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We investigate the onset of thermosolutal instabilities in a moderately dense nanoparticle
suspension layer with a deformable interface. The suspension is deposited on a solid
substrate subjected to a specified constant heat flux. The Soret effect and the action
of gravity are taken into account. A mathematical model for the system considered
with nanoparticle concentration-dependent density, viscosity, thermal conductivity and
the Soret coefficient is presented in dimensional and non-dimensional forms. Linear
stability analysis of the obtained base state is carried out using disturbances in the
normal mode, and the corresponding eigenvalue problem is derived and numerically
investigated. The onset of various instabilities is investigated for cases of both heating
and cooling at the substrate. The monotonic solutocapillary instability is found in the
case of cooling at the substrate, which exhibits two competing mechanisms that belong
to two different disturbance wavelength domains. We identify the occurrence of both
monotonic and oscillatory thermocapillary instabilities when the system is heated at the
substrate. Furthermore, we show the emergence of the solutal buoyancy instability due to
density variation which is promoted by the Soret effect adding nanoparticles heavier than
the carrier fluid in the proximity of the layer interface. Transitions from the monotonic
to oscillatory thermocapillary instability are found with variation in the gravity- and
solutocapillarity-related parameters. Notably, we identify a previously unknown transition
from monotonic to the oscillatory thermocapillary instability due to the variation in the
strength of the thermal-conductivity stratification coupled with the Soret effect.
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1. Introduction
Surface-tension-driven phenomena in pure simple-liquid systems are ubiquitous in nature,
as well as in industrial applications. For example, tears of wine (Scriven & Sternling 1960),
the footprint of a whale caused by the sweeping of the biomaterial to the surface (Levy
et al. 2011), crystal growth techniques (Schwabe et al. 1978) and in experiments with
heated fluid layers in microgravity (Smith & Davis 1983a,b; Schatz & Neitzel 2001) are
some of these, just to mention a few. The inhomogeneity of scalar fields at the layer
interface such as temperature that affects the local surface tension may induce, under
certain conditions, a convective motion in a liquid layer, known in the literature as the
Marangoni or thermocapillary instability (Davis 1987). Pearson (1958) was the first to
theoretically investigate the onset of the monotonic Marangoni instability, which may be
either long-wave or short-wave, by considering a layer of a pure Newtonian liquid with the
non-deformable interface which is heated at its solid support, provided that the temperature
drop across the layer is sufficiently large to overcome the dissipative properties of the
liquid such as viscosity and thermal diffusivity. Scriven & Sternling (1964) later found that
interfacial deflection significantly alters the stability boundary and may lead to the onset of
the oscillatory Marangoni instability. However, their result was further corrected by Smith
(1966) who showed the stabilisation of the long-wave gravitational waves predicted by
Scriven & Sternling (1964). In a similar way, in an isothermal fluid layer, inhomogeneities
of the local solute concentration at the layer interface also affect the local surface tension
and may lead to the emergence of the solutocapillary instability (Davies & Rideal 1963).

In a pure liquid layer, heating at the layer interface or, equivalently, cooling at the
substrate, provides a stabilising mechanism (Deissler & Oron 1992; Oron & Rosenau 1992;
Alexeev & Oron 2007), which may lead to a full stabilisation or saturation at the nonlinear
stage. The suppression of the Rayleigh–Taylor instability in an inverted air–oil system by
the thermocapillarity was demonstrated experimentally by Burgess et al. (2001).

In liquid mixtures such as binary mixtures, the Soret effect (Cross & Hohenberg
1993; Skarda, Jacqmin & McCaughan 1998) introduces an additional component to the
expression of Fick’s law for the mass flux normally related to the gradient of the bulk
solute concentration. It is associated with the temperature gradient in the mixture and is
found to be important. By coupling between heat and mass transfer effects, the Soret effect
by itself may affect and modify thermal instabilities in a layer of a binary mixture (Oron
& Nepomnyashchy 2004). Various aspects of long- and finite-wave thermosolutocapillary
instabilities in dilute binary mixtures heated at the substrate have already been investigated
(Oron & Nepomnyashchy 2004; Podolny, Oron & Nepomnyashchy 2005; Shklyaev et al.
2007, 2009; Bestehorn & Borcia 2010; Podolny, Nepomnyashchy & Oron 2010; Morozov,
Oron & Nepomnyashchy 2014). Sarma & Mondal (2021a) studied thermosolutocapillary
instabilities in a viscoelastic binary fluid with a particular case of a Newtonian binary
fluid at zero Deborah number. In all of these papers, the emergence of both monotonic and
oscillatory instabilities was reported.

The instability mechanism for such a system depends on the direction of heating or
cooling. Joo (1995) revealed the onset of the monotonic solutocapillary instability in a
layer of a binary mixture with heating imposed at the free interface. Furthermore, it was
noted that oscillatory instability takes place due to the competition between the stabilising
solutocapillary and destabilising thermocapillary instability in the case of heating at the
substrate (Joo 1995). Sarma & Mondal (2021b) investigated thermosolutal Marangoni
instability in a layer of a viscoelastic binary fluid heated at the interface. They showed
the emergence of a long-wave monotonic instability in the cases of both a deformable
and non-deformable layer interface, and demonstrated that this instability is driven by
solutocapillarity.
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Colloidal dispersions made of a mixture of a base fluid and nanoparticles of diameter
d∗

p between 1 and 100 nm are known as nanofluids. The material properties of a nanofluid
such as density, kinematic viscosity, thermal diffusivity and Soret diffusion coefficient
naturally depend on the local bulk concentration of the particles (Buongiorno 2006), as
well as the Brownian diffusion coefficient (Batchelor 1976). This fact introduces obvious
challenges affecting theoretical work and practical applications such as inkjet printing
(Lohse 2022), paint coating and microgravity experiments (Vailati et al. 2023). In heat-
transfer related technological applications, metallic particles, for instance, alumina, copper
oxide, silica, titania, etc., are purposely employed to enhance the thermal conductivity of
the nanofluid relative to that of the base fluid (Choi & Eastman 1995). There are also
promising technological applications such as nanofluid fuel (Abramzon & Sirignano 1989;
Basu & Miglani 2016), where thermosolutal Marangoni stresses are of importance (Vang
& Shaw 2020; Shaw 2022). The thermophysical stratification in such systems introduces
even more complex features into mathematical modelling and investigations due to that.

