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1. Introduction

Distributive pseudo-complemented lattices form an extensively studied
class of distributive lattices. Examples are the lattice of all open sets of a
topological space, the lattice of all ideals of a distributive lattice with zero
and the lattice of all congruences of an arbitrary lattice. Lattices which are
just pseudo-complemented have been studied in detail by J. Varlet [6], [7]
where, however, the most interesting results require at least the assumption
of modularity, sometimes distributivity.

In this note we introduce a new class of distributive lattices which
includes the class of pseudo-complemented distributive lattices. We call
these lattices distributive *-lattices and denote the set of all such lattices
by A*. Several characterisations of A* are given, an example of a non-
pseudo-complemented lattice in A* is given and some properties of the
congruence R defined below are studied.

2. Definitions, Notation and Preliminary results

We refer to G. Birkhoff [1] for the elementary properties of distributive
lattices. For 4 C L in a distributive lattice & = {L; v, A, 0> with zero we
define A* ={te L :tna=0 for all a € A}. The principal ideal generated
by a e L is written (a) and the principal dual ideal generated by a is written
[a]. The congruence R is defined in a distributive lattice with zero by

(a, b) € R if and only if (a)* = (b)*

An element d € L is called dense if (d)* = (0).

In a distributive lattice with zero the existence of minimal prime ideals
can be readily proved and we denote the set of all such ideals by
M = MH(ZL). For a subset & C A we write k() = ({4 :4 e &£} and
forasubset ACL we write h(A) ={Me .# : A CM}. Alsolet M, = A \h(x).
Then if the family {#,:2 e L} of subsets of .# is taken as an open basis
the resulting topology is called the Awli-kernel topology. If the family
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{h(xz) : x € L} is taken as an open basis the resulting topology is called the
dual hull-kernel topology. These ideas have been discussed in commutative
semigroups by J. Kist [3] and in commutative rings by M. Henriksen &
M. Jerison [2]. A detailed discussion of spaces of minimal prime ideals in
distributive lattices will appear in the author’s forthcoming thesis; for the
present only those results which are used in the study of 4* will be stated.

We now give our basic definition, noting that the idea was suggested
by the work of M. Henriksen & M. Jerison [2].

DEFINITION. Let £ = {L; Vv, A, 0> be a distributive latlice with zero.
Then £ e A* if and only if for all xe L, (x)** = (x')* for some z' € L.
3. Characterisation of 4*

The results of this section begin with a topological characterisation of
A*, We shall need some preliminary results which are distributive lattice
analogues of results from [2] and [3]. For this reason we state them without
proof.

LeEMMA 3.1. For a distributive with zero £ = (L; v, A, 0) the following

hold.
(i) 4 prime ideal M is minimal if and only if (x)*\M = [] for any
zxeM.
(il) A, = h((x)*
(itl) A(x) = h((x)**)
(iv) (2)* = (@)* o (9)* = h(z) = h{z) 0 A(y)
(v) @Ag)** = (@)** o (y)**

(vi) (@)** = @)* < h(z) = 1((y)*)
If we write 7, for the hull-kernel topology on .# and ., for the dual
hull-kernel topology on .# we have

ProrosITION 3.2. If £ = (L; Vv, A, 0> is a distributive lattice with zero,
the following are equivalent:

I Led*ie foranyxe L, (x)** = (z')* for some 2" € L.
Il T, = T, i.e. the two topologies on A coincide.
III A (F) is compact in the hull-kernel topology .

Proor. I = II. Assume I and take an arbitrary « € L. Then
M, = h((x)¥) by 3.1 (ii)

= h((2z’)**) since (x)*** = (z)* and by I

= h(z') by 3.1 (iii).
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Similarly
h(y) = h((y)**) Dby 3.1 (iii)
= h((y)*) by I
= M, by 3.1 (ii).
Thus {#,:xe L} = {h(x) :x €L} and so the two topologies coincide.
II = III. Assume II and consider a centred family of closed sets in .4
(with the hull-kernel topology). Since the family {#,:xeL} is a closed

basis when the two topologies coincide, the centred family may be taken
to be of the form {#,:¢e T}. Hence we have

n
N A, # O for all finite {t,,2,,---,¢,}CT.
f=]
This implies that T is a subset of L with the property
tyAtyA- - AL, # 0 for any finite {¢,,---, ¢} CT.

From this fact, we may enclose the dual ideal [7T'] generated by T in a
prime dual ideal F whose complement L\ F in L is a minimal prime ideal
not meeting 7. Now T n (L\F) = [] implies that ¢t ¢ L\F for all te T
ie. INFe#, forallteT.

Thus L\F €(\r #, and the compactness of # in the hull-kernel
topology is proved.

