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Abstract

We explore the possibility of combining a knowledge-based reduced order model (ROM) with a reservoir
computing approach to learn and predict the dynamics of chaotic systems. The ROM is based on proper orthogonal
decomposition (POD) with Galerkin projection to capture the essential dynamics of the chaotic system while the
reservoir computing approach used is based on echo state networks (ESNs). Two different hybrid approaches are
explored: one where the ESN corrects the modal coefficients of the ROM (hybrid-ESN-A) and one where the ESN
uses and corrects the ROM prediction in full state space (hybrid-ESN-B). These approaches are applied on two
chaotic systems: the Charney–DeVore system and the Kuramoto–Sivashinsky equation and are compared to the
ROM obtained using POD/Galerkin projection and to the data-only approach based uniquely on the ESN. The
hybrid-ESN-B approach is seen to provide the best prediction accuracy, outperforming the other hybrid approach,
the POD/Galerkin projection ROM, and the data-only ESN, especially when using ESNs with a small number of
neurons. In addition, the influence of the accuracy of the ROM on the overall prediction accuracy of the hybrid-
ESN-B is assessed rigorously by considering ROMs composed of different numbers of POD modes. Further
analysis on how hybrid-ESN-B blends the prediction from the ROM and the ESN to predict the evolution of the
system is also provided.

Impact Statement

In this work, we analyze approaches that combine traditional knowledge-based methods to model high-
dimensional chaotic systems while reducing their dimension, based on a technique called proper orthogonal
decomposition (POD), with novel machine learning techniques based on echo state network (ESN). We show
that a specific hybrid approach that corrects the prediction from the knowledge-based model in full state space
can more accurately predict the evolution of the chaotic systems than when using either approach separately. In
addition, a rigorous analysis is performed on the gain in prediction accuracy obtained depending on the base
accuracy of the PODpart of the hybrid approach. An interpretation on how this approach blends the PODpart and
the ESN part to deduce the evolution of the chaotic systems is also provided. This work provides insights that
enable the wider use of a combination of traditional modeling and prediction approaches with novel machine
learning techniques to obtain an improved time-accurate prediction of chaotic systems.
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1. Introduction

The vast majority of physical systems, from climate and atmospheric circulation to biological systems, is
often characterized by a chaotic dynamics that involves multiple spatio-temporal scales. This chaotic
nature originates from complex nonlinear interactions that make the understanding and forecasting of
such systems extremely challenging. Compounding this issue, many chaotic systems are high dimen-
sional, further hindering our ability to forecast their evolutions.

To enable the quick time-accurate prediction of the evolution of such high-dimensional chaotic
systems, forecasting approaches have often relied on the development of reduced-order models
(ROMs) capturing the essential dynamics of the chaotic system or simplified models introducing errors
stemming from modeling assumptions (Rowley and Dawson, 2017; Taira et al., 2017). Among such
techniques, proper orthogonal decomposition (POD) and its related extensions, spectral POD (SPOD),
and dynamic mode decomposition (DMD) have been widely successful in identifying coherent structures
and the relevant or most information containing modes in chaotic systems, and turbulent flows in
particular (Lumley, 1967; Schmid, 2010; Sieber et al., 2016). This then allows for the retention of these
most energy-conserving modes to represent the system and the truncation of the least important ones,
therefore achieving a dimensional reduction of the original high-dimensional chaotic systems. Subse-
quently, combined with the Galerkin projection method, the dynamics of this reduced-order model can
then be modeled to forecast the evolution of the chaotic systems (Berkooz et al., 1993; Rowley et al.,
2004). However, such ROMs based on POD/Galerkin projection may not always provide a sufficient
accuracy, especially for complex chaotic systems that can exhibit extreme events and can suffer from
instability (San andMaulik, 2018; Maulik et al., 2021). In addition, the Galerkin projection method relies
on the knowledge of the governing equations of the chaotic systems which may not always be available.

In contrast to this latter approach that requires some physical knowledge or considerations, data-driven
methods from machine learning have recently shown a strong potential in learning and predicting the
evolution of chaotic systems (Hochreiter, 1997; Jaeger and Haas, 2004; Lukoševičius and Jaeger, 2009;
Brunton et al., 2016). In particular, recurrent neural networks have been used to learn the time-evolution of
chaotic time series, with, for example, the use of the long short-term memory (LSTM) units (Hochreiter,
1997). This LSTM has been used to learn the dynamics of a reduced representation of a shear flow and
could accurately reproduce the statistics of this nine-dimensional system (Srinivasan et al., 2019). This
system was also analyzed in Eivazi et al. (2021) where the same LSTMwas used and was compared to a
Koopman-based framework which was shown to have a higher accuracy. A recent different approach,
named sparse identification of dynamical system (SinDy), has also been introduced and shown able to
learn and reproduce the dynamics of chaotic systems (Brunton et al., 2016) and reduced order models of
flows (Loiseau and Brunton, 2018; Lui andWolf, 2019). Compared to the LSTM, this approach relies on
the creation of a library of candidate dynamics which is then fit on the available training data with sparse
regression techniques. Among purely data-driven methods, an alternative approach based on reservoir
computing (RC) and, more specifically, echo state network (ESN), was also applied to learn the evolution
of amodel of thermo-diffusive instabilities purely from data andwithout the use of any physical principles
(Pathak et al., 2017). It was shown that an ESN of large enough dimension could perform accurate short-
term prediction and reproduce the chaotic attractors of those chaotic systems.

In contrast to the either purely data-driven machine learning techniques or purely physics-based
modeling discussed above, hybrid approaches have recently been introduced that combine these modern
machine learning methods with more traditional reduced-order modeling techniques, with the aim of
forecasting higher dimensional chaotic systems (Vlachas et al., 2018; Wan et al., 2018; Pathak et al.,
2018b; Pawar et al., 2019). In particular, feedforward neural networks have been used to learn the
dynamics of a subset of the modal coefficients of low dimensional chaotic systems or a two-dimensional
Boussinesq flow (Pawar et al., 2019). Subsequently, LSTM units were also used to learn the correction on
the dynamics of the retained PODmodes obtained from a POD/Galerkin projectionmethod to account for
the effect of the truncatedmodes (Pawar et al., 2020). A similar approach, that combines LSTMunits with
a reduced-order model from POD/Galerkin projection, was also used to predict the occurrence of extreme
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events and this approach was shown more accurate than using the LSTM by itself (Wan et al., 2018).
Vlachas et al. (2018) used a similar approach by using the LSTM combined with a mean stochastic model
to learn the dynamics of the modal coefficients of a reduced order model of high dimensional systems.

In other works that relied on hybrid approaches, but with a machine learning framework based on RC
and ESN, Pandey and Schumacher (2020) attempted a similar task at predicting the evolution of a two-
dimensional flow, in this case, the Rayleigh-Bénard convection flow using a combined ESN with POD/
Galerkin-based reduced order model and showed that this ESN/POD based ROM could reproduce the
low-order statistics of the flow. Pathak et al. (2018b) also extended the ESN architecture by including a
physics-based model, which was derived from the exact governing equations of the chaotic system but
where a parameter wasmisidentified. This latter hybrid architecture showed increased accuracy compared
to the purely data-driven approach.