It is important to note that instabilities may also be triggered in a simple fluid layer
featuring a non-uniformity in one or more of the physical properties of the fluid. For
instance, if the fluid density in a horizontal layer in the gravity field increases with
height, a situation where a heavier fluid is above the lighter one, the system may become
unstable (Rayleigh 1882; Chandrasekhar 1961). An analogue to this instability may arise
in a nanofluid layer due to the presence of nanoparticles heavier than the carrier liquid in
its upper stratum. We refer to this instability as to the solutal buoyancy instability since
the local density of the fluid depends on the local particle concentration. The presence of
the Soret effect with a positive thermodiffusivity coefficient promotes the formation of an
unstable nanoparticle concentration stratification across the layer, and thereby enhances
the possibility of the onset of the solutal buoyancy instability. Although off the scope
of the current paper, in liquid metal batteries (Herreman et al. 2020), the onset of the
solutal buoyancy instability during the charge phase was found due to the emergence of
the unstable stratification of lithium. Interestingly, Herreman et al. (2020) found that the
onset of solutal buoyancy convection actually helps to homogenise the alloy layer, and
the same physical effect introduces complexities during the discharge phase by creating the
stable stratification (Herreman et al. 2021). Solutal buoyancy instability was also found to
create convective flow by dissolution from a soluble solid into a fluid (Berhanu et al. 2021).

Furthermore, the viscosity of a nanofluid increases with the local particle concentration
and can be approximated via an empirical model (Maron & Pierce 1956). We note that
in shear-induced flows, additional contributions to the normal stress in a nanofluid may
be important in the presence of a base flow (Phillips et al. 1992; Dhas & Roy 2022;
Lavrenteva, Smagin & Nir 2024), but in the case considered in the current paper, the
base state is quiescent, and hence, these effects may be safely omitted.

Experimental data show that the thermal conductivity of a nanofluid varies with
the local particle concentration. Maxwell (1873) and Jeffrey (1973) derived analytical
expressions for the thermal conductivity of a suspension of spherical particles in a fluid.
Buongiorno (2006) proposed analytical expressions based on experimental data for this
feature for two cases of nanofluids, namely those of alumina particles in water and
titanium particles in water. It is interesting to note that thermal conductivity stratification
in a two-layer system of Newtonian fluids may significantly influence its stability. For
instance, Welander (1964) and Gershuni & Zhukhovitskii (1980) investigated the onset
of an oscillatory instability induced by the thermal conductivity stratification in a stably
stratified two-layer liquid system. Such instability may be driven by a disparity between
the characteristic diffusion time scales of the two liquids.
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The purpose of this paper is to investigate the combined thermo-solutocapillary
instability in a layer of a moderately dense nanoparticle suspension subjected to the
Soret effect, bounded by a deformable liquid–gas interface and supported by a horizontal
solid substrate subjected to a prescribed heat flux in the gravity field. The cases of
both heating and cooling at the substrate are considered. To simplify the analysis, we
assume the carrier fluid to be a simple Newtonian liquid. In contradistinction with the
Rayleigh–Bénard instability in a nanofluid layer considered by Chang & Ruo (2022), the
thermosolutocapillary instability in nanofluids has not been investigated to date. The main
challenge and the novelty of the current investigation is taking into account the dependence
of all thermophysical properties of the nanofluid on the local particle concentration, which
was not considered before in this context, e.g., by Chang & Ruo (2022). In our approach,
because of the dependence of the fluid density on the local particle concentration which
varies within the bulk, we adopt a ‘compressible’ approach to describe the dynamics
of a nanofluid and show that the contribution of ‘compressibility’ is minor. As a result
of accounting for the dependence of the thermophysical properties on the local particle
concentration, we find that in the case of a layer heated at the substrate, such variation of
thermal conductivity of the fluid leads to the change of the instability type from monotonic
for weak variations to oscillatory for stronger variations. In the case of the layer cooled at
the substrate, the emerging instability is monotonic, similar to what Sarma & Mondal
(2021b) found for a Newtonian dilute binary fluid. Most of the instabilities found in
this investigation are finite-wave, although narrow windows of long-wave instability also
emerge in both cases of the heating direction.

The plan of the paper is as follows. Section 2 offers the problem formulation, and
presents a set of governing equations and boundary conditions accounting for local particle
concentration-dependent thermophysical properties of the system. The quiescent base state
of the system is presented in § 2.4 with the details of its derivation given in Appendix A.1.
Section 3 is dedicated to the linear stability analysis of the determined base state and
presents the eigenvalue problem which is numerically investigated. Section 4, subdivided
into six subsections, presents the results of the investigation: § 4.1 outlines the numerical
procedure used for solving the linear eigenvalue problem; § 4.2 presents the results for
the case of cooling at the substrate; whereas § 4.3 delivers the results for the case of
heating at the substrate. Further, §§ 4.4, 4.5 and 4.6 explore the effect of the thermal
conductivity stratification of the suspension on the system instability, presents typical
eigenfunctions corresponding to the observed instabilities and discusses a possibility of
using an incompressibility simplification, which is akin, in some sense, to the Boussinesq
approximation for a heated layer of a simple liquid, respectively. A use of a simplified
‘incompressible’ formulation could significantly reduce the numerical effort associated
with the solution of the linear eigenvalue problem in its full formulation. Finally, § 5
summarises the findings of the paper.

