of [4] to obtain the general

inequality (5). We show also how the argument of [4] may be shortened considerably.

2. Results

The following lemma was proved in [4].
LEMMA 1. Denote by w(m) > 0 the infimum of f, so that

fx, ..o, x,) = wim).

Ifthevalues x,, . .., x, are suchthat f (xy, ..., Xn) = w(m), thenx, = ... = x,, = X,
say.

Now we have the following lemma, which extends Lemma 3 of [4].

LEMMA 2. (a) Fora = a(m),

sinh(m 4+ 1)at
(sinh at) cosh™ ¢ —

m+1 (t20); (6)
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(b) forall B satisfying 0 < B < a(m)
1+ +b%+...+b™ > 1 +b)y" (b>0); N

(c) forall B> a(m)

1+ +b2 +. . +b™ > m+ 120 +b)" (b >0). 8)
PROOF. Parts (a) and (b) are established in [4], while for 8 > a(m) we have

1468+ 5% . 4 b = 1 (P ()
> [1 + pplem]m™ by (7)

> Qm@m=p (1 4 pymb by Jensen’s inequality
= (m+ 1271 + b)™.

From (7) and (8) we can formulate the following result.
If ¢« > 0, then

1+ b+ b6 + ...+ 5™ = min[1, (m + 1)27™] (1 + b)™. )

With the substitutions x = 1/(1 + b), 1 —x = b/(1 + b), (5) now follows from
Lemma 1 and (9).

REMARK. As observed in [4], (6) and (7) are equivalent. However (6) arises as
a special case of a theorem of Pittenger [9] (see Bullen, Mitrinovié¢ and Vasi¢ [5,
Theorem 5, page 349] for a more accessible account). For r > 0, Pittenger’s theorem
gives in particular that (modulo an obvious misprint in [5])

(Coshrlt)l/r, < [Smh(r + l)t

1/r
ST < hrt)!/ 1
= (r+1)sinht] < (coshrat) ™7, (10)

where

r+2 rlog2
3 ’log(r+1)]’
r+2 rlog2
3 ’log(r—i-l)]'

rl=min[

r= max[

Replace ¢ by at. Since

ry =rlog2/log(r + 1)
for r > 1, we have r/r; = ra(r) and rja(r) = 1, and (6) follows at once from the
left-hand relation of (10). This enables the end result of Lemmas 2 and 3 of [4] to
be deduced directly, thereby shortening considerably the argument of [4] to provide a
conveniently short proof of (2) and (5).
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