ITI = I. Assume that .# is compact in the hull-kernel topology. Then
h{x) is a closed subset of .# and so is compact in the relative topology. Now

0 = h(@) 0 A((®)*) = h(@) 0 () () : L€ (@)%
and so, by the compactness of A(x), thereis {t,,¢,, - - -, £,} C (x)* such that
O=5h@)nh{)n---nh(t,).
On taking complements in .4 we find that
M= Mo MO UMy
But the map ¢ :  — .#, is an homomorphism and so we have

M= M0 M,
and
MMy =My = [

Thus putting 2’ = \/7_, ¢, we have
My = MM, = h(zx)

ie. h((x')*) = h(x) = h((z)**) which, by 3.1 (vi) gives us the required
result (z)** = (z')*. :
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ReMARK. The final implication is exactly as in the commutative ring
case and is thus due to M. Henriksen & M. Jerison [2].

The congruence R was defined in § 2 and we will now state how it
relates to A*.

ProrosiTiON 3.3. Let & = (L;v,n, 0> be a distributive lattice with
zero. Then L e A* if and only if £|R is a Boolean lattice.

Proor. This result can be proved algebraically by the methods of [4]
but we prefer to give an alternative proof here using the topological ideas.
J. Kist [3] has proved that in a commutative semigroup S, the semi-lattice
formed by {4, : « € S} is isomorphic to S/R. His proof carries over to the
distributive lattice case and so Z/R =~ u(¥) = { M, 2zeL}; U, n, ).

Firstly assume % € A*. The for any x e L

MM = h(x) = h((@)**) = h((@)*) = M,

Thus u (%) is complemented and so is a Boolean lattice.
For the converse assume that Z|/R, and so u(.%¥), is a Boolean lattice.
le foranyxel, #\M,= M, for some 2’ € L. Then

h(w) = h((@)**) = A((=')*)

and so, by 3.1 (vi) (x)** = (z')* follows.

The proposition is thus proved.

We now give two algebraic conditions on % which are equivalent to
membership of A*. Condition II was kindly supplied to me by J. Varlet.
Let the set of all dense elements of .Z be denoted by D.

ProPOSITION 3.4. If £ = (L; v, A, 0) is a distributive lattice with zero,
the following are equivalent:
I Led* e forany xe L, (x)** = (z')* for some x’ € L.
II For any x € L there is ' € L such that x nz' = 0, zva' e D.
IIT For any ideal I of ¥ such that I n D = [, there is a minimal
prime ideal M D 1.

Proor. I = II. Assume % € 4*. Then clearly « A 2" = 0. We shall see
that v 2’ € D.

(@ne')* = @)* n (@&)* = @)* n @)* = (0)

and so the result follows.

IT = III. Assume II and observe that since I n D =[], D can be
extended to a dual ideal F maximal with respect to not meeting 1. By well
known results of M. H. Stone F is a prime dual ideal and also L\F is a
prime ideal of #. For any # € L\\F we note that ' ¢ L\ F sincex Az’ € D.
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Thus (z)*\(L\F) # ] and so, by 3.1 (i), L\\F is a minimal prime ideal
containing 1.

IIT = I. Assume & satisfies III. Then since (z) v (x)* cannot be con-
tained in any minimal prime ideal M, for otherwise (x)*\M would be
empty, we deduce that ((z) v (2)*) n D % []. Suppose d € D is an element
of (z) v (x)* —ie.d=avbwhereace (r) and b € (z)*, then zvbe D also.
We shall show that taking b = z" will satisfy I. Clearly b Az = 0 and so
(6) C (x)* or (b)* 2 (x)**. Let fe (b)* and se (x)*, and observe that
tAsAb=0 and tAsAxz=0. Thus {AsA (bva) =0 whence tAs=20
since b vz € D. The reverse inclusion (b)* C (x)** is now proved and so
(@)** = (6)*.

All of these results are collected in the following theorem.

THEOREM 1. Let £ = {L; v, A, 0> be a distributive lattice with zero.
Then the following are equivalent:

I Ped*ie. foranyxelL, (x)** = (x')* for some x’ € L.
I1 9, = T ,1i.e. the two topologies on M coincide.
III A is compact in the hull-kernel topology.
IV Z|R is a Boolean lattice.
V Foranyxe L thereisx' e L suchthat xna’ = 0, xva'eD.

VI For any ideal I of & with I n D = [], there is a minimal prime
ideal M 2 1.

4. An Example

We give an example of a distributive lattice belonging to A* which
is not pseudo-complemented. Let I+ = {0,1,2,3,---, n, -} denote the
chain of non-negative integers, and 2 denote the two element chain. Consider
the lattice (cardinal product)

L = (2xI*) v {u}

with a unit # adjoined. The lattice has a zero (0, 0) and we shall see that
forany x e L, (z)** = (2')* for some 2’ € L.

Elements of Type (0, n): {(0, 0)}* = L = {u}**

{(0, 1)}* ={(0, 0), (1, 0);

{(0, 2)}* = {(0, 0), (1, 0)}
and, generally, {(0, n)}* = {(0, 0), (1, 0)}
Elements of Type (1, #): {(1, 0)}* = {(0, 0), (0, 1), -+ -, (0, n), - - -}
and, generally, {(,n)}*  {(0, 0)}.
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Thus the elements of type (0, #) for » = 1, 2, - - - all have
{(0, n)p** = {(1, 0)}*.
In fact, they are all pseudo-complemented with
(0, n)* = (L, 0)
The elements of type (1, n) for n = 1, 2, - - - all have
{(L, n)** = {(0, 0)}*.