2. Problem formulation and governing equations
We consider a nanofluid layer of a mean thickness h∗

0, density ρ∗
n f , dynamic viscosity

μ∗
n f , kinematic viscosity ν∗

n f = μ∗
n f /ρ

∗
n f , thermal conductivity K ∗

n f , heat capacity c∗
n f ,

and thermal diffusivity κ∗
n f = K ∗

n f /ρ
∗
n f c∗

n f . Here, the subscripts n f refer to the nanofluid.
In what follows, the presence of nanoparticles in a nanofluid will be accounted for via the
local concentration of particles.

We further denote the physical properties of the base fluid and the nanoparticles with
subscripts b f and np, respectively. The nanofluid layer is assumed to be of local thickness
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Figure 1. Nanofluid (d∗
p = 10−100 nm) layer on the solid substrate subjected to a constant heat flux at the

substrate and exposed to the gas phase at its deformable interface.

h∗ and rests on a solid planar horizontal substrate being exposed at its deformable
liquid–gas interface to the quiescent gas environment held at constant pressure p∗∞ and
temperature T ∗∞ in the gravity field g∗. The frame of reference is chosen so that the x∗
and y∗ axes are located in the substrate, whereas the axis z∗ is normal to the substrate and
directed into the fluid layer opposite to the direction of gravity; hence, the substrate and the
deformable liquid–gas interface are located at z∗ = 0 and z∗ = h∗, respectively (figure 1).

The fluid is assumed to be a moderately dense nanofluid, i.e. a mixture of a Newtonian
base fluid with nanoparticles of d∗

p ≈ 10 nm whose volumetric concentration φ∗ =
φ∗(x∗, y∗, z∗, t∗) is varying in time t∗ and space. The entire system is subjected to the
prescribed heat flux Qq∗ with Q= ±1 and q∗ > 0 at its solid bottom in the direction
normal to the latter. Note that the value of Q is related to the direction of the heat flux, so
that the cases of Q= 1 and Q= −1 correspond to heating and cooling at the solid–liquid
interface, respectively. An imposed heat flux leads to the emergence of the temperature
field T ∗ = T ∗(x∗, y∗, z∗, t∗) varying with time and space within the layer.

The surface tension at the liquid–gas interface is assumed to depend on both the
interfacial temperature and nanoparticle concentration, and for small variations of
temperature and particle concentration at the interface, is adequately approximated by a
linear function

σ ∗(T ∗, φ∗) = σ ∗
r − σ ∗

T ∗(T ∗ − T ∗
r ) − σ ∗

φ∗(φ∗ − φ∗
r ), (2.1a)

where

σ ∗
T ∗ = −∂σ ∗/∂T ∗ > 0 and σ ∗

φ∗ = −∂σ ∗/∂φ∗ > 0. (2.1b)

Here, σ ∗
r is the equilibrium reference value of the surface tension at the reference values

of T ∗
r and φ∗

r , so σ ∗
r = σ ∗(T ∗

r , φ∗
r ), and both σ ∗

T ∗ and σ ∗
φ∗ are positive, thus, the surface

tension linearly decreases with both the temperature and particle concentration at the
interface. We use, as an example, an alumina nanoparticle dispersion in distilled water
which exhibits a vanishing value of the adsorption/desorption coefficient ratio; hence, it
is possible to neglect interfacial kinetics mechanisms in this situation. However, we note
that nanoparticle dispersions in different liquids such as non-stabilised water, n-decane, n-
dodecane, n-hexadecane, etc., exhibit a significant contribution of the interfacial kinetics.
In those cases, consideration of the interfacial kinetics becomes necessary (Machrafi
2022), and instead of the interfacial value of the bulk particle concentration φ∗, a surface
particle concentration Γ ∗ needs to be used in (2.1a) and (2.1b).
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2.1. Thermophysical properties of a nanofluid
In the case of non-dilute mixtures, the thermophysical properties of a nanofluid depend
on the local particle concentration (Buongiorno 2006). The density and the specific heat
capacity of a nanofluid are determined as the weighted sum of the respective properties of
the base fluid and the nanoparticles,

ρ∗
n f (φ

∗) = (1 − φ∗)ρ∗
b f + φ∗ρ∗

np, (2.2a)

c∗
n f (φ

∗) = (1 − φ∗)(ρ∗c∗)b f + φ∗(ρ∗c∗)np

ρ∗
n f

. (2.2b)

The thermal conductivity of nanofluids is also known to depend on the local particle
concentration. In what follows, we use the empirical model

K ∗
n f (φ

∗) = K ∗
b f (1 + aφ∗), (2.2c)

where a is a constant describing the degree of the thermal conductivity variation with
the local particle concentration. The value a = 7.47 (Buongiorno 2006) is valid for
an alumina Al2O3 nanoparticles suspension in water. This value was extracted from
the experimental data of Pak & Cho (1998) who measured thermal conductivity of an
alumina–water nanofluid for various particle concentrations. The relationship between
the thermal conductivity of the nanofluid and the particle concentration depends on both
particles and solvent material. For instance, in the case of titania nanoparticles in water,
the thermal conductivity varies with the particle concentration as

K ∗
n f (φ

∗) = K ∗
b f (1 + 2.92φ∗ − 11.99φ∗2) (2.2d)

(Buongiorno 2006).
We note that in the absence of an empirical relationship between the thermal conductiv-

ity K ∗
n f of a nanosuspension and its particle concentration φ∗, one can employ the analyti-

cal models developed by Maxwell (1873) and Jeffrey (1973), which estimated the value of
K ∗

n f for a dilute (φ∗/φm � 1 with φm being the maximal packing volume fraction) suspen-
sion providing terms proportional to φ∗, whose coefficient could have yielded the value
of a, and (φ∗)2, respectively. Our estimate for the value of a, based on Maxwell theory
and the values of thermal conductivity of Al2O3 and water, yields a � 3, which is quite far
from the experimental value of a = 7.47; therefore, in most of our results presented below,
a = 7.47 is adopted. Additionally, we mention that the limits of the effective thermal con-
ductivity (K ∗

n f /K ∗
b f ) of a monodisperse nanosuspension can be estimated by the Hashin–

Shtrikman bounds (Hashin & Shtrikman 1962; Keblinski, Prasher & Eapen 2008)⎡⎣1 +
3φ∗

(
K ∗

np − K ∗
b f

)
3K ∗

b f + (1 − φ∗)
(

K ∗
np − K ∗

b f

)
⎤⎦� K ∗

n f

K ∗
b f

�

⎡⎣1 −
3 (1 − φ∗)

(
K ∗

np − K ∗
b f

)
3K ∗

np − φ∗
(

K ∗
np − K ∗

b f

)
⎤⎦ K ∗

np

K ∗
b f

.