Given the variety of possible ways to combine traditional ROM techniques and novelmachine learning
methods, described above, it is unclear how to most efficiently fuse both approaches to obtain the most
accurate forecasting. Therefore, in this work, we will analyze the performance of a combined knowledge-
based ROMwith a machine learning approach, based on an echo state network. In particular, we will test
two different hybrid approaches: (i) the one proposed by Pawar et al. (2020) but where an ESN is used as a
machine learning framework to learn the dynamics of the modal coefficients as ESNs have been shown
accurate at learning chaotic dynamics (Lukoševičius and Jaeger, 2009) and (ii) the method proposed by
Pathak et al. (2018b) where the ESN learns the chaotic dynamics of the system in full space and not modal
space. We rigorously analyze the influence of the accuracy of the ROM on the overall prediction
capability of the hybrid architectures and will discuss the relative role of the ROM and ESN in the
overall prediction. Compared to previous studies (Pathak et al., 2018b; Pandey and Schumacher, 2020),
the knowledge-based model is here developed using POD with Galerkin projection to allow for a fine
analysis of the influence of the accuracy of the knowledge-based model (the dimension of the ROM) on
the accuracy of the overall hybrid approach.

The paper is organized as follows. In Section 2, we introduce the reduced-order modeling techniques,
based on POD and Galerkin projection, as well as the reservoir computing method, based on ESN, and
describe how we combine both approaches. In Section 3, the prediction capability of these hybrid
approaches is tested on two systems: the Charney–DeVore (CDV) system and the Kuramoto–Sivashinsky
(KS) equation. The final section summarizes the findings of this paper and outlines directions for
future work.

2. Methodology

In this work, we analyze hybrid architectures that combine a reduced order model obtained from
POD/Galerkin projection with a reservoir computing approach called ESN to learn and time-accurately
predict the evolution of chaotic systems. This combination will allow to assess how a physics-based
model (from POD/Galerkin projection) can be improved using a data-driven approach and conversely
how a data-driven approach can be improved with an approximate physics-based model. The following
sections detail the working of both approaches considered.

2.1. POD and Galerkin projection

The POD method was originally proposed by Lumley (1967) and Berkooz et al. (1993). It is based on
a linear modal decomposition concept designed to identify coherent structures in turbulent flows. Let
us consider the full order field described by the state vector q x, tð Þ∈RNq. The aim is to decompose it
into a linear combination of time-varying modal coefficients ai tð Þ and spatial orthonormal modes
ϕi xð Þ as:

q x, tð Þ¼
XN
i¼1

ai tð Þϕi xð Þ, (1)
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whereN is the number ofmodes to be used. Atmost,N is equal to the dimension of the state vector,Nq. To
reduce the order of the model, only a subset of these modes can be kept, discarding the least energy/
information carrying modes. Here, we use the method of snapshots to construct the POD modes from a
database of the observations fromwhich we will keep theM most energy-containing modes to construct a
physics-based reduced ordermodel of the system under study (Berkooz et al., 1993). Themethod to obtain
the POD is described hereunder.

Let Q∈RNq�Nt be a matrix concatenating all the observations (snapshots), where Nt is the number of
snapshots. From Q, the covariance matrix C can be computed:

C ¼ 1
Nt�1

QTQ: (2)

In fluid mechanics, q usually is the velocity field and, therefore, half of the trace of C is the turbulent
kinetic energy and the eigenvalues of C are a measure of the turbulent kinetic energy. The PODmodes ϕi
are then obtained by solving the eigenvalue problem:

Cϕi ¼ λiϕi: (3)

The relative energy contribution of each POD mode can then be computed as λi=
PN

i λi and the M most
energy contributingmodes can be considered in the reduced ordermodelwhile the least energy containing
ones are discarded.

Once the POD modes have been obtained, for example using singular value decomposition (SVD),
their time-evolution can be deduced by projecting the original governing equations of the system under
study onto a reduced base formed by a subset of the POD modes, following the Galerkin projection
method (Matthies and Meyer, 2003; Rowley et al., 2004; Maulik et al., 2021). Let us consider a system
governed by a generic PDE:

_q x, tð Þ¼N q x, tð Þ½ �þL q x, tð Þ½ �, (4)

where ð_Þ is the time-derivative, x∈Ω is the spatial domain, t∈ 0,T½ � is the time coordinate and whereN
and L are nonlinear and linear operators, respectively. Using an appropriate spatial discretization,
Equation (4) can be recast as a set of coupled ordinary differential equations (ODEs):

_qh x, tð Þ¼N h qh x, tð Þ½ �þLh qh x, tð Þ½ �, (5)

where qh is the full state vector expressed on the grid used to discretize the spatial dimension, andN h and
Lh are the discretized version of the nonlinear and linear operatorsN andL, respectively, discretized on
the considered grid. Using the POD-based basis (Equation (1)) which can be re-expressed as qh ¼Φa,
with Φ being the concatenation of all the POD modes, ϕi, one can rewrite this as:

Φ _a tð Þ¼N h Φa tð Þ½ �þLh Φa tð Þ½ �: (6)

Using the orthogonal nature of the POD decomposition (i.e., applying the inner product of Equation (6)
with the POD mode ϕk which are orthonormal to each other), the evolution equations for the modal
amplitudes, a, can then be obtained:

_aðtÞ¼ΦTN h½ΦaðtÞ�þLr½aðtÞ�: (7)

For each individual modal coefficient, ak , the equation above with quadratic nonlinearities reads (Pawar
et al., 2020; Maulik et al., 2021):

dak
dt

¼
XN
i¼1

XN
j¼1

N r,ijkaia jþ
XN
i¼1

Lr,ikai: (8)

where N r,ijk and Lr,ik are the coefficients of the reduced discretized nonlinear and reduced linear
operators,N r andLr respectively, in Equation (7). The set of ODEs in Equation (8) can then be simulated
using traditional time-integration techniques such as a Runge–Kutta 4 technique for example.
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Additional details on the POD/Galerkin projection approach can be found in Maulik et al. (2021) and
Pawar et al. (2020) for the interested readers.

2.2. Echo state network

The ESN approach, shown in Figure 1a, presented by Lukoševičius (2012) with the modification
introduced by Pathak et al. (2018b) is used here. Given a training input signal u nð Þ∈RNu and a desired
known target output signal y nð Þ∈RNy , the ESN learns a model with output ŷ nð Þ matching y nð Þ. n¼
1,…,Nt is the number of time steps, and Nt is the number of data points in the training dataset covering a
time window from 0 until T ¼ Nt�1ð ÞΔt: Here, where the forecasting of a dynamical system is under
investigation, the desired output signal is equal to the input signal at the next time step, that is,
yðnÞ¼ uðnþ1Þ∈ℝNy¼Nu .

The ESN is composed of a randomized high-dimensional dynamical system, called a reservoir, whose
states at time n are represented by a vector, x nð Þ∈RNx representing the reservoir neuron activations. The
reservoir is coupled to the input signal, u, via an input-to-reservoir matrix, W in∈RNx�Nu . Following
studies in Pathak et al. (2018b), before coupling the reservoir states to the output, a quadratic transfor-
mation is applied to the reservoir states:

exi ¼ xi, if i odd,

x2i , if i even:

�
(9)

The output of the reservoir, ŷ, is then deduced from these modified states via the reservoir-to-output
matrix, W out∈RNy�Nx , as a linear combination of the modified reservoir states:

ŷ¼W outex: (10)

In this work, a leaky reservoir is used, in which the state of the reservoir evolves according to:

xþ nþ1ð Þ¼ tanh W inu nþ1ð ÞþWx nð Þð Þ, (11)

x nþ1ð Þ¼ 1�αð Þx nð Þþαxþ nð Þ, (12)

where W ∈RNx�Nx is the recurrent weight matrix and the (element-wise) tanh function is used as an
activation function for the reservoir neurons. α∈ 0,1ð � is the leaking rate. The tanh activation function is
used here as it is the most common activation used (Lukoševičius and Jaeger, 2009; Lukoševičius, 2012)
and because, when combined with the quadratic transformation (Equation (9)), can provide appropriate
accuracy (Herteux and Räth, 2020).

