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Fermions on the lattice

In this chapter we introduce the path integral for Fermi fields. We
shall discuss the species-doubling phenomenon – the fact that a naively
discretized Dirac fermion field leads to more particle excitations than
expected and desired, two remedies for this, which go under the names
‘Wilson fermions’ and ‘staggered fermions’, the interpretation of the path
integral in Hilbert space, and the construction of the transfer operator.
Integration over ‘anticommuting numbers’, the ‘Grassmann variables’
and the relation with creation and annihilation operators in fermionic
Hilbert space is reviewed in appendix C.

6.1 Naive discretization of the Dirac action

In continuous Minkowski space–time the action for a free fermion field
can be written as (see appendix D for an introduction)

S = −
∫

d4x
[
1
2 (ψ̄(x)γµ∂µψ(x)− ∂µψ̄(x)γµψ(x)) +mψ̄(x)ψ(x)

]
, (6.1)

or, exhibiting the Dirac indices α, β, . . . (but suppressing the label x for
brevity),

S = −
∫

d4x
[
(γµ)αβ 12 (ψ̄α∂µψβ − ∂µψ̄αψβ) +mψ̄αψα

]
. (6.2)

The ψ and ψ̄ are anticommuting objects, so-called Grassmann variables,
e.g. ψα(x)ψ̄β(y) = −ψ̄β(y)ψα(x). The integrand in (6.1) is Hermitian,
treating ψ and ψ+,

ψ+ = ψ̄β, β = iγ0, (6.3)

as Hermitian conjugates, e.g. (ψα(x)ψ+β (y))† = ψ+β (y)ψα(x). Note, how-
ever, that ψ and ψ+ are independent ‘variables’ (which is why we use
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150 Fermions on the lattice

the superscript + instead of †). The Dirac matrices have the following
properties:

γ0 = −γ0, γ0 = −γ†0, γ20 = −1, (6.4)

γk = γk = γ†k, γ2k = 1, k = 1, 2, 3. (6.5)

implying that β = β† and β2 = 1.† Replacing the derivative operators
by discrete differences,

∂µψ(x)→ 1
aµ

[ψ(x+ aµµ̂)− ψ(x) ], (6.6)

we obtain from (6.1) a lattice version

S = −
∑
x,µ

1
2aµ

[ψ̄(x)γµψ(x+aµµ̂)−ψ̄(x+aµµ̂)γµψ(x)]−m
∑
x

ψ̄(x)ψ(x).

(6.7)
Recall that aµ is the lattice spacing in the µ direction. We shall occa-
sionally only need the spacing in the time direction, a0, to be different
from the spatial lattice spacing ak = a, k = 1, 2, 3.

The path integral for free fermions with anticommuting external
sources η and η̄ is now tentatively defined by

Z(η, η̄) =
∫

Dψ̄Dψ ei[S+
∑

x(η̄ψ+ψ̄η)], (6.8)

where

Dψ̄Dψ =
∏
x,α

dψ̄xα dψxα =
∏
xα

dψ+xα dψxα. (6.9)

We assumed the action to be rewritten in terms of dimensionless ψx and
ψ̄x,

ψx = a3/2ψ(x), ψ̄x = a3/2ψ̄(x), (6.10)

and similarly the symbols dψ+xα and dψxα are dimensionless. The last
equality in (6.9) follows from the rule d(Tψ) = (detT )−1 dψ (cf. ap-
pendix C) and detβ = 1. The ψxα and ψ+xα are independent generators
of a Grassmann algebra. We recall also the definition of fermionic inte-
gration (cf. appendix C),∫

db = 0,
∫

db b = 1, (6.11)

where b is any of the ψxα or ψ+xα. Before making the transition to
imaginary time we need to make the dependence on a0 explicit. So let nµ

† We usually write just 1 for the unit matrix 11.
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6.2 Species doubling 151

be the integers specifying the lattice site x, x0 = n0at, x = na, and let
ψn ≡ ψx and ψ̄n ≡ ψ̄x. Recalling that

∑
x = a0a

3
∑

n in our notational
convention, the lattice action reads more explicitly

S = −
∑
n

[
1
2
(ψ̄nγ

0ψn+0̂ − ψ̄n+0̂γ
0ψn)

+
3∑

k=1

a0
2a

(ψ̄nγ
kψn+k̂ − ψ̄n+k̂γ

kψn) + (a0m)ψ̄nψn

]
. (6.12)

Furthermore ∑
x

(η̄ψ + ψ̄η) ≡ a0
a

∑
n

(η̄αnψαn + ψ̄αnηαn), (6.13)

with dimensionless ηαn and η̄αn.
It follows from the rules of fermionic integration that the path integral

for a finite space–time volume is a polynomial in a0m and a0/a. Hence,
an analytic continuation to ‘imaginary time’ poses no problem:

a0 = |a0| exp(−iϕ), ϕ: 0→ π/2, a0 → −ia4, (6.14)

with a4 = |a0|. This transforms the path integral into its Euclidean
version (iS → S�, dropping the �),