(2.2e)

We find that in a low-concentration limit φ∗ � 1, the effective thermal conductivity
parameter a for Al2O3 nanoparticles in water ranges therefore in the interval
2.84 � a � 38. Also, the effect of varying a on the properties of the instability will
be briefly assessed in § 4.4.

As for the nanofluid viscosity, we employ the empirical correlation model proposed by
Maron & Pierce (1956) and de Kruif et al. (1985) for a concentrated suspension,

μ∗
n f (φ

∗) = μ∗
b f

(
1 − φ∗

φm

)−2

, (2.2f )
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where φm is the maximal packing fraction. The value of φm varies from 0.524 to 0.71.
We use the value of φm = 0.65 related to the random close packing (RCP) volume
fraction of nanoparticles. The viscosity model given by (2.2f ) illustrates the power-law
variation of the viscosity with the nanoparticle concentration growing indefinitely when
the nanoparticle concentration φ∗ → φm .

2.2. Physical mechanisms relevant for our model
Buongiorno (2006) described seven different slip mechanisms, i.e. mechanisms causing
deviation of the particle velocity field from that of the carrier fluid, for the nanoparticle
motion in a nanofluid. Out of these seven, we account for the two dominant slip
mechanisms, namely, the Brownian and the Soret diffusion (thermophoresis).

The Brownian diffusion coefficient is given by the generalised Stokes–Einstein formula
valid for arbitrary mass fraction of nanoparticle concentration (Russel, Saville &
Schowalter 1989; Bird, Stewart & Lightfoot 2002; Espín & Kumar 2014),

D(φ∗) = DBK(φ∗)
d
[
φ∗Z(φ∗)

]
dφ∗ , (2.3)

where DB is the diffusivity coefficient given by the Stokes–Einstein formula as

DB = K B T ∗

3πμ∗
b f d∗

p
, (2.4)

and K B is the Boltzmann constant, K B = 1.380649 × 10−23 JK−1. The generalised
Stokes–Einstein formula (2.3) exhibits a strong dependence of the diffusion coefficient
on the local nanoparticle concentration via hydrodynamic and thermodynamic interaction
given by the sedimentation coefficient K(φ∗) and the compressibility contribution
Z(φ∗), respectively. Combining the Carnahan & Starling (1969) equation for the

compressibility effect Z(φ∗) = 1 + φ∗ + φ∗2 − φ∗3

(1 − φ∗)3 and the semi-empirical expression

for the sedimentation coefficient K(φ∗) = (1 − φ∗)6.55, Russel et al. (1989) derived the
following form for the generalised Stokes–Einstein formula:

D∗(φ∗) = DB
(
1 − φ∗)2.55

(
1 + 4φ∗ + 4φ∗2 − 4φ∗3 + φ∗4

)
, (2.5a)

which reduces for low particle concentrations φ∗ to

D∗(φ∗) = DB
(
1 + 1.45φ∗) (2.5b)

previously derived by Batchelor (1976). Despite this, in our investigation below, we will
use a constant value for the Brownian diffusivity coefficient D∗(φ∗) = DB with the
justification given towards the end of § 2.3 and in § 4.4.

The second slip mechanism is due to the fact that the nanofluid layer is non-isothermal.
The temperature gradient induces a flux of nanoparticles, and this phenomenon is known
as the thermophoresis or the Soret effect. The Soret or thermal diffusion coefficient in a
nanofluid is proportional to the particle concentration φ∗ and is expressed by Whitmore &
Meisen (1977) and Morozov (2002) as

DT =
(

0.26K ∗
b f

2K ∗
b f + K ∗

np

)
μ∗

b f

ρ∗
b f

φ∗. (2.6)
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In what follows, we consider the total nanoparticle mass flux as a superposition of the
Brownian and Soret diffusion processes via

jp = −ρ∗
np

(
CB T ∗∇∗φ∗ + CT φ∗ ∇∗T ∗

T ∗

)
, (2.7)

where CB = DB/T ∗, CT = DT /φ∗ and ∇∗ = (∂x∗, ∂y∗, ∂z∗) with subscripts x∗, y∗, z∗
denoting partial differentiation with respect to the corresponding variable. Buzzaccaro
et al. (2008) noted that the expression in the parentheses in (2.6) is valid for relatively large
nanoparticles of diameter 1 μm in water. In fact, it was found that the Soret coefficient CT
depends on the nanoparticle size (Braibanti, Vigolo & Piazza 2008; Michaelides 2015).
It is also important to note that the total particle mass flux given by (2.7) ensures a
consistently positive distribution of nanoparticle concentration across the nanofluid layer
even when subjected to a strong thermophoresis. However, we also note that a use of a
constant Soret coefficient in front of the ∇∗T ∗ term in (2.7) is constrained to a range
bounded from above for this coefficient, since beyond this range, spurious unphysical
negative values for the particle concentration φ∗ emerge. This fact was also emphasised
by Dastvareh & Azaiez (2018).