In the conventional ESN approach (Figure 1a), the input and recurrent matrices, W in and W , are
randomly initialized only once and are not trained. These are typically sparse matrices constructed so that
the reservoir verifies the echo state property (Jaeger and Haas, 2004). Only the output matrix, W out, is
trained to minimize the mean squared error, L, between the ESN predictions and the data:

L¼ 1
Ny

XNy

i¼1

1
Nt

XNt

n¼1

ŷi nð Þ� yi nð Þð Þ2: (13)

Following Pathak et al. (2018b),W in is generated for each row of the matrix to have only one randomly
chosen nonzero element, which is independently taken from a uniform distribution in the interval

Figure 1. Schematic of the echo state network (ESN) during (a) training and (b) future prediction.
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�σin,σin½ �.W is constructed to have an average connectivity 〈d〉 and the non-zero elements are taken from
a uniform distribution over the interval �1,1½ �. All the coefficients ofW are then multiplied by a constant
coefficient for the largest absolute eigenvalue ofW to be equal to a value ρ. ρ is here chosen to be smaller
than 1 as, in most situations, this ensures the echo state property (Lukoševičius and Jaeger, 2009;
Lukoševičius, 2012). It should be noted that it is possible to use values larger than 1 while not violating
this echo state property and there exist cases where using a value smaller than 1 does not guarantee the
echo state property (Yildiz et al., 2012; Jiang and Lai, 2019).

The training of the ESN consists in the optimization ofW out. As the outputs of the ESN, ŷ, are a linear
combination of the modified states, ex, W out can be obtained by using ridge regression:

W out ¼YXT XXT þ γI
� ��1

, (14)

whereY andX are respectively the column-concatenation of the various time instants of the output data, y,
and associated modified ESN states ex. γ is a Tikhonov regularization factor. The optimization in
Equation (14) is:

W out ¼ argmin
W out

1
Ny

XNy

i¼1

XNt

n¼1

ŷi nð Þ� yi nð Þð Þ2þ γ wout,ik k2
 !

, (15)

where wout,i denotes the ith row ofW out and k � k is the L2-norm. This optimization problem penalizes large
values ofW out, which generally improves the feedback stability and avoids overfitting (Lukoševičius, 2012).

After training, to obtain predictions for future times t> T , the output of the ESN is looped back as an
input, which evolves autonomously (Figure 1b).

2.3. Hybrid approach in reduced-order space

Themethod presented here is inspired from Pawar et al. (2020) and is shown in Figure 2. In a first step, the
PODmodes, ϕk, are obtained from the available training dataset with the method of snapshots by solving
the eigenvalue problem (Eq. (3)). This eigenvalue problem is solved using SVD as in Pawar et al. (2020),
and the POD modes, ϕk, are therefore obtained. Using a subset,M, of these POD modes, the full system
state, q, is then approximated as:

q x, tð Þ≈
XM
k¼1

ak tð Þϕk xð Þ: (16)

Then, as described in Section 2.1, Galerkin projection is used to deduced the dynamics of the modal
amplitude, ak . Given that only a subset M of the POD modes are used, the governing equations for the
modal amplitudes is slightly modified as:

dak
dt

¼
XM
i¼1

XM
j¼1

N r,ijkaia jþ
XM
i¼1

Lr,ikaiþ ck, (17)

Figure 2. Architecture of the hybrid approach of Pawar et al. (2020). The blue box indicates the actual
hybrid architecture part.
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where ck is an error-term introduced that accounts for the effect of the truncated modes given that onlyM
modes are used instead of all the POD modes. To simulate this set of ODEs, a combination of traditional
time-integration and the ESN is then used: (a) the Equation (17) without the term ck is time-advanced
using traditional methods (such as the Runge–Kutta 4 scheme). This operation corresponds to the lower
branch in Figure 2 where we obtain the approximation at the next time step, eaROM nþ1ð Þ from the modal
amplitudes at the previous time-step, aROM nð Þ and (b) the ESN is trained to learn the correction, c nþ1ð Þ,
to add to the predicted modal coefficients estimated from time integration in (a) (the upper branch in
Figure 2 where we estimate c nþ1ð Þ from aROM nð Þ). Finally, from these corrected modal amplitudes, the
prediction can then be reconstructed in physical space using the spatial modes, ϕk. Additional details on
this architecture can be found in Pawar et al. (2020).

It should be noted that because the reconstruction is always performed based on the modal coefficients
in the reduced space, the achievable accuracy may be limited given that higher order modes are never
used. In what follows, this approach will be called hybrid-ESN-A.

For future autonomous prediction, the predicted modal amplitude â nþ1ð Þ, is looped back as the input
of the hybrid architecture and the system evolves autonomously (in modal space).

2.4. Hybrid approach in full space

Following an approach proposed in Pathak et al. (2018b), we investigate here the possibility of combining
the ESN with a physics-based ROM obtained from POD-Galerkin projection to improve the overall
accuracy. Compared to that earlier work, our approachmay bemore representative of what can actually be
achieved in practical applications given that the physics-based model used by Pathak et al. (2018b) was
just the original PDE governing the system with a small perturbation of one of the PDE parameters.
Furthermore, using a POD-basedROMalso allows to rigorously evaluate the impact of the accuracy of the
physics-based model on the performance of the hybrid architecture by modifying the number of POD
modes retained in the ROM. The architecture of this hybrid approach is shown in Figure 3.

Here, the ROM is integrated to the conventional data-only ESN at two different streams (parts in red in
Figure 3). On one the hand, the time-prediction of the ROM, uROM nþ1ð Þ, is fed at the input of the ESN
while at the same time, it is also provided at the output layer. This allows the reservoir to be influenced by
the dynamics predicted by the ROM and for the ESN to make an appropriate blending at the output
between the ROM prediction and its own reservoir states to provide an accurate prediction of u nþ1ð Þ.
Therefore, the input to the ESN at time n is now:

uh nð Þ¼ uROM nþ1ð Þ
u nð Þ

� �
(18)

and the output of the ESN is provided by the following equation:

ŷ nð Þ¼W out
uROM nþ1ð Þex nþ1ð Þ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

x̂

: (19)

This increase in the inputs to the ESN and at the output results in an increase in the size of the input and
output matrices. Compared to the hybridmethod described in the previous section, the ESN here is trained

Figure 3. Architecture of the hybrid approach, inspired from Pathak et al. (2018b).
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to learn the correction on the ROM prediction in the full space. In what follows, this approach will be
noted hybrid-ESN-B.

To perform autonomous future prediction, the output of the architecture shown in Figure 3 is looped
back at the input to make the hybrid-ESN-B able to evolve autonomously.