Z =
∫

Dψ̄Dψ eS+
∑

n(η̄ψ+ψ̄η), (6.15)

S = −
∑
n

[∑
µ

a4
2aµ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + a4mψ̄nψn

]
,

where µ now runs from 1 to 4 (with n4 ≡ n0, 4̂ ≡ 0̂), and

γ4 = iγ0 = β. (6.16)

6.2 Species doubling

It turns out that the model described by the action in (6.15) yields
24 = 16 Dirac particles (fermions with two charge and two spin states)
instead of one. This is the species-doubling phenomenon. We shall infer
it in this section from inspection of the fermion propagator and the
excitation energy spectrum.

Using a matrix notation, writing

Z(η, η̄) =
∫

Dψ̄Dψ e−ψ̄Aψ+η̄ψ+ψ̄η, (6.17)
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152 Fermions on the lattice

where (in lattice units, a = a4 = 1)

Axy =
∑
zµ

γµ
1
2
(δ̄x,z δ̄y,z+µ̂ − δ̄x,z+µ̂δ̄y,z) +m

∑
z

δ̄x,z δ̄y,z, (6.18)

the path integral is easily integrated (appendix C) to give

Z(η, η̄) = detAeη̄A
−1η. (6.19)

Here A−1
xy ≡ Sxy is the fermion propagator. It can be evaluated in

momentum space, assuming infinite space–time,

A(k,−l) =
∑
xy

e−ikx+ilyAxy = S(k)−1δ̄(k − l), (6.20)

S(k)−1 =
∑
µ

iγµ sin kµ +m, (6.21)

S(k) =
m− iγµsµ
m2 + s2

, sµ = sin kµ. (6.22)

Reverting to non-lattice units the propagator becomes

S(k) =
m− i

∑
µ γµ sin(akµ)/a

m2 +
∑

µ sin2(akµ)/a2
, (6.23)

for which the limit a→ 0 gives the continuum result

S(k) =
m− iγk

m2 + k2
+O(a2). (6.24)

The propagator has a pole at k4 = iω = i
√
k2 +m2 corresponding to

a Dirac particle. The pole is near the zeros of the sine functions at
the origin akµ = 0. However, there are 15 more regions in the four
dimensional torus −π < akµ ≤ π where the sine functions vanish, 16 in
total:

S(k) =
m− iγ

(A)
µ pµ

m2 + p2
+O(a), k = kA + p (6.25)

where the kA is one of the 16 four-vectors

kA =
πA
a
, mod 2π (6.26)

with

π0 = (0, 0, 0, 0), π1234 = (π, π, π, π),

π1 = (π, 0, 0, 0), π2 = (0, π, 0, 0), . . ., π4 = (0, 0, 0, π),

π12 = (π, π, 0, 0), . . ., π34 = (0, 0, π, π),

π123 = (π, π, π, 0), . . ., π234 = (0, π, π, π), (6.27)
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6.2 Species doubling 153

and

γ(A)µ = γµ cosπAµ = ±γµ. (6.28)

Since the γAµ differ only by a sign from the original γµ, they are equivalent
to these by a unitary transformation. This transformation is easy to
build up out of products of γργ5, where γ5 = iγ0γ1γ2γ3 = −γ1γ2γ3γ4
is the Hermitian and unitary matrix which anticommutes with the γµ:
γµγ5 = −γ5γµ. So let

{SA} = {11, Sρ, SρSσ, SρSσSτ , S1S2S3S4}, Sρ = iγργ5, (6.29)

where ρ �= σ �= τ �= ρ and A↔ πA ↔ SA, e.g. π23 ↔ S23 = S2S3. Then

γ(A)µ = S†
AγµSA, (6.30)

and we have

S(kA + p) = S†
A

m− iγµpµ
m2 + p2

SA +O(a2). (6.31)

The transformations SA are useful for the detailed interpretation of the
zeros of the sine functions near kA �= 0 in terms of genuine particles [70].
Here we shall support the interpretation of the 15 additional particles
– the species doublers – by deriving the spectrum of excitation energies
above the energy of the ground state.

The excitation-energy spectrum is conveniently obtained from the
time dependence of the propagator, analogously to the boson case:

S(x, t) =
∫ π

−π

d3k

(2π)3
eikx

∫ π

−π

dk4
2π

eik4t
m− iγs− iγ4 sin k4
m2 + s2 + sin2 k4

, (6.32)

where we reverted to lattice units and used the notation sµ = sin kµ.
The k4 integral can be performed by changing variables to

z = eik4 , (6.33)

in terms of which s24 = 1− (z2 + z−2 + 2)/4, and

S(x, t) = −4
∫

d3k

(2π)3
eikx

∫
dz

2πi
zt

z(m− iγs)− γ4(z2 − 1)/2
z4 − 2fz2 + 1

,

f = 1 + 2(m2 + s2). (6.34)

The integral over z is over the unit circle in the complex plane, as shown
in figure 6.1. The denominator of the integrand has four zeros, at ±z+
and ±z−, where z± are given by

(z±)2 = f ±
√
f2 − 1, z± = e±ω, (6.35)

cosh(2ω) = f, sinhω =
√
m2 + s2. (6.36)
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154 Fermions on the lattice

Fig. 6.1. Contour integration in the complex-z plane.