The other five slip mechanisms mentioned by Buongiorno (2006) are inertia, diffusio-
phoresis, Magnus effect, fluid drainage and gravitational settling. Inertia has a negligible
effect due to the homogeneous motion of nanoparticles with the surrounding continuum
media. We neglect the diffusiophoresis effect for a one-component nanofluid; however, it
may be important when the base fluid is subjected to an additional solute species gradient
(Ruckenstein 1981; Anderson 1989; Morozov 2002). The Magnus effect arises due to a
force perpendicular to the main flow direction, induced by the relative axial velocity be-
tween the nanoparticle and fluid flow. We neglect the Magnus effect as well considering an
homogeneous motion of the nanoparticles with the surrounding fluid. The fluid drainage
contribution is important for the distance between the wall and particle of the order of
nanoparticle diameter and can be neglected for nanoparticles with a small diameter d∗

p.
The relative strength of the particle flux due to gravitational settling (Mason & Weaver

1924; Shliomis & Smorodin 2005; Buzzaccaro et al. 2008; Cherepanov & Smorodin 2019)
versus the flux due to Brownian diffusion may be estimated by the ratio

Sg = h∗
0(ρ

∗
np − ρ∗

b f )g
∗(πd∗3

p /6)

K B T ∗
r

. (2.8)

For nanoparticles of d∗
p ≈ 10 nm and ρ∗

np ∼ 4 g cm−3 in a nanofluid layer of 0.1 mm
thickness at room temperature, and the terrestrial gravity is Sg ≈ 3.7 × 10−4 and,
therefore, the mass flux induced by gravitational settling may be neglected. However,
gravitational settling contributes significantly for nanoparticles with a larger diameter,
say of d∗

p ≈ 100 nm with Sg ≈ 0.37. Therefore, in the latter case, the contribution of
gravitational settling could not be disregarded, see also Chang & Ruo (2022) and their
modification for the mass flux, their (2.3). For more details, see also Appendix A.2.

Finally, the heat flux in a nanofluid is given by Fourier’s law of heat conduction,

jT = −K ∗
n f ∇∗T ∗. (2.9)

The Dufour effect is exceedingly weak in liquid mixtures (Cross & Hohenberg 1993;
Oron & Nepomnyashchy 2004; Morozov et al. 2014) and can be safely neglected in the
case at hand. We also note that following Buongiorno (2006), the expression for the heat
flux jT in (2.9) of Chang & Ruo (2022) had four more terms, with one of them arising from
gravitational settling. All these terms are found to be negligible in our case in comparison
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with the heat conduction term there, and will be omitted in what follows. A justification for
this simplification will be presented in § 2.3 in the context of non-dimensional equations
(2.13).

2.3. Governing equations
The set of governing equations comprises the continuity, Navier–Stokes, advection–
conduction heat transfer and nanoparticle mass transfer equations (Rohsenow, Hartnett
& Cho 1998; Batchelor 2000; Colinet, Legros & Velarde 2001; Bird et al. 2002),
respectively

(ρ∗
n f )t∗ + ∇∗ · (ρ∗

n f u∗) = 0, (2.10a)

(ρ∗
n f u∗)t∗ + ∇∗ · (ρ∗

n f u∗u∗) = −∇∗ p∗ + ∇∗ · τ ∗ − ρ∗
n f g∗ez∗, (2.10b)

(ρ∗c∗)n f (T
∗)t∗ + (ρ∗c∗)n f (u∗ · ∇∗)T ∗ = ∇∗ · (K ∗

n f ∇∗T ∗), (2.10c)

(φ∗)t∗ + ∇∗ · (u∗φ∗) = ∇∗ ·
(

CB T ∗∇∗φ∗ + CT φ∗ ∇∗T ∗

T ∗

)
, (2.10d)

where g∗ is the gravity acceleration, ez∗ is the unit vector in the z∗ direction, u∗ =
(u∗, v∗, w∗) is the flow field vector and τ ∗ is the viscous part of the stress tensor

τ ∗ = μ∗
n f (∇∗u∗ + (∇∗u∗)ᵀ) −

(
2
3
μ∗

n f −K∗
)

(∇∗ · u∗)I, where the superscript ᵀ denotes

the transpose of the corresponding tensor, I is the unity tensor, the subscript t∗ stands for
a partial derivative with respect to time t∗ and K∗ is the dilatational viscosity of the fluid.
We note that the last term in (2.10b) represents the buoyancy force which is due to the fluid
density varying within the layer with the particle concentration that is in turn coupled to
the fluid temperature via the governing equations (2.10).

We impose three boundary conditions at the solid–liquid interface z∗ = 0. At the
substrate, the fluid velocity exhibits no-slip and no-penetration, zero total mass flux
implying the impermeability of the substrate, and a constant prescribed heat flux Qq∗.
We note that it is quite natural to prescribe the heat flux at the substrate to better fit
experimental settings in the case where the substrate is not made of material with a high
thermal conductivity (Rohsenow et al. 1998):

z∗ = 0 : u∗ = 0, −K ∗
n f T ∗

z∗ =Qq∗, CB T ∗φ∗
z∗ + CT φ∗ T ∗

z∗

T ∗ = 0. (2.11a)

At the deformable interface z∗ = h∗(x∗, y∗, t∗), we impose the kinematic boundary
condition, the continuity of the normal and tangential stresses, the continuity of the heat
flux and impermeability for mass transfer, respectively

h∗
t∗ + u∗h∗

x∗ + v∗h∗
y∗ = w∗, (2.11b)

n∗ · T ∗ · n∗ = 2H∗σ ∗, n∗ · T ∗ · x∗ = x∗ · ∇∗
s σ ∗, n∗ · T ∗ · y∗ = y∗ · ∇∗

s σ ∗, (2.11c)
− K ∗

n f ∇∗T ∗ · n∗ = q̂(T ∗ − T ∗∞), (2.11d)(
CB T ∗∇∗φ∗ + CT φ∗ ∇∗T ∗

T ∗

)
· n∗ = 0, (2.11e)

where ∇∗
s = (I − n∗n∗) · ∇∗ is the surface gradient operator,

n∗ = −h∗
x∗ex∗ − h∗

y∗ey∗ + ez∗√
1 + h∗2

x∗ + h∗2
y∗

(2.11f )
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is the unit vector normal to the interface, ex∗ and ey∗ are the orthonormal vectors in the x∗
and y∗ directions, respectively,

x∗ = ex∗ + h∗
x∗ez∗√

1 + h∗2
x∗

, y∗ = ey∗ + h∗
y∗ez∗√

1 + h∗2
y∗

, (2.11g)

are unit vectors tangent to the interface, T ∗ is total stress tensor

T ∗ = −p∗I + μ∗
n f

(∇∗u∗ + (∇∗u∗)ᵀ)−(2
3
μ∗

n f −K∗
) (∇∗ · u∗) I, (2.11h)