3. Results

The approaches described in Section 2 will be applied to learn the dynamics of two chaotic systems: the
CDVsystemand theKS equation. For each of these systems, a reduced-ordermodelwill first be obtained by
POD-Galerkin projection and a data-only ESN will be trained to learn their dynamics. Subsequently, the
accuracy of these separate approaches will be compared to the hybrid approaches presented in Section 2.4.

3.1. CDV system

The CDV system is a chaotic low-order atmospheric model inspired by Crommelin et al. (2004) that
models the barotropic flow in a β-plane with orography. A truncated version of the CDV system is
considered here and it is governed by the following set of ODEs (Crommelin et al., 2004; Crommelin and
Majda, 2004; Doan et al., 2020):

_u1 ¼ γ∗1u3�C u1�u∗1
� �

,

_u2 ¼� α1u1�β1ð Þu3�Cu2�δ1u4u6,

_u3 ¼ α1u1�β1ð Þu2� γ1u1�Cu3þδ1u4u5,

_u4 ¼ γ∗2u6�C u4�u∗4
� �þ ε u2u6�u3u5ð Þ,

_u5 ¼� α2u1�β2ð Þu6�Cu5�δ2u4u3:

_u6 ¼ α2u1�β2ð Þu5� γ2u4�Cu6þδ2u4u2

(20)

This model was derived from the barotropic vorticity equation on a β-plane channel (Crommelin et al.,
2004) using Galerkin projection to obtain the simplest model that combines the mechanisms of barotropic
and topographic instabilities. This translates into a system that shows two distinct regimes: one charac-
terized by a slow evolution (and a large decrease in u1) and one with strong fluctuations of all modes.
These correspond to “blocked” and “zonal” flow regimes, respectively, which originate from the
combination of the barotropic and topographic instabilities (Crommelin et al., 2004): the transition from
“zonal” to blocked is due to the barotropic instability while the topographic instability induces the
transition from the “blocked” to “zonal” regimes. The definition and exact values of the parameters of the
CDV system are provided in the Supplementary Materials and have been chosen so as to ensure a chaotic
and intermittent behavior following Wan et al. (2018). A detailed discussion of the effects of the model
parameters on the dynamics of the CDV system is provided in Crommelin et al. (2004).

The set ofODEs, Equation (20), is solved using aRunge–Kutta 4methodwith a timestep ofΔt¼ 0:1. A
typical time evolution of the CDV system is shown in Figure 4 where the time is normalized using the
largest Lyapunov exponent, λmax. The largest Lyapunov exponent represent the exponential divergence
rate of two system trajectories, which are initially infinitesimally close to each other (Strogatz, 1994).
Here, for the CDV system, λmax ≈ 0:02.

3.1.1. Reduced-order modeling of the CDV system
The POD method described in Section 2.1 is applied to the CDV system on a time-series that covers
100 Lyapunov time (with 62,500 snapshots). This corresponds to approximately four transitions from the
blocked to zonal regime. This relatively short time-series is used to investigate the prediction capability of
the proposed hybrid ROM/ESN approaches (to be discussed in Section 3.1.3) when a relatively small
amount of data is available. The contributions of the eigenvalues obtained from the PODdecomposition to
the total energy of theCDV system is provided in Table 1. It can be seen that the vastmajority of the energy
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is contained in the first three modes. However, discarding just one mode in the construction of the ROM
for the CDV system already yields a very inaccuratemodel. Indeed, the time-prediction of the CDVmodel
by a ROM composed of the first five POD modes is shown in Figure 5 where it is seen that it converges
toward a fixed point after a small time during which it exhibits some dynamics. Therefore, for what
follows, despite this inaccuracy, we will use this five POD-based ROM as the physics-based model in the
hybrid approaches studied next as it is the most accurate nonperfect model achievable with POD and we
will investigate whether adding an ESN can improve this accuracy.

3.1.2. Data-only ESN
The standard data-only ESN (shown in Figure 1) is trained with the same dataset as the one used to
develop the POD modes in Section 3.1.1. To estimate an adequate set of hyperparameters, following the
guidelines by Lukoševičius (2012), the reservoir size is first fixed to a size of 500 neurons. Thereafter, a
series of line searches are performed for all hyperparameters to determine a locally optimal set of values
for those hyperparameters. While more advanced hyperparameters search and accuracy assessment
techniques exist (Lukoševičius and Uselis, 2019; Racca and Magri, 2021), this approach is used here
for its simplicity. Additional details on the procedure to determine the hyperparameters of the ESN, aswell
as the values used, are provided in the Supplementary Materials.

A time-prediction by a data-only ESNof 200 units is shown in Figure 6where it can be seen that the ESN
managed to learn the dynamics of the CDV system. Its accuracy is a marked improvement over the ROM
shown in Figure 5 as the ESN prediction closely follows the actual CDVevolution for approximately 2.5
Lyapunov time (time multiplied by the largest Lyapunov exponent) and does not converge toward a fixed
point. To quantify this prediction accuracy, similarly as in Pathak et al. (2018b), we define the prediction
horizon, tpred, as the time it takes for the normalized error, ε, to exceed 0.4, where ϵ is defined as:

ϵ tð Þ¼ kû tð Þ�u tð Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 u tð Þk k2〉

q , (21)

Figure 4. Time-evolution of the Charney–DeVore (CDV) system.

Table 1. Relative energy contribution of each proper orthogonal decomposition (POD) modes to the
total energy of the Charney–DeVore (CDV) system.

λ1 λ2 λ3 λ4 λ5 λ6

λi=
P

iλi [%] 94.28 3.86 1.61 0.14 0.07 0.035
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where k � k is the L2-norm and 〈�〉 indicates the time-average. û denotes the prediction from the ESN and u
the exact system evolution. This prediction horizon is indicated by the red line in Figure 6, with the time-
evolution of ϵ, shown in Figure 6c. This time-evolution of ϵ shows that the prediction from the ESN starts
to deviate after 1 Lyapunov time but still remains close to the reference evolution for an additional 1.5
Lyapunov time.

To obtain a statistical estimate of the accuracy of the ESN, the trained ESN is tested in the following
manner. First, the trained ESN is run for an ensemble of 100 different initial conditions. Second, for each
run, the prediction horizon is calculated, as described above. Third, themean and standard deviation of the
prediction horizon are computed from the ensemble. This prediction horizon (expressed in normalized
time) is shown in Figure 7 where it can be seen that, as the reservoir size increases, a better accuracy is
achieved. However, the accuracy saturates at close to four Lyapunov times. This may be due to the limited
dataset used for training which contains only a few transitiosn from blocked to zonal regimes. It is
therefore possible that the ESN is not able to fully learn the dynamics of the CDV system.

3.1.3. Hybrid ESN prediction
The hybrid architectures, presented in Sections 2.3 and 2.4, that combine the POD/Galerkin-based ROM
and an ESN are now studied. The hyperparameters of the ESN used in these hybrid architectures are
obtained in a similar manner as for the data-only ESN and their values are reported in the Supplementary
Materials. While the hyperparameter search methodmay have an impact on the comparative performance

Figure 6. Time evolution of (a) u1–u3 (dark to light gray), (b) u4–u6 (dark to light gray) predicted by the
data-only echo state network (ESN) with 200 units (dashed lines) and of the full Charney–DeVore (CDV)
system (full lines), and (c) associated time-evolution of the error between the predicted trajectory by the

ESN and the reference trajectory. Red line indicates the prediction horizon.