For t > 0 (t = integer) the two poles at z = ±z− contribute, giving

S(x, t) =
∫

d3k

(2π)3
eikx−ωt

sinh(2ω)
(m− iγs+ γ4 sinhω)

+ (−1)t
∫

d3k

(2π)3
eikx−ωt

sinh(2ω)
(m− iγs− γ4 sinhω). (6.37)

Before interpreting this result we want to summarize it in terms of the
variable k4, for later use. In terms of k4 the zeros of the denominator
m2 + s2 + sin4 k4 at z = z± are at k4 = ∓iω, and for z = −z± at
k4 = ∓iω + π (mod 2π). The k4 = −iω, −iω + π poles are relevant for
t < 0. The residues of the other poles are given by

eik4t (m− iγs− iγ4s4)

= e−ωt (m− iγs+ γ4 sinhω), k4 = iω,

= (−1)te−ωt (m− iγs− γ4 sinhω), k4 = iω + π,

= eωt (m− iγs− γ4 sinhω), k4 = −iω,
= (−1)teωt (m− iγs+ γ4 sinhω), k4 = −iω + π. (6.38)

We see that we cannot blindly perform the inverse Wick rotation on the
lattice k4 → ik0 and look for particle poles at k0 = ±ω. We have to
let k4 → ik0 + ϕ, ϕ ∈ [0, 2π): then k0 = ±ω corresponds to e∓ωt eiϕt,
t
>
< 0. In this case we have have poles at ϕ = 0 and ϕ = π. Recall that

the Bose-field denominator m2 + 2
∑

µ(1− cos kµ) gives only a pole for
ϕ = 0.
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6.2 Species doubling 155

Fig. 6.2. Excitation-energy spectra for bosons (upper curve) and fermions
(lower curve) on the lattice, in lattice units (m = 0.2).

We now interpret the result (6.37). From the time dependence of the
propagator we identify the energy spectrum ω(k). Since there are two
poles contributing for t > 0, there must be two fermion particles for every
k. One of them (the pole at z = z−) has the usual e−ωt factor. The other
(at −z−) has in addition the rapidly oscillating factor (−1)t. Apparently,
to obtain smooth behavior at large times (in lattice units) we have to
take two lattice units as our basic time step. This is in accordance with
the transfer operator interpretation of the path integral, in which in
general two adjacent time slices are identified with the fermion Hilbert
space [78, 79, 89], in which two independent operator Dirac fields ψ̂1,2
act, corresponding to the two particle poles. An exception is Wilson’s
fermion method [86, 87], which has no fermion doubling (for r = 1, see
below).

So there is a doubling of fermion species due to the discretization of
time. There is a further proliferation of particles due to the discretization
of space. In figure 6.2 we compare the boson and fermion excitation-
energy spectra

coshω = 1 + 1
2


m2 + 2

3∑
j=1

(1− cos kj)


, boson; (6.39)

sinhω =

√√√√m2 +
3∑

j=1

sin2 kj , fermion. (6.40)
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156 Fermions on the lattice

We define a particle state to correspond to a local minimum of the energy
surface ω(k). The minima are at k = kA, kA = 0, π1, π2, π3, π12, π23,
π31, π123, with rest energy given by ωA ≡ ω(kA), sinhωA = m. For
m→ 0 (in lattice units) the spectrum is relativistic near k = kA,

ω →
√
m2 + p2, m→ 0, p = k− kA → 0, (6.41)

and p can be interpreted as the momentum of the particle. From the
time and space ‘doubling’ we count 24 = 16 particles. Note that the
wave vector k is just a label to identify the states and that the physical
momentum interpretation has to be supplied separately.

One may wish to ignore the kA �= 0 particles. However, in an inter-
acting theory this is not possible, because kµ is conserved only modulo
2π. For example, two kA = 0 particles may collide and produce two
kA = π1 = (π, 0, 0, 0) particles: p1 + p2 = p3 + π1 + p4 + π1 = p3 + p4
(mod 2π).

The phenomena related to fermions on a lattice touch on deep issues
involving anomalies and topology. This is a vast and technically difficult
subject and we shall give only a brief review in sections 8.4 and 8.6. In a
first exploration we shall describe two important methods used for ame-
liorating the effects of species doubling in QCD-like theories: Wilson’s
method [71] and the method of Kogut–Susskind [72, 40] (in the Hamil-
tonian formulation). The latter is also known as the staggered-fermion
method, in its generalization to Euclidean space–time (see for example
[79, 74, 80]). For the hypercubic lattice the staggered-fermion method
is equivalent to the ‘geometrical’ or Dirac–Kähler fermion method of
Becher and Joos [81], provided that an appropriate choice is made of
the couplings to the gauge fields.