They also are pseudo-complemented with (1, #n)* = (0, 0) i.e. they are all
dense.

Finally (0, 0)* = # exists but (1, 0) is not pseudo-complemented,
since the join of all elements (0, #) does not exist. However

{(1, 0)}** = {(0,0), (1, 0)} = {(0, 1)}*.

5. Some Properties of A*

We begin this section with a simple result which determines when
elements of A* are Boolean. A distributive lattice with zero is said to be
disjunctive if for any pair z and y with < y there is z such that

O=xA2# YAz

THEOREM 2. Let £ = <L;v,A0,1>ed* Then the following are
equivalent:
I % is a Boolean lattice
II % is a disjunctive lattice
III 1 is the only dense element of L.

Proor. I = II. II is a known property of Boolean lattices.

IT = III. Since any « € L must satisfy << 1 or « = 1 II implies that
if 5 1 there is at least one element z = 0 with 2 A z = 0. Thus 1 remains
as the only dense element.

IIT = I. If 1 is the only dense element, then V of Theorem 1 tells us
that for any « € L there is an 2’ € L with

zA =0zva =1

Le. Z is complemented and hence a Boolean lattice.

Our remaining results concern the congruence R in lattices # e A*.
Recall that for any dual ideal F of £, the least congruence with F as a
congruence class is the congruence @[ F] defined by

(x,y) e O[F]if and only if (zvy)Af =2 Ay forsomefelF.
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The following Proposition can be considered as an extension of Theorem
16 p. 148 of G. Birkhoff [1].

PRrROPOSITION 5.1. Let & = {L;v, A, 0,1>e4* Then for a,be L
(i) Ifand = b rd for some d e D, we have (a,b) e R
(i) If (a, b) e R there is d € D such that and = b a d.
ProofF. (i) If a A d = b A d we may use 3.1 (v) to obtain
@)% = @)** A (@) = (@ d)** = (bAd)™ = B)** ~ [@)** = (b)**

since (d)** = L. Thus (a)*** = (b)*** or (a)* = (b)* which gives us the
result {(a, b) € R.
(i1) Suppose (a,b) € R i.e. (a)* = (b)*. Then since £ € 4* we know
a’ and b’ exist and have the required properties. In fact we may takea’ = &'
Now consider d = (aAb) va'

(@)* = (@anbd)*n (@')* = (a)* n (a)** = (0) and sod € D.

Also
and=an({anbd)va’)
= (and)v(ana)
=a~nb
and

brd=>bn ({(anbd)va')
= (bra)vibra')
=anb

Thus a Ad = b A d for some d € D and our proposition is proved.

REMARK. Proposition 5.1 can be considered as saying: For % e A4*
R = O[D]. This is easily seen, for if (avb)ad =anbfordeD, (a,b) e R
follows readily. Similarly if (e, b) € R take d = (@A b) va' and we find
(avbdb)and =anb.

It is known that the largest congruence on % with a given dual ideal
F as congruence class is the congruence Rp defined by

(z, y) € Rpif and only if (x; F)' = (y; F)*

where (a; F)' = {te L :a vte F}. Our next proposition relates this con-
gruence to R when F = D.

PROPOSITION 5.2. Let & = (L;V, A, 0, 1> € 4%, then R = R},

Proor. We must show that (a)* = (b)* if and only if (a; D)t = (b; D)*.
But since it is known that R < R}, in the partial ordering of congruences
we need only prove the if assertion.
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Suppose ¢t v a € D when and only when ¢ vbe D. Le.
(tva)* = () A @)* = (0) = ()* n (B)* = (0)
This gives us, since £ € 4%
() A (@)% = (0) = (£)** A (¢)** = (0)
By 3.1 (v) this is equivalent to
(' Aa')* = (0) = (¢ AD)** = (0)
or
'Aa" =0 «t'Ad' =0

Now any element of L is of the form ¢’ and so this last result tells us

that (@¢')* = (b')*, and finally
(a)* = (0)*.

Hence (a, b) € R and R}, < R. The result is now proved.
We can combine the last two results in

THEOREM 3. Let £ = (L;V, A, 0,1> €A% Then O[D] = R = Ry i.e.
R 1s the unique congruence with the dual ideal of dense elements as a congruence
class.

It should be remarked that Theorem 3 was suggested by a result of
J. Varlet [7] for pseudo-complemented modular lattices. The method of
proof however, is entirely different from that used in [7].

Our final result is also an analogue of a result of J. Varlet [6] first
proved for pseudo-complemented modular lattices. Since the proof in this
case is similar to that of [6] we omit it.

ProposiTiON 5.3. Let ¥ = (L;Vv,A,0,1>€4*% and suppose D is
principal i.e. D = [d] wheve d € D. Then

(a,b)e Rifand onlyif and = bad and L|R =~ (d).

For further results about lattices in A%, especially ones involving
Stone lattices, we refer to [5].
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