Figure 5. Time evolution of (a) u1–u3 (dark to light gray) and (b) u4–u6 (dark to light gray) predicted by
the proper orthogonal decomposition (POD)-based reduced order model (ROM; dashed lines) and of the

full Charney–DeVore (CDV) system (full lines).
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of the different considered architectures, given that the same search method is applied for all the
considered architectures, the differences in performance should mainly originate from the difference in
architecture.

The predictions by both hybrid architectures for the same initial condition as the one in Figure 6 are
shown in Figure 8where a reservoir of 200 neurons is also used. These predictions start to deviate from the
reference evolution after a few Lyapunov times, as can be seen from the error evolution. However, the
deviation remains moderate for a few additional Lyapunov times as the trajectory predicted by the hybrid
approaches (especially hybrid-ESN-B), remains close to the reference one. However, after these addi-
tional Lyapunov times, the difference between the trajectories predicted by the hybrid approaches and the
reference one increases further. This is to be expected given that these are chaotic systems and any small
perturbation or inaccuracies will inevitably lead to two different trajectories (even if the dynamics of the
chaotic systemwas perfectly learned by the hybrid approaches). Compared to the ROM-only and the data-
only ESN, hybrid-ESN-A does not really showmuch improvement in accuracywhile hybrid-ESN-B has a
prediction horizon of approximately four Lyapunov times, compared to two for the data-only ESN. This
latter improvement in accuracy shows that, despite having a fairly inaccurate ROM, the ROM can still
contribute to an improvement in the accuracy of the ESN for hybrid-ESN-B. This is because the ESN only
has to learn the correction on the ROM in full order space and not the complex dynamics of the full CDV
system.

Figure 7. Prediction horizon of the data-only echo state network (ESN) for various reservoir sizes.
Shaded area indicates one standard deviation around the mean of the prediction horizon.

Figure 8. Time evolution of (a) u1–u3 (dark to light gray), (b) u4–u6 (dark to light gray) predicted by the
hybrid-echo state network (ESN)-Awith 200 units (dotted lines), the hybrid-ESN-Bwith 200 units (dashed
lines) and of the full Charney–DeVore (CDV) system (full lines), and (c) associated time-evolution of the
error between the predicted trajectory by the hybrid-ESN-A (dotted line), by the hybrid-ESN-B (dashed
line) and the reference trajectory. The red lines indicate the prediction horizon for the hybrid-ESN-A

(dotted line) and hybrid-ESN-B (full line).
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To further analyze the improvement obtained, the accuracy of the hybrid ESN approaches is assessed
statistically, similarly to what was performed for the data-only ESN. This is shown in Figure 9 where the
prediction horizons of the data-only ESN and of the POD-based ROM are also provided for comparison
purposes. It can be seen that the prediction horizon of the hybrid-ESN-B is the largest for all reservoir sizes
and it outperforms both the ROM-only and the data-only ESN with the largest improvement of two
Lyapunov times obtained for a small reservoir size of 100 neurons. This highlights the beneficial effect on
the accuracy of using a physics-based model in combination with the data-only approach, even with a
model which has a flawed dynamics, here the convergence toward a fixed point. For larger reservoir sizes,
the improvement over the data-only ESN is smaller but the hybrid ESN still outperforms the data-only
ESN. It is also observed that the accuracy of the hybrid-ESN-B saturates for much smaller reservoir. This
may originate from the fact that the dynamics that the ESN has to learn is more simple as, now, only the
correction on the approximate ROM has to be learned.

On the other hand, the accuracy of the hybrid-ESN-A outperforms the data-only ESN for smaller
reservoirs only (up to 200 neurons). After which, the accuracy of hybrid-ESN-A and the data-only ESN
are similar. This could be explained by the fact that the reconstruction into the physical space is only
performed using a reduced set of spatial modes which prevents a higher accuracy for hybrid-ESN-A.

Finally, as the prediction horizon may depend on the specific realization of the ESN used in the data-
only or hybrid approaches (Haluszczynski and Räth, 2019), the prediction horizons were also
re-computed using 10 different realizations (i.e., when different random seeds are used to generate the
matrices W in and W ). These predictions horizons are shown in Section S3.1 of the Supplementary
Materials and exhibits the same trends as those shown here. This highlights the robustness of these
findings with respect to the ESN realization.

3.1.4. Poincaré and Lyapunov analysis of the ESN and hybrid approaches
An additional analysis is performed here to assess the ability of the ESN and hybrid-ESN approaches to
reproduce the long-term dynamics of the CDV system and not just the short-term evolution. This is done
by performing long-term prediction of the CDV system (for 100 Lyapunov time) for reservoirs of
200 units and these are plotted in a Poincaré map composed of the u1,u4ð Þ components of the CDV
system. In that phase space, the switch from a zonal to a blocked regime can be observed, the zonal mode
corresponding to the bottom right region in Figure 10a (large values of u1 combined with small values of
u4) while the blocked regime corresponds to the top-right corner (small values of u1 with large values of
u4). Compared to the short-term predictions discussed in the previous section, it becomes clear that the

Figure 9. Prediction horizon for the Charney–DeVore (CDV) system of the reduced order model (ROM)
only (magenta line and shaded area), the hybrid-echo state network (ESN)-A (orange dotted line and
shaded area), the hybrid ESN-B (green line and shaded area), of the data-only ESN (blue line) for various
reservoir sizes. Shaded area indicates the standard deviation of the prediction horizon. The standard

deviation of the data-only ESN is shown in Figure 7.
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hybrid-ESN-B approach is best able to reproduce the dynamics of the CDV system as its trajectory, shown
in Figure 10d, is the closest to the exact one in Figure 10a. Indeed, by comparison, the data-only ESN
converges toward a fixed point after some dynamics (as highlighted by the arrow in Figure 10b) while the
hybrid-ESN-A develops into a periodic evolution given that its trajectory in the Poincaré map does not
show a dense trajectory. This analysis was repeated by increasing the reservoir size of the ESN to
1,000 units (not shown here for brevity).When that larger reservoir was used, the data-only ESNmanaged
to reproduce accurately the same phase trajectory as the exact system. However, the hybrid-ESN-A still is
unable to reproduce the same phase trajectory and this may be because all predictions are made in the
reduced space and therefore, it may not be possible for that architecture to reproduce fully the chaotic
dynamics.

Finally, a further assessment of the capacity of the data-only ESN and hybrid approaches to learn the
dynamics of the CDV system is to check whether they possess the same Lyapunov exponent as the
original system (Pathak et al., 2017). Here, for simplicity’s sake, we focus only on the largest Lyapunov
exponent which can be computed in the following manner for each approach: (a) a first autonomous
“unperturbed” prediction, uu tð Þ, is computed with a given initial condition u0; (b) a second perturbed
autonomous prediction, up tð Þ is computed where the initial condition is slightly perturbed, that is using
u0þ ϵ with ϵ¼ 10�6; (c) the difference between the two predictions, called the separation trajectory, is
computed as kδu tð Þk ¼ kuu tð Þ�up tð Þk; and (d) the largest Lyapunov can be computed as the slope of
the region where log kδu tð Þkð Þ grows linearly. These separations trajectories are shown in Figure 11

Figure 10. Trajectory in phase space of the u1 and u4 modes of the Charney–DeVore (CDV) system from
(a) exact data, and predicted by (b) the data-only echo state network (ESN), (c) hybrid-ESN-A, and

(d) hybrid-ESN-B. The ESN has 200 units in all cases.