We shall first describe Wilson’s method and then briefly introduce the
staggered-fermion method.

6.3 Wilson’s fermion method

Wilson’s method can be viewed as adding a momentum-dependent ‘mass
term’ to the fermion action, which raises the masses of the unwanted
doublers to values of the order of the cutoff, thereby decoupling them
from continuum physics. For free fermions we replace the mass term in
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6.3 Wilson’s fermion method 157

the action as follows,

m
∑
x

ψ̄xψx → m
∑
x

ψ̄xψx +
ar

2

∑
xµ

∂µψ̄x∂µψx (6.42)

= m
∑
x

ψ̄xψx +
ar

2

∑
xµ

1
a2

(ψ̄x+aµ̂ − ψ̄x)(ψx+aµ̂ − ψx)

=
(
m+

4r
a

)∑
x

ψ̄xψx −
r

2a

∑
xµ

(ψ̄x+aµ̂ψx + ψ̄xψx+aµ̂).

The has the effect of replacing the mass m in the inverse propagator in
momentum space by

m+ r
∑
µ

(1− cos kµ) ≡M(k), (6.43)

in lattice units. The propagator is then given by

S(k) =
M(k)− iγµ sin kµ
M2(k) +

∑
µ sin2 kµ

. (6.44)

For k = kA + p and small p in lattice units this takes the form

S(p) =
mA − iγ

(A)
µ pµ

m2
A + p2

, (6.45)

mA = m+ 2nAr, nA = 0, 1, . . ., 4, (6.46)

where nA is the number of π’s in kA.
Hence, the mass parameters of the doubler (nA > 0) fermions are of

order one in lattice units as long as r �= 0. These mass parameters mA

may be identified with the fermion masses if they are small in lattice
units, i.e. for small m and r. For general r and momenta p the fermion
energies differ from

√
m2

A + p2 and it is interesting to see what they
actually are. We therefore look for the poles of the propagator as a
function of k4 and identify the energy ω from k4 = iω or k4 = iω + π,
as explained below (6.37). For simplicity we shall use the notation

sµ = sin kµ, cµ = cos kµ, s2 = sµsµ. (6.47)

Separating the k4 dependence, the denominator of the propagator can
be written as

M2 + s2 = 1 + s2 + Σ2 − 2rΣc4 − (1− r2)c24, (6.48)

Σ = m+ r + r

3∑
j=1

(1− cj), (6.49)
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which denominator vanishes for

coshω± =

√
Σ2 + (1− r2)(1 + s2)± rΣ

1− r2
. (6.50)

Here the plus sign corresponds to k4 = iω + π and the minus sign to
k4 = iω. The rest energies of the particles at k = kA follow from s = 0
and

Σ = m+ r + 2nr, n = 0, 1, 2, 3 for kA = 0, πj , πjk, π123. (6.51)

For m = 0 the particles have rest energy ωn given by

coshω±
n =

√
r2(1 + 2n)2 + 1− r2 ± r2(1 + 2n)

1− r2
. (6.52)

Hence, only the wanted (n = 0, − sign) fermion has rest energy zero
and the doubler fermions have rest energies of order 1 in lattice units
(energies of order of the cutoff). For r → 1 the rest energies of the
time-doublers (for which the + sign applies) become infinite, ω+ →∞.
The non-time-doubler rest energies become ω−

n = ln(1 + 2n) at r =
1. Actually, as r increases from 0 to 1 the doublers disappear before
reaching r = 1 in the sense that the local minima of the energy surface
at kA �= 0 disappear.

Wilson’s choice is r = 1. It can be seen directly from (6.48) that in
this case there is no species doubling because the inverse propagator is
linear in cos k4. Re-installing the lattice spacing a, the particle energy
can be found to contain errors of order a, to be compared with O(a2)
for naive/staggered fermions or bosons,

ω = ω−
0 =

√
m2 + p2 +O(a). (6.53)

The special significance of r = 1 can be seen in another way from the
complete action, which has the form

S =
∑
xµ

(
ψ̄x

r − γµ
2

ψx+µ̂ + ψ̄x+µ̂
r + γµ

2
ψx

)
−M

∑
x

ψ̄xψx,

M = m+ 4r. (6.54)

The combinations

P±
µ =

r ± γµ
2

, (6.55)

become orthogonal projectors for r = 1,

(P±
µ )2 = P±

µ , P+
µ P

−
µ = 0, P+

µ + P−
µ = 1. (6.56)
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6.3 Wilson’s fermion method 159

Replacing derivatives by covariant derivatives we obtain the expression
for the fermion action coupled to a lattice gauge field Uµx,

SF =
∑
xµ

(ψ̄xP
−
µ Uµxψx+µ̂ + ψ̄x+µ̂P

+
µ U

†
µxψx)−

∑
x

ψ̄xMψx, (6.57)

or, temporarily reintroducing the lattice spacing a,

SF = −
∑
x

[
1
2
(ψ̄γµDµψ −Dµψ̄γµψ) + ψ̄mψ + a

r

2
Dµψ̄Dµψ

]
, (6.58)

where Dµψ̄(x) = [ψ̄(x + µ̂a)U†
µx − ψ̄(x)]/a, etc., we rearranged the

summation over x, and m = M − 4r/a is sometimes called the bare
fermion mass.