2H∗ is the mean curvature of the interface

2H∗ = −∇∗
s · n∗, (2.11i)

and q̂ is the rate of heat transfer from the liquid phase to the gas phase by convection
according to Newton’s law of cooling. We note that Stokes’ hypothesis (Buresti 2015) of a
zero value of the dilatational viscosity K∗ will be used in what follows. This implies that
the absolute value of K∗∇∗ · u∗ is negligible compared with the thermodynamic pressure
p∗, i.e. |K∗∇∗ · u∗| � p∗.

To obtain the closure of the problem, one more condition needs to be added. The average
solute concentration Φ∗ is determined via

Φ∗ = 1
I (D∗)h∗

0

∫ h∗

0

(∫ ∫
D∗

φ∗(x∗, y∗, z∗)dx∗dy∗
)

dz∗, (2.11j)

where D∗ is a projection of the flow domain onto the x∗−y∗ plane and I (D∗) is the
area of this projection. A needed closure of the problem is obtained by imposing a
constraint that the value Φ∗ is prescribed and fixed. We note that the condition of the
constant nanoparticle averaged bulk concentration Φ∗ is appropriate for the case of the
quiescent base state. However, in the presence of the base state flow, the conservation of
the nanoparticle mass flux should be employed (Krishnan, Beimfohr & Leighton 1996;
Frank et al. 2003; Ramachandran & Leighton 2008; Morris 2020).

To obtain dimensionless formulation of the problem, we introduce the following
normalisation:(

x∗, y∗, z∗)= h∗
0 (x, y, z) , h∗ = h∗

0h, u∗ = κ∗
b f

h∗
0

u, t∗ = h∗2
0

ν∗
b f

t,

p∗ = p∗∞ + μ∗
b f κ

∗
b f

h∗2
0

p, T ∗ = T ∗∞ + q∗h∗
0

K ∗
b f

T, φ∗ = φmφ, K ∗
n f = K ∗

b f Kn f ,

ρ∗
n f = ρ∗

b f ρn f , μ∗
n f = μ∗

b f μn f , (ρ∗c∗)n f = (ρ∗c∗)b f (ρc)n f , (2.12)

so the variables with no asterisk decoration are dimensionless.
A set of non-dimensional governing equations and boundary conditions based on this

scaling reads

P(ρn f )t + ∇ · (ρn f u) = 0, (2.13a)

(ρn f u)t + P−1∇ · (ρn f uu) = −∇ p + ∇ · τ − ρn f Gez, (2.13b)
(ρc)n f [PTt + (u · ∇)T ] = ∇ · (Kn f ∇T ), (2.13c)

P L−1φt + L−1∇ · (uφ) = ∇2φ + ∇ · (ηφ∇T ), (2.13d)
where ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z), and τ = μn f [∇u + ∇uᵀ − 2/3(∇ · u)I] is the viscous
part of the dimensionless stress tensor.
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The energy conservation equation (2.9) of Chang & Ruo (2022) is written following
Buongiorno (2006) in terms of our dimensionless variables as

(ρc)n f [PTt + (u · ∇)T ] = ∇ · (Kn f ∇T ) + K1∇φ · ∇T + K2T ∇φ · ∇T + K3φ∇T · ∇T
+ K4φ∇T, (2.14)

where

K1 = (ρc)∗npCB T ∗∞φm

(ρc)∗b f κ
∗
b f

∼ 10−4, K2 = (ρc)∗npCB�T ∗φm

(ρc)∗b f κ
∗
b f

∼ 10−7,

K3 = (ρc)∗npCT φm�T ∗

(ρc)∗b f κ
∗
b f T ∗∞

∼ 10−5, K4 = (ρc)∗nph∗
0Sgφm

(ρc)∗b f κ
∗
b f

∼ 10−5. (2.15)

It is noted that the K4 term is related to gravitational settling. Based on the typical
values of the parameters in (2.15), in what follows, we neglect the contribution of the
nanoparticle mass flux to heat transfer for h∗

0 ≈ 10−6 m. For much thicker layers and bigger
nanoparticles, the contribution of gravitational settling needs to be included in (2.13c).

The non-dimensional boundary conditions at z = 0 are

u = 0, Kn f Tz = −Q, φz + ηφTz = 0. (2.16a)

The non-dimensional boundary conditions at z = h are

Pht + uhx + vhy = w, (2.16b)

− p − 2μn f

3
(

1 + h2
x + h2

y

)[h2
yux + h2

xvy − 3hx hy
(
uy + vx

)+ 3
(
hx uz + hyvz

)
− 2

(
h2

x ux + h2
yvy

)
+ 3

(
hywy + hxwx

)+ ux + vy +
(

h2
y + h2

x − 2
)

wz

]
= Σ0

[
hxx (1 + h2

y) + hyy(1 + h2
x ) − 2hx hyhxy

(1 + h2
x + h2

y)
3/2

]
, (2.16c)

− μn f

[
hy
[
hx
(
vz + wy

)+ uy + vx
]+ 2hx (ux − wz) +

(
h2

x − 1
)

(uz + wx )

]
= −

[
MT (Tx + hx Tz) + MS(φx + hxφz)

]√
1 + h2

x + h2
y, (2.16d)