Figure 11. Separation trajectories of the reference system (black line), of the data-only echo state network
(ESN; gray line), of the hybrid-ESN-A (red line) and of the hybrid-ESN-B (blue line). The ESN has
200 units in all cases. The dashed lines indicate the slope of the linear region of the separation

trajectories.
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where it can be seen that the linear part of all the separation trajectories show similar slopes (within 2% of
each other) indicating that the largest Lyapunov exponent of all approaches is close to the reference one
(black line). It should be noted that the particular shape of the separation trajectory of the hybrid-ESN-A
approach (in red) is due to the periodic dynamics which is predicted by hybrid-ESN-A.

3.2. KS equation

The KS system is a fourth-order nonlinear chaotic partial differential equation governed by Manneville
(1985)

∂u
∂t

þ∂
4u
∂x4

þ∂
2u
∂x2

þu
∂u
∂x

¼ 0 (22)

defined over a domain x∈ 0,L½ � with periodic boundary conditions. The following initial condition is
considered:

u 0,xð Þ¼ cos 2π
x
L

	 

1þ sin 2π

x
L

	 
h i
: (23)

The length L plays a major role for the spatio-temporal chaos since the bifurcation parameter strongly
depends on it: for small domain sizes, nonchaotic traveling waves emerge while, for larger domain sizes,
intermittent bursts start to occur and disrupt the ordered structure resulting in a chaotic evolution
(Manneville, 1985).

In this work, we consider L¼ 35 to ensure this chaotic evolution and we solve Equation (22) using a
spectral method with a Runge–Kutta 4 method for time advancement. The spatial domain is discretized
using 64 grid points and a timestep Δt¼ 0:25 is used. A typical spatio-temporal evolution of the KS
system is shown in Figure 12where the time is normalized using the largest Lyapunov exponent, λmax. For
theKS equation, λmax is equal to 0.07. Inwhat follows, similarly as for the CDV system, a dataset covering
100 Lyapunov time is used for the development of ROM and the training of the ESN is presented next.

3.2.1. Reduced-order modeling of the KS system
Similarly to what was done for the CDV system in Section 3.1.1, we apply the method of snapshots to
obtain the POD modes of the KS system using a time series of 100 Lyapunov time which corresponds to
5,714 snapshots (the first 100 Lyapunov time shown in Figure 12a). The energy content of each mode is
shown in Figure 13. It is observed that the first 19 modes contains most of the energy content of the KS
system and these modes will be used for the ROM.

A typical time-evolution obtained from this ROM composed of 19 modes is shown in Figure 14a for
the same time period as the one shown in Figure 12b. It can be seen that, compared to the actual evolution
of the KS system (Figure 12b), this ROM does not manage to predict the dynamics of the KS system and
seems to converge toward a fixed point after a small dynamics similar to what was observed for the ROM
from the CDV system. The absolute error (shown in Figure 14c) shows that there is a rapid divergence

Figure 12. (a) Spatio-temporal evolution of the Kuramoto–Sivashinsky system and (b) zoom in the time
between the black dashed lines in (a). tþ ¼ λmaxt is the normalized time.
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between the ROM and the actual evolution with a large error already reached for less than one Lyapunov
time. In comparison, Figure 14b,d shows the evolution and absolute error for a ROM constructed using
29 PODmodes and it can be clearly seen that this larger ROM can accurately predict the evolution of the
KS system for a longer time (approximately twoLyapunov time) but that the complex chaotic dynamics of
theKS system is not fully capture either as the ROMseems to converge toward a quasi-periodic evolution.

3.2.2. Data-only ESN
Similarly to what was performed for the CDV system in Section 3.1.2, the ESN is trained using the same
dataset as the one used to develop the PODmodes. A similar optimization strategy as for the CDV system
is used to obtain a set of adequate hyperparameters. The values of the hyperparameters for the data-only
ESN are provided in the Supplementary Materials.

In a first stage, we assess here the ability of the ESN to learn the dynamics of the Kuramoto-
Sivashinsky system. A singular prediction of the KS system is shown in Figure 15 for an ESN with a
reservoir size of 500 units. In that figure, it can be seen that the ESN is able to qualitatively reproduce the
dynamics of the KS system better than the ROMs of Section 3.2.1. Furthermore, the ESN is able to
accurately predict the evolution of the KS system for approximately 1.5 Lyapunov time, indicated by the

Figure 13. Relative energy content of each mode in the proper orthogonal decomposition (POD)
decomposition of the Kuramoto–Sivashinsky (KS) system.

Figure 14. Time-evolution of the proper orthogonal decomposition (POD)-based reduced order model
(ROM) with (a) 19 modes and (b) 29 modes and (c and d) absolute error with respect to the full-order

evolution.
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red line which represents the prediction horizon. After that, the trajectory predicted by the ESN diverges
from the exact evolution.

The statistical accuracy of the ESN for various reservoir sizes is shown in Figure 16 where it can be
seen that, as the reservoir size increases, a longer prediction horizon is obtained before a saturation is
observed. This latter saturation is likely due to the relative small dataset fromwhich the ESN can learn the
dynamics of the KS system.

3.2.3. Hybrid ESN prediction
We now analyze the predictions from the hybrid ESN approaches. The hyperparameters of the ESN for
both hybrid architectures, obtained similarly as for the CDV case, are reported in the Supplementary
Materials.

On one hand, we investigate what is the improvement provided by a given ESN for different levels of
accuracy of the ROMs and, on the other hand, we explore whether for a given ROM, what is the level of
improvement that can be obtained by including an ESN with reservoirs of different sizes to learn the
dynamics of the KS system.

In Figure 17, predictions from hybrid-ESN-B are shown. For these, the hybrid-ESN-B has a fixed
reservoir size of 500 neurons and two different ROMS are considered. In Figure 17a, a ROM of 19modes
is used and it can be seen that the accuracy is similar to the one of the ESN without ROM. This would
indicate that the ROM with 19 modes is fairly inaccurate, as could be seen in Figure 14a, and that the
hybrid-ESN-B is unable to use the ROM information in a meaningful manner to improve the accuracy of

Figure 16. Prediction horizon of the data-only echo state network (ESN) for various reservoir sizes.
Shaded area indicates the standard deviation of the prediction horizon.

Figure 15. (a) Prediction of the Kuramoto–Sivashinsky (KS) system by the data-only echo state network
(ESN) with 500 units and (b) associated absolute error. The red line indicates the prediction horizon.

e16-16 Mathias Lesjak and Nguyen Anh Khoa Doan

https://doi.org/10.1017/dce.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.17


its prediction. When a ROM of 29 modes is used (Figure 17b), the accuracy of the hybrid ESN is much
larger than with the ROM-only (Figure 14b) or the ESN without ROM (Figure 15b). The prediction
horizon reaches approximately four Lyapunov times which is an improvement of two Lyapunov times
compared to the ESN without ROM or the ROM only. It should be noted that, despite the prediction
horizon being close to four Lyapunov times, the prediction from hybrid-ESN-B already shows some
deviation from the reference trajectory starting from twoLyapunov times, as can be seen from the absolute
error in Figure 15b. Nonetheless, similarly as for what was observed for the CDV system, this error
remains bounded as the evolution predicted by hybrid-ESN-B remains close to the reference one
(comparing Figure 17b with Figure 12b) for a longer period. After this, the error keeps increasing which
is inevitable given that the KS system is a chaotic system.