In the QCD case M is a diagonal matrix in flavor space and r is usually
chosen flavor-independent, mostly r = 1. A parameterization introduced
by Wilson follows from rescaling ψ → M−1/2ψ, ψ̄ → ψ̄M−1/2. For one
flavor this gives the form

S = −
∑
x

ψ̄xψx + κ
∑
xµ

[ψ̄x(r − γµ)Uµxψx+µ̂ + ψ̄x+µ̂(r + γµ)U†
µxψx],

(6.59)
where

κ =
1

2M
, (6.60)

is Wilson’s hopping parameter (it is flavor dependent). This κ is anal-
ogous to the hopping parameter in the scalar field models. We may
interpret −

∑
x ψ̄xψx as belonging to the integration measure in the path

integral.
For free fermions the continuum limit means m → 0 in lattice units,

which implies a critical value for the hopping parameter

κ→ κc = 1/8r, M →Mc = 4r. (6.61)

At this critical value there is somehow a cancellation of the ψ̄ψ-like
terms, such that the fermions acquire zero mass. With the gauge field
present the effective strength of the hopping term is reduced by the
‘fluctuating’ unitary Uµx. We then expect Mc < 4 and κc > 1/8r, for
given gauge coupling g. However, in the QCD case we know already that
g itself should go to zero in the continuum limit, because of asymptotic
freedom, implying Uµx → 1 in a suitable gauge and (6.61) should still be
valid (κc is of course gauge independent). However, at gauge coupling
of order one we can be deep in the scaling region of QCD and we may
expect an effective κc substantially larger than 1/8r. Since there are no
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free quarks in QCD we cannot define κc as the value at which the quark
mass vanishes. We shall see later that it may be defined as the value at
which the pion mass vanishes.

6.4 Staggered fermions

Starting with the naive fermion action we make the unitary transforma-
tion of variables (in lattice units)

ψx = γx χx, ψ̄x = χ̄x (γx)†, (6.62)

γx ≡ (γ1)x1 (γ2)x2 (γ3)x3 (γ4)x4 . (6.63)

Because [
(γx)†γµγx+µ̂

]
αβ

=
[
γxγµ(γx+µ̂)†

]
αβ

= ηµx δαβ , (6.64)

where

η1 x = 1, η2 x = (−1)x1 , η3 x = (−1)x1+x2 , η4 x = (−1)x1+x2+x3 ,

(6.65)
this transformation has the effect of removing the gamma matrices from
the naive fermion action, which acquires the form

S = −
4∑

α=1

[∑
xµ

ηµx
1
2
(χ̄α

xχ
α
x+µ̂ − χ̄α

x+µ̂χ
α
x) +m

∑
x

χ̄α
xχ

α
x

]
. (6.66)

In this representation the Dirac spinor labels α on χ̄ and χ are like
internal symmetry labels and the action is just a sum of four identical
terms, one for each value of the Dirac index. Hence, one of these should
suffice in describing fermion particles. It can indeed be shown that taking
χ and χ̄ as one-component fields leads to 16/4 = 4 Dirac particles in
the continuum limit. In QCD all these fermions are interpreted as quark
flavors. Inserting the ‘parallel transporters’ Uµx then leads to a gauge-
invariant staggered-fermion action

SF = −
∑
xµ

ηµx
1
2
[
χ̄ax(Uµx)abχbx+µ̂ − χ̄ax+µ(U†

µx)abχbx

]
−
∑
x

mχ̄axχax,

(6.67)
where we have made all indices on χ and χ̄ explicit (a and b are color
indices) – there are e.g. no spin or flavor indices for χ and χ̄. Analysis in
weak-coupling perturbation theory leads to the conclusion that this ac-
tion describes QCD with four mass-degenerate flavors in the continuum
limit [73, 74] (the mass degeneracy of the quarks can be lifted by adding
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other terms to the action). The action has an interesting symmetry
group [76], which is important for the construction of composite fields
with the quantum numbers of hadrons [75, 77]. In the scaling region
this symmetry group enlarges to the group in the continuum (including
‘anomalies’).