− μn f

[
hx
[
hy (uz + wx ) + uy + vx

]+ 2hy
(
vy − wz

)+ (h2
y − 1

) (
vz + wy

) ]
= −

[
MT (Ty + hyTz) + MS(φy + hyφz)

]√
1 + h2

x + h2
y, (2.16e)

Kn f ∇T · n + BT = 0, (∇φ + ηφ∇T ) · n = 0, (2.16f )
where P, G, L , B, MT , MS, Σ0, η and Q are respectively the Prandtl, the modified
Galileo, Lewis, Biot, thermal Marangoni, solutal Marangoni, and dimensionless surface
tension numbers, the Soret coefficient and the direction of the applied heat flux,

P = ν∗
b f ρ

∗
b f c∗

b f

K ∗
b f

, G = g∗h∗3
0

ν∗
b f κ

∗
b f

, L = CB T ∗∞ρ∗
b f c∗

b f

K ∗
b f

, B = q̂h∗
0

K ∗
b f

, MT = q∗h∗2
0 σ ∗

T ∗
μ∗

b f K ∗
b f κ

∗
b f

,

MS = φmh∗
0σ

∗
φ∗

μ∗
b f κ

∗
b f

, Σ0 = σ ∗
r h∗

0
μ∗

b f κ
∗
b f

, η = CT q∗h∗
0

CB T ∗2∞ K ∗
b f

, Q= ±1. (2.17)
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In addition, the dimensionless form of the thermophysical properties appearing in the
set of equations (2.13) and (2.16) is

ρn f (φ) = (1 − φφm) + φφmρnp, (ρc)n f (φ) = (1 − φφm) + φφm(ρc)np,

Kn f (φ) = 1 + aφφm, μn f (φ) = (1 − φ)−2 . (2.18)

As already mentioned above, in what follows, we assume a constant, particle-
concentration independent mass diffusivity. We now wish to explain why the use of a
constant diffusivity instead of a particle concentration-dependent diffusivity should not
introduce a significant impact on the results. In fact, this is not surprising if the following
list of concentration-dependent dimensionless thermophysical properties of the fluid based
on (2.18) is written out for a low φ:

μn f (φ) = 1 + 2φ; Kn f (φ) = 1 + aφmφ ≈ 1 + 4.86φ;
D(φ) ≡ D∗(φ∗)

DB
= 1 + 1.45φmφ ≈ 1 + 0.94φ; ρ(φ) = 1 + 2.95φmφ ≈ 1 + 1.95φ;(

ρcp
)

n f (φ) = 1 + (−0.32)φmφ ≈ 1 − 0.21φ (2.19)

for alumina particles Al2O3 in water with a = 7.47 and φm = 0.65. It is clear that the heat
capacity of the nanofluid varies very weakly with φ, see (2.19), and its dependence on φ

may in principle be safely neglected. We also find based on our results (not shown) that
using a constant viscosity instead of a concentration-dependent one leads to a negligible
deviation, within a few percent, from the results obtained when the varying viscosity μn f
is used. Since the variation of the mass diffusivity D(φ) with φ is even weaker than that of
the viscosity, as seen in (2.19), being both dissipative effects, it would be logical to assume
a constant value for the diffusivity D(φ) ≈ DB , especially because the use of a varying
diffusivity prevents from obtaining the base state in the analytical form and would require
its fully numerical evaluation with all ensuing consequences and costly computational
effort. However, we will return to this issue in § 4.4, where we show that using a constant
Brownian diffusion coefficient instead of a particle concentration-dependent one produces
a negligible difference in the results, even for small values of a.

Recently, Chang & Ruo (2022) investigated the Rayleigh–Bénard instability in a
nanofluid and considered, among other effects, the presence of density stratification due to
both thermal and solutal contributions. To evaluate their relative importance, we introduce
the ratio between the thermal Rayleigh number Ra and the solutal Rayleigh number Rn
defined there, R ≡ Ra/Rn = β∗

T �T ∗/((ρnp − 1)Φ) in our notation with β∗
T being the

thermal expansion coefficient. For water as a base fluid, β∗
T ≈ 2 × 10−4 K−1 (Chang &

Ruo 2022). In the case of the temperature difference between 1 K and 10 K and the
average particle concentration Φ = 0.01, we see that R varies between 0.0067 and 0.067,
that is, R � 1, with both bounds decreasing with an increase in Φ. We thus neglect the
temperature-induced buoyancy effect and consider the buoyancy related to the solutal
stratification effect only. We also comment that for a dilute nanosuspension Φ � 1, R
may be of order one, so both effects would have been of the same importance and would
have been included in the analysis. In the limiting case of no solute, only the thermal
buoyancy term would have remained. Furthermore, in the least favourable case, where in
the base state, the concentration in the particle-depleted subdomain is approximately a
fifth of the average particle concentration, see figures 2 and 3, the upper bound for the
local Rayleigh number ratio R = Ra/Rn ≈ 0.32. For thin layers 10−6 m � h∗

0 � 10−4 m,
the relative importance between the two thermal instabilities, namely, thermal Rayleigh
Ra and thermal Marangoni MT , is given by the dynamic Bond number Bd = Ra/MT .
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The comparison between the thermal Rayleigh number Ra and the thermal Marangoni
number MT shows that for thin layers, their ratio is much lower than 1. More specifically,

Bd = Ra/MT = β∗
T g∗h∗2

0 ρ∗
b f

σ ∗
T ∗

∼
(

2.8 × 104 m−2
)

h∗2
0 , (2.20)

in the case of an alumina particle suspension in water; therefore, for the layer thickness of
h∗

0 ≈ 10−4 m, the dynamic Bond number Bd = 2.8 × 10−4. Hence, the thermal buoyancy
is negligible as compared with the Marangoni effect, and in our case, it may be safely
omitted.

We note in passing that the physical problem at hand is isotropic in the x−y plane, and
therefore, (2.13) and (2.16) possess the symmetry x ↔ y, u ↔ v and they are written in a
way so the symmetry is apparent.