For hybrid-ESN-A, the predictions for a specific time instant are not shown for brevity and its accuracy
is only assessed statistically in Figure 18 where it is analyzed for different reservoir sizes and ROM
accuracy. In that figure, the accuracy of hybrid-ESN-B is also shown as well as the ones for the ROM and
the standard ESN. For ROM of low accuracy with 19 modes (see Figure 18a), it can be seen that the
accuracy of hybrid-ESN-A is smaller than the one from the data-only ESN, except for very small reservoir.
This is due to the intrinsic limitation of the architecture that only uses the reduced number of spatial modes
to reconstruct the full states. As a result, there are too few modes to enable an accurate reconstruction. In
contrast, when a ROMwith 29 modes is used (Figure 18b), the accuracy of hybrid-ESN-A is much larger.
Additionally, for both ROMs, it is seen that the accuracy of hybrid-ESN-A does not increase much with
the reservoir size indicating that the correction that the ESN can provide on the evolution of the retained
modal coefficients is limited.

For hybrid-ESN-B, when considering a ROM of 19 modes, it is seen that including this ROMwith the
ESN has a positive effect on the accuracy of the hybrid ESN (green curve compared to the blue one) which
consistently outperforms the ESNwithout a ROM for all reservoir sizes. This improvement is marked the
most clearly for small reservoir sizes. However, the improvement is more limited for larger reservoir sizes
which is due to the fairly inaccurate ROMwhich has an average prediction horizon of only 0.5 Lyapunov
time (magenta curve).

In contrast, when a ROM of 29 modes is used in the hybrid-ESN-B (green curve in Figure 18b), a
significant increase in prediction horizon is obtained with a prediction horizon of more than five
Lyapunov time. This constitutes an increase by more than three Lyapunov time compared to the ROM
itself (magenta curve) and of between three and four Lyapunov time for the data-only ESN depending on

Figure 17. Time-evolution of the hybrid-echo state network (ESN)-B with a reservoir of 500 neurons with
a reduced order model (ROM) composed of (a) 19 modes, (b) 29 modes, and (c and d) absolute error with

respect to the full-order evolution.
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the reservoir size. Additionally, it is observed that the prediction horizon of the hybrid-ESN does not
change much with the reservoir size. This is due to the fact that the ESN only needs to learn the error
between the ROM and the exact evolution. Given that the ROM with 29 modes is already relatively
accurate, as seen in Figures 14b and 18b (magenta curve), a small reservoir is sufficient to capture that
evolution accurately. Additionally, it is seen that hybrid-ESN-B always outperforms hybrid-ESN-Awhich
is due to the fact that the ESN learns the correction in full space and not just in the reduced space. This
allows the ESN in hybrid-ESN-B to better improve the accuracy which is particularly useful when the
base model is fairly inaccurate as in Figure 18a.

Additionally, similarly to what was done for the CDV system, to assess the robustness of the computed
prediction horizon with respect to the realization of the ESN, the prediction horizons were also
re-computed using 10 different realizations. These predictions horizons are presented in Section S3.2
of the Supplementary Materials and similar results as the one shown here were observed.

To better assess the improvement that adding an ESN to a ROM can provide, the prediction horizon of
the hybrid ESN for a reservoir of 500 neurons is assessed when the number of modes retained in the ROM
is varied. Here, for simplicity, the hyperparameters are kept constant to the values used for the case with
29 modes retained. This is shown in Figure 19 where the average prediction horizon of both hybrid
methods are compared to the one of the ROM. It is seen that adding the ESN of that size to the ROM
always provide an improvement in prediction horizon even for this small reservoir. It is seen that for that
specific reservoir size, the increase in accuracy is similar between hybrid-ESN-A and hybrid-ESN-B.
However, as observed in Figure 18a, when larger reservoir sizes are used hybrid-ESN-B can provide an
additional increase in accuracy whereas hybrid-ESN-A does not.

An additional comment can be made by comparing the performance obtained here compared to the
ones in previous works (Pathak et al., 2018a) that also studied the KS system. In Pathak et al. (2018a), the
high accuracy is obtained with a model-free approach which may be due to the use of a much longer
training dataset than the one used here, combined with a more complex architecture where multiple ESNs
are used in parallel with a large reservoir (of 5,000 units). In Pathak et al. (2018b), the high accuracy most
likelymainly originates from the very accurate physics-basedmodel used. This model actually consists of
the exact governing equations of the KS system but where only one parameter is slightly perturbed.
Therefore, the ESN in the hybrid architecture of Pathak et al. (2018b) only has to learn a much simpler
dynamics (the small difference between the exact equation and the perturbed ones) and a high prediction

Figure 18. (a) With reduced order model (ROM) of 19 modes: prediction horizon of the ROM (magenta
line and shaded area), of the hybrid-echo state network (ESN)-A (orange line and shaded area), of hybrid-
ESN-B (green line and shaded area) for different reservoir sizes and of the data-only ESN (blue line).
(b) With ROMof 29modes: prediction horizon of the ROM (magenta line and shaded area), of the hybrid-

ESN-A (orange line and shaded area), of hybrid-ESN-B (green line and shaded area) for different
reservoir sizes and of the data-only ESN (blue line). Shaded areas indicate the standard deviation from the

average prediction horizon. The standard deviation of the data-only ESN is shown in Figure 16.
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horizon can therefore be achieved. In comparison, our approach relies on a more realistic physics-based
model that capture the essential dynamics of the KS system (contained in a subset of the POD modes).

3.2.4. Poincaré analysis of the ESN and hybrid approaches
Similarly as for the CDV system, the ability of the ESN and of the hybrid approaches to reproduce the
long-term dynamics of the KS system is assessed by performing a long-term prediction of the KS system
for 100 Lyapunov times. The obtained predictions are then plotted in a phase space composed of the
kinetic energy, k, and dissipation, D, defined as:

k¼ 1
2

Z
L
u2dx, D¼

Z
L
∇uj j2dx: (24)

The trajectories in that phase space are shown in Figure 20 for reservoir sizes of 500 units, and 19 modes
retained for the hybrid approaches. In that figure, it can be seen that the data-only ESN shows some
inaccuracies in the prediction of the phase trajectories as it exhibits large excursion of D. On the other
hand, both hybrid approaches are able to more accurately reproduce the trajectory of the KS system.
However, when larger reservoir sizes are considered, the data-only ESN is able to more accurately
reproduce the reference trajectory in phase space (not shown here for brevity). Similarly, for larger
reservoirs or number of modes retained, the hybrid approaches are still able to reproduce the phase
trajectory.

Figure 20. Trajectories in phase space of k and D modes of the KS system from (a) exact data, and
predicted by (b) the data-only echo state network (ESN), (c) the hybrid-ESN-A and (d) the hybrid-ESN-B.

The ESN has 500 units in all cases and only 19 modes are retained for the hybrid approaches.

Figure 19. Prediction horizon with reduced order models (ROMs) of different accuracy for the hybrid-
echo state network (ESN)-Awith a reservoir of 500 units (orange), for the hybrid-ESN-B with a reservoir
of 500 units (blue) and of the ROM only (magenta). Shaded area indicates the standard deviation.
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Finally, the largest Lyapunov exponent from the various approaches is also computed. The separation
trajectories are shown in Figure 21, for reservoir sizes of 500 units and 19 modes retained, where it can be
seen that all the approaches show a similar slope in their linear growth indicating that they all have similar
largest Lyapunov exponent (within 5% of each other). This indicates that all the approaches can be used to
approximate the largest Lyapunov exponent of this chaotic system. Similar results are obtained for larger
reservoirs or more modes retained (not shown here for brevity).