A further reduction by a factor of two is possible by assigning χ̄x only
to the even sites and χx only to the odd sites [78, 79, 80]. Even and odd
sites are defined by εx = 1 and − 1, respectively, with

εx = (−1)x1+x2+x3+x4 . (6.68)

In this formulation we may as well omit the bar on χ̄x since no confusion
between even and odd sites is possible. Then a minimal action with only
one Grassmann variable per site is given by

S = −
∑
xµ

ηµx
1
2χxχx+µ̂, (6.69)

in case of zero fermion mass. This method leads essentially to four
Majorana fermions, which are equivalent to two Dirac fermions or eight
Weyl fermions. Non-zero mass requires one-link or multilink couplings,
since χ2x = 0.

Staggered fermions are technically rather specialized and we shall not
emphasize them in this book. For an application of the method (6.69)
to numerical simulations of the Higgs–Yukawa sector of the Standard
Model see [36].

6.5 Transfer operator for Wilson fermions

It will now be shown that the fermion partition function with Wilson
fermions can for r = 1 be written in the form

Z = Tr T̂N , (6.70)

where T̂ is a positive transfer operator in Hilbert space and N is the
number of time slices. A transfer operator was first given by Wilson [86]
and a study of its properties was presented in [87]. The construction
below is slightly different. (A general construction for r �= 1 is sketched
in [89], which is easily adapted to naive or staggered fermions. See
also [79, 88, 90] and references therein.) To identify T̂ we first assume
that the gauge field is external and and write Tr T̂N in the Grassmann
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representation,

Tr T̂N =
∫

da+1 da1 · · · da+N daN e−a+
NaN T (a+N , aN−1) e−a+

N−1aN−1

× T (a+N−1, aN−2) · · ·T (a+k+1, ak) e
−a+

k ak T (a+k , ak−1) · · ·

× e−a+
2 a2 T (a+2 , a1) e

−a+
1 a1 T (a+1 ,−aN ). (6.71)

The minus sign in the last factor corresponds to the same sign in (C.68)
in appendix C. It implies that there are antiperiodic boundary conditions
in the path integral, i.e. there is a change of sign in the couplings in the
action between time slices 0 and N − 1. The expression above is to be
compared with

ZF =
∫

Dψ̄Dψ expSF, (6.72)

where SF is the fermion part of the action. We have seen in the pure-
gauge case that the integration over the timelike links U4x leads to the
projector on the gauge-invariant subspace of Hilbert space, together with
a transfer operator in the temporal ‘gauge’ U4x = 1. We therefore set
U4x = 1 and write the fermion action in the form (using lattice units,
t ≡ x4 and x are integers)

SF =
∑
t

(
−ψ+t

1− β

2
ψt+1 + ψ+t+1

1 + β

2
ψt

)

−
∑
t

ψ+t βAtψt − ε
∑
t

ψ+t Dtψt. (6.73)

Here a matrix notation is used with

Axy,t = Mδx,y − ε

3∑
j=1

1
2
(Uxy,t δx+ĵ,y + x↔ y), (6.74)

Dxy,t =
3∑

j=1

αj
1
2i

(Uxy,t δx+ĵ,y − x↔ y), (6.75)

and αj = iγ4γj and β = γ4 are Dirac’s matrices, and furthermore

ε = a4/a. (6.76)

We recognize the projectors

P± ≡ P±
4 = (1± β)/2 (6.77)

for Wilson parameter r = 1. They reduce the number of ψ+t±1ψt couplings
by a factor of two compared with the naive fermion action.
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Fig. 6.3. The association of time slices with Hilbert space for Wilson fermions
(r = 1).

The association of time slices t with Hilbert-space slices k is as follows
(for each x, T denotes transposition):

P+ψt = (a+k P
+)T, ψ+t P

− = a+k P
−, (6.78)

P−ψt+1 = P−ak, ψ+t+1P
+ = (P+ak)T, (6.79)

At = Ak, Dt = Dk (6.80)

as illustrated in figure 6.3. With this notation the action can be written
as

SF = −
∑
k

a+k ak +
∑
k

a+k Akak−1

− ε
∑
k

(ak−1P+DkP
−ak−1 + a+k P

−DkP
+a+k ). (6.81)

Here we have used βD = −Dβ, such that

D = (P+ + P−)D(P+ + P−) = P+DP− + P−DP+, (6.82)

and abused the notation by leaving out the transposition symbol T.
Comparison with Tr T̂N in the form (6.71) gives the (Grassmannian)
transfer-matrix elements

TF(a+k , ak−1) = exp(−εa+k P−DkP
+a+k ) exp(a+k Akak−1)

× exp(−εak−1P+DkP
−ak−1). (6.83)

Using the rules listed above (C.68) in appendix C this translates into
operator form as

T̂F = e−εâ†P−DP+â†
eâ

† ln(A)â e−εâP+DP−â. (6.84)

Here D and A depend in general on the gauge-field configuration in a
time slice.

Consider now first the case of free fermions, Uxy = 1. Then T̂ is
clearly a positive operator provided that A is positive, i.e. a Hermitian
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matrix with only positive eigenvalues. In momentum space we get the
eigenvalues

A(p) = M − ε

3∑
j=1

cos pj , (6.85)

which shows that A > 0 for

M > 3ε. (6.86)

With dynamical gauge fields we have to take into account in (6.84) the
transfer operator for the gauge field T̂U . The complete transfer operator
can be taken as

T̂ = T̂
1/2
F T̂U T̂

1/2
F P̂0, (6.87)

T̂F = e−εâ†P−D̂P+â†
eâ

† ln Â â e−εâP+D̂P−â (6.88)

where we have also put in the projector P0 on the gauge-invariant
subspace. Since A has lowest eigenvalues when the link variables are
unity, the condition (6.86) remains sufficient in general for positivity of
T̂F.

We can now use (6.80) in reverse and define operator fields ψ̂ and ψ̂†,
for each spatial site x, by

P+ψ̂ = (â†P+)T, ψ̂†P− = â†P−, (6.89)

P−ψ̂ = P−â, ψ̂† = (P+â)T. (6.90)

In terms of these fields the fermion transfer operator takes the explicitly
charge-conserving form

T̂F = e−εψ̂†P−D̂P+ψ̂ e−ψ̂†β ln Â ψ̂ eTrP
+ ln Â e−εψ̂†P+DP−ψ̂. (6.91)

Notice the Dirac-sea factor exp(TrP+ lnA).
The continuous time limit T̂ = 1− εĤ +O(ε2) can be taken if we let

M depend on ε→ 0 according to

M = 1 + εM3, (6.92)

such that A takes the form

A(U) = 1 + εM3(U) (6.93)

M3 = M3 −
3∑

j=1

1
2 (Ux,y δx+ĵ,y + x↔ y), (6.94)
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and we get the fermion Hamiltonian

ĤF = ψ̂†[M3(Û)β +D(Û)]ψ̂. (6.95)

This may be called a Wilson–Dirac Hamiltonian on a spatial lattice.
In summary, we conclude that the Euclidean-lattice formulation of

QCD using Wilson’s fermion method has a good Hilbert-space interpre-
tation, with a positive transfer operator.

6.6 Problems

The following exercises serve to clarify the continuum limit in QED
and the phenomenon of species doubling by calculation of the photon
self-energy at one loop in the weak-coupling expansion.

(i) Vertex functions
Consider the naive fermion action in QED

SF = −
∑
xµ

1
2 (ψ̄xγµe

−igAµxψx+µ̂ − ψ̄x+µ̂γµe
igAµxψx). (6.96)

The bare fermion–photon vertex functions are the derivatives of
the action with respect to the fields. Taking out a minus sign and
the momentum-conserving delta functions, let the vertex function
Vµ1···µn(p, q; k1 · · · kn) be defined by

SF = −
∑

uvx1···xn

1
n!

ψ̄uVµ1···µn
(u, v;x1 · · ·xn)ψvAµ1x1 · · ·Aµnxn

,

(6.97)∑
uvx1···xn

e−ipu+iqv−ik1x1···−iknxn Vµ1···µn(u, v;x1 · · ·xn)

= Vµ1···µn
(p, q; k1 · · · kn) δ̄(p− q + k1 + · · · kn).

(6.98)

Show that (p− q + k1 + · · · kn = 0)

Vµ1···µn
(p, q; k1 · · · kn) =

∑
µ

γµ
1
2 [(−ig)

neiqµ − (ig)ne−ipµ ]

× δµµ1 · · · δµµn , (6.99)

as illustrated in figure 6.4. The fermion propagator is given by

S(p)−1 = V (p, p), S(p) =
m− iγµ sin pµ
m2 + sin2 p

. (6.100)
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Fig. 6.4. Fermion vertex function −Vµ1···µn(p, q; k1, . . ., kn).

(ii) Ward–Takahashi identities
The gauge invariance of SF implies certain properties of the
vertex functions, called Ward–Takahashi identities. Consider a
small gauge transformation ψ′

x = (1 + iωx + O(ω2))ψx, ψ̄′
x =

(1−iωx+O(ω2))ψ̄x, A′
µx = Aµx+(1/g)∂µωx (recall the definition

of the forward and backward lattice derivatives, ∂µωx = ωx+µ̂−ωx

and ∂′
µωx = ωx − ωx−µ̂). Collect the linear terms in ωx in the

invariance relation 0 = SF(ψ′, ψ̄′, A′) − SF(ψ, ψ̄, A) and derive
the Ward identities

0 =
1
g
i∂′

µVνµ1···µn(u, v;x, x1, . . ., xn)

+ δuxVµ1···µn(u, v;x1, . . ., xn)

− δvxVµ1···µn
(u, v;x1, . . ., xn), (6.101)

and the momentum-space version

0 =
1
g
K∗

µ(k)Vµµ1···µn(p, q; k, k1, . . ., kn)

+ Vµ1···µn(p+ k, q; k1, . . ., kn)

− Vµ1···µn
(p, q − k; k1, . . ., kn), (6.102)

where Kµ(k) = (eikµ − 1)/i. In particular, for n = 0 and 1,

K∗
µ(k)Vµ(p, q; k) = S(p)−1 − S(q)−1, (6.103)

K∗
µ(k)Vµν(p, q; k, l) = Vµ(p, p+ l; l)− Vν(q − l, q; l)

(p− q + k = 0, p− q + k + l = 0).