4. Discussion

For hybrid-ESN-B, it is seen from the architecture shown in Figure 3 that its prediction of the future
system states comes from a combination of the predictions from the ROM and from the reservoir states.
Therefore, an analysis of the weights in W out can provide some insights into how the prediction is
obtained from the reservoir states, x, and from the ROM prediction, uROM . To make such an analysis
tractable, we compute the following term

α j ¼ 1
Nu

XNu

i¼1

w2
ijP

j
w2
ij

, (25)

where wij is the element at the ith line, jth column in W out. The equation above provides the average
normalized contribution of the jth element in x̂ to the ith element of the prediction, ŷi (see
Equation (19)). Therefore, if αi is large it means that that particular element from x̂ has a significant
contribution to the prediction y (this can be a contribution to all elements of y or a large contribution to a
single element of y). Conversely, if αi is small, it indicates that that particular element in x̂ does not
contribute much to the prediction. In addition, let us recall that the first Nu elements in x̂ come from the
ROM prediction while the latter elements originate from the reservoir of the ESN. Therefore, this
distinction between the two categories can provide an indication of the importance of the ROM-
prediction and the respective reservoir states in the prediction of the future state. This calculation of αi is
shown in Figure 22a for the cases with 19 and 29 modes retained in the ROM for a reservoir of
500 neurons. It is clearly seen that when an accurate ROM is used (with 29 retainedmodes, shown using
the red curve), the most contributing elements of x̂ are coming from the ROM as αi has large values for
index 1–64 which corresponds to the ROM prediction while the αi for the subsequent elements are
small. This was also observed for hybrid-ESN with larger reservoirs and this would explains why in
Figure 18 little improvement is obtained in the prediction accuracy when a ROM of 29 modes for
different reservoir sizes is used. The prediction mainly comes from the ROM and the reservoir of the
ESN only needs to provide a small correction on that ROM prediction. Therefore a small reservoir is
already sufficient to provide this correction.

Figure 21. Separation trajectories of the reference system (black line), of the data-only echo state network
(ESN; gray line), of the hybrid-ESN-A (red line) and of the hybrid-ESN-B (blue line). The ESN has

500 units in all cases and the hybrid approaches use 19 modes. The dashed lines indicate the slope of the
linear region of the separation trajectories.
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Conversely, when a more imprecise ROM with 19 retained modes is used (green curve), the opposite
occurs. The contribution of the states coming from theROM ismuch smaller than the one coming from the
reservoir states and this means that, because the ROM is so imprecise, the ESN must mostly rely on its
own reservoir states for the predictions. However, this does not mean that the ROM plays no role in the
prediction as it will still influence the dynamics of the neurons in the reservoir and, as could be seen in
Figure 18, an improvement in the prediction horizon can still be achieved.

This importance of the accuracy of the ROM can be further studied by analyzing the evolution of this
weights repartition between ROM-prediction and reservoir prediction for different number of modes
retained in the ROM and by splitting αi into the 64 first terms (corresponding to the ROM) and the
subsequent terms (corresponding to the reservoir state):

Ψ¼
PNu

i¼1αiPN tot
i¼1αi

,Γ¼
PN tot

i¼Nuþ1αiPN tot
i¼1αi

: (26)

Ψ and Γ will give an indication of the overall weights of the ROM-based and reservoir states-based
prediction, respectively. This is shown in Figure 22b where it has been computed for ROMs of various
sizes and for two different reservoir sizes. Consistent with what was seen in Figure 22a, it can be seen that,
for increasing modes retained in the ROM, the contributions from the reservoir states to the prediction
decrease for both reservoir sizes considered. This is because the correction that the ESN has to provide
decreases. It should be noted that, in that figure, to simplify the analysis and avoid having to perform a
hyperparameter search for all ROM dimensions considered, the hyperparameters of the ESN are kept
fixed for all ROM dimensions, using the value found for the case of hybrid-ESN-B with 19 modes.
However, this analysis has also been repeatedwith the hyperparameters values used for the case of hybrid-
ESN-B with 29 modes and the exact same trends as those shown in Figure 22 were also observed (not
shown here for brevity).

5. Conclusion

In this work, we study two architectures that combine a reservoir computing approach, based on ESN, and
a ROM obtained from POD/Galerkin projection. The first architecture, hybrid-ESN-A, is inspired by
Pawar et al. (2020) and is designed so that the ESN learns the correction of the modal amplitudes of the
ROM and performs all predictions in the reduced-order space while the second architecture, hybrid-ESN-
B, inspired by Pathak et al. (2018b), uses the prediction of the ROM in full space to excite the reservoir and
makes a prediction based on the ROM prediction and the reservoir states. These architectures are used to
learn and predict the chaotic dynamics of the CDV system and of the KS equation. The accuracy of these
hybrid architectures is compared to the ROM only and to the standard ESN. It is seen that hybrid-ESN-B

Figure 22. (a) Relative contribution, αi, of the reduced order model (ROM) and reservoir states to the
prediction for hybrid-echo state network (ESN) with ROM of 19 (green line) and 29 (red line) modes.
(b) Overall contribution of the ROM,Ψ, (blue line) and of the reservoir states, Γ, (green line) to the overall
hybrid-ESN with 500 units (full lines) and 2,000 units (dashed lines) for various ROM dimensions.
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consistently predicts the exact evolution for a longer time than either the ROM or standard ESN while
hybrid-ESN-A can only outperform the standard ESN for specific reservoir sizes. This latter could be due
to the fact that hybrid-ESN-A performs all operation in the reduced spacewhich inherently prevents a high
accuracy. The effect of the accuracy of the ROM on the improvement in prediction is also rigorously
assessed for the KS system by modifying the number of modes used in the ROM. It was seen that the
accuracy of the ROM plays a crucial role in the improvement that can be obtained with an ESN. For a
fairly inaccurate ROM, the improvement obtained with the hybrid-ESN-B, compared to the standard
ESN, was fairly modest as the prediction from the ROM is too inaccurate for the hybrid-ESN-B
architecture to use to predict accurately the evolution of the system. Conversely, when a more accurate
ROMwas used, a significant improvement was obtained and, in this case, a small reservoir was sufficient
in the hybrid-ESN-B architecture for this improved accuracy. Additionally, it was observed that using a
larger reservoir in combination with the accurate ROM did not yield increased accuracy. This is because
the ESN part of the hybrid architecture only has to learn the correction to add on the ROMwhich may be
much simpler to learn that the full system dynamics, especially if the ROM is already quite accurate. This
effect of the accuracy of the ROMon the hybrid architecture is further studied by analyzing the weights in
the output matrix in hybrid-ESN-B. On the one hand, it is found that when the ROM is inaccurate, its
prediction is nearly not used by the hybrid-ESN-B architecture to predict the future evolution. Instead the
prediction is constructed mostly from the reservoir states. On the other hand, when the ROM is accurate,
the weights related to the ROM predictions are larger indicating that hybrid-ESN-B uses the ROM
prediction to a large part in the prediction of the future state of the system.

In future work, these approaches will be applied to larger dimensional systems and on systems where
the ROM is developed from physics-based consideration and not just from POD/Galerkin projection. The
possibility of using the proposed approach with an LSTM will also be explored.
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