(iii) Photon self-energy
We study the ‘vacuum-polarization’ diagrams in figure 6.5, which
describe the photon self-energy vertex function Π = Π(a) + Π(b)
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Fig. 6.5. Vacuum-polarization diagrams for −Πµν(p).

given by

Π(a)
µν (p) = −g2

∫ π

−π

d4l

(2π)4
Tr [Vµν(l,−l, p,−p)S(l)], (6.104)

Π(b)
µν (p) = g2

∫ π

−π

d4l

(2π)4
Tr [Vµ(l, l + p)S(l + p)Vν(l + p, l)S(l)].

Use the identities (6.103) to show that the sum Πµν = Π(a)
µν +

Π(b)
µν satisfies the Ward identity

K∗
µ(p)Πµν(p) = 0. (6.105)

(Note that the loop integrals in the lattice regularization are
invariant under translation of the integration variable.)

(iv) Continuum region and lattice-artifact region
The calculation of the continuum limit of Πµν(p) can be done in
the same way as for the scalar field in section 3.4 We split the
integration region into a ball of radius δ around the origin l = 0
and the rest, where δ is so small that we may use the continuum
form of the propagators and vertex functions.

Going over to physical units, p → ap, m → am, Π → Πa−2,
show that in the scaling region limit a → 0, δ → 0, am/δ → 0,
ap/δ → 0 the contribution of this ball can be written as

− g2

2π2
(δµνp2 − pµpν)

∫ 1

0

dxx(1− x) ln[a2(m2 + x(1− x)p2)]

(6.106)
up to a second-degree polynomial in p.

Verify that the 15 fermion doublers in similar balls around
non-zero l = πA give identical contributions, up to possible
arbitrariness in the polynomials.

The region outside the 16 balls can contribute only a second-
degree polynomial Tµν(p) in a−1, m and p in the continuum
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limit, because possible infrared divergences cannot develop in the
outside regions.

Note that Π(a)
µν contributes only to the polynomial part of Πµν

in the continuum limit (it is just a constant ∝ δµν). The reason
is that there is no logarithmic contribution from the balls around
l = πA because the vertex function Vµν vanishes in the classical
continuum limit.

(v) Lattice symmetries
The polynomial has to comply with the symmetries of the model,
in particular cubic rotations R(ρσ) in a plane (ρ, σ),

(R(ρσ)p)µ ≡ R(ρσ)
µν pν ,

(R(ρσ)p)ρ = pσ, (R(ρσ)p)σ = −pρ,
(R(ρσ)p)µ = pµ, µ �= {ρ, σ} (6.107)

and inversions I(ρ),

(I(ρ)p)ρ = −pρ, (I(ρ)p)µ = pµ, µ �= ρ. (6.108)

The polynomial Tµν(p) has to be a tensor under these transfor-
mations,

Tµν(R(ρσ)p) = R
(ρσ)
µµ′ R

(ρσ)
νν′ Tµ′ν′(p), (6.109)

Tµν(I(ρ)p) = I
(ρ)
µµ′I

(ρ)
νν′Tµ′ν′(p). (6.110)

Show using the lattice symmetries that the form of the polynomial
is limited to

c1a
−2δµν + c2m

2 + c3p
2
µδµν + c4pµpν + c5p

2δµν . (6.111)

(In the third term there is of course no summation over µ.)
(vi) Constraints from the Ward identity

Use the continuum limit of the Ward identity (6.105) to show
finally that Πµν(p) has the continuum covariant form,

Πµν(p) = −16
g2

2π2
(δµνp2 − pµpν)

×
∫ 1

0

dxx(1− x) ln[a2(m2 + x(1− x)p2)]

+ c(p2δµν − pµpν). (6.112)

Note that the coefficient c1 of the quadratic divergence is zero.
This can of course also be verified by an explicit calculation, e.g.

https://doi.org/10.1017/9781009402705.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.007


6.6 Problems 169

for p = 0. In non-Abelian gauge theory such quadratic diver-
gences are also absent, provided that the contribution from the
integration (Haar) measure in the path integral is not forgotten.
Note also that the coefficient c3, of the term that is lattice covari-
ant but not covariant under continuous rotations, is zero. Such
cancellations will not happens in models in which vector fields
are not gauge fields (no Ward identities). Then counterterms are
needed in order to ensure covariance.

The numerical constant c can be obtained by a further careful
analysis and numerical integration. It determines e.g. the ratio
of lambda scales ΛMS/ΛL in the theory with (naive) dynamical
fermions. On dividing by a factor of four we get the analogous
result for four-flavor staggered fermions described by the U(1)
version of the action (6.67).
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