2.4. Base state
We now look for a quiescent (u = u0 = 0) steady base state of the system with the flat
interface h = 1 and with the temperature and concentration fields depending solely on z,
T = T0(z), φ = φ0(z), of the problem given by (2.13)–(2.16). It is determined by

p0,z = −G − Gφm
(
ρnp − 1

)
φ0, (2.21a)[

(1 + aφmφ0)T0,z
]

z = 0, (2.21b)(
φ0,z + ηφ0T0,z

)
z = 0, (2.21c)

z = 0 : (1 + aφmφ0) T0,z = −Q, φ0,z + ηφ0T0,z = 0, (2.22a)
z = 1 : p0 = 0, (1 + aφmφ0)T0,z + BT0 = 0, φ0,z + ηφ0T0,z = 0. (2.22b)

Finally, following (2.11j), ∫ 1

0
φ0(z) dz = Φ (2.23)

for a fixed specified positive value Φ.
The solution of the problem equations (2.21)–(2.22) for the pressure, temperature and

concentration components is found to be (details can be found in Appendix A.1)

T0 = 1
ηB

[
B ln

(
1

aφm
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

)
− B ln

(
1

aφm
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz))

)
+ ηQ

]
, (2.24a)

φ0 = W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz))

aφm
, (2.24b)

p0 = G(1 − z) + 1
2ηQa

{
G
(
ρnp − 1

) [W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

−W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz))

]
×
[
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

+W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz)) + 2
]}

, (2.24c)

where W(z) is the principal (increasing) branch of the Lambert W function (Corless et al.
1996; Vallis, Parker & Tobias 2019) defined via

z =W(z) exp W(z), (2.25)
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Figure 2. Variation of the quiescent base-state (a) concentration φ0(z) and (b) temperature presented as
T0(z) − T0(z = 1) with height z, for the case of cooling at the substrate Q= −1, and different values of the
averaged bulk concentration Φ and temperature difference �T ∗ with B = 0.01, η = 0.31 and a = 7.47.

and γ (Φ) is determined by substitution of φ0(z) from (2.24b) into (2.23) to satisfy the
conservation of the total volume of nanoparticles. In fact, the value of γ (Φ) is a solution
of (A14) which is solved numerically. We emphasise that the constant γ (Φ) depends
on four more parameters, namely, φm, η,Q and a, and the used notation of γ (Φ) is
intended only to remind the reader about the source of its appearance. We note that the
secondary (decreasing) branch of the Lambert W function yields negative values of φ0
and is therefore irrelevant.

Figure 2 presents several examples of the base state in terms of the particle concentration
φ0(z) (panel a) and temperature T0(z) (panel b) in the case of cooling at the substrate for
various values of the average particle concentration Φ and the temperature drop across the
layer in the base state with �T ∗ determined via

�T ∗ = q∗h∗
0/K ∗

b f . (2.26)

Furthermore, we observe that the concentration profile shows an opposite variation
with height z to that of the temperature profile, owing to the positive value of the
Soret coefficient. This leads to the formation of stable stratification in the nanofluid
layer. The temperature profile T0(z) exhibits a monotonic, almost linear variation with
z with a maximal temperature attained at the free surface z = 1; therefore, the values
of the temperature in the bulk are below T ∗∞, and the difference T0(z) − T0(z = 1)

presented in figure 2(b) is negative. We note that the nanoparticle concentration φ0(z)
variation with height z exhibits a nonlinear variation for larger values of the temperature
difference �T ∗.

Similarly, we illustrate the base-state profiles of the nanoparticle concentration and
temperature for the case of heating at the substrate in figure 3. In contrast with the case
of cooling at the substrate, the steady-state profile for the nanoparticle concentration
with heating at the substrate depicts an increasing with height z profile of the particle
concentration which achieves a maximum at the interface promoted by the Soret effect.
Such a profile of the particle concentration represents an unstable density stratification and
is prone to a kind of buoyancy instability, which is also similar in spirit to the Rayleigh–
Taylor instability and is described in what follows. Opposite to the case of cooling at the
substrate, presented in figure 2(b), in the case of heating at the substrate, the temperature
increases with height z, as presented in figure 3(b).
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Figure 3. Variation of the quiescent base-state (a) concentration φ0(z) and (b) temperature presented as
T0(z) − T0(z = 1) with height z, for the case of heating at the substrate Q= 1, and different values of the
averaged bulk concentration Φ and temperature difference �T ∗ with B = 0.01, η = 0.31 and a = 7.47.

3. Linear stability analysis
We now investigate the linear stability of the base state given by (2.24) with u0 = 0 and
h0 = 1. To do this, the fields of the dependent variables are linearised around the base state
in the form

u = u0 + ū = ū, p = p0 + p̄, T = T0 + T̄ , φ = φ0 + φ̄, h = h0 + ζ̄ , (3.1)

where the values with an overbar represent the disturbances of the corresponding fields.
Furthermore, we linearise the thermophysical properties around the dimensionless base
state concentration φ0, i.e.

ρn f = R0 + R̄ = [φm
(
ρnp − 1

)
φ0 + 1

]+ [φm
(
ρnp − 1

)
φ̄
]
,

(ρc)n f = H0 + H̄ = [φm
(
(ρc)np − 1

)
φ0 + 1

]+ [φm
(
(ρc)np − 1

)
φ̄
]
,

Kn f = K0 + K̄ = (aφmφ0 + 1) + φ̄aφm,

μn f = M0 + M̄ = 1
(φ0−1)2 − 2φ̄

(φ0−1)3 ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.2)

where for brevity, the symbols X̄ ≡ (R̄, M̄, K̄, H̄) stand for disturbances of ρn f , μn f ,
Kn f and (ρc)n f , respectively, represented each by the second term in the corresponding
equation in (3.2). The values of R̄0, M̄0, K̄0 and H̄0 are given by the respective first terms
in (3.2) and all represent known functions of z.

The linearised governing equations are now presented in vector form and they are

P
∂R̄
∂t

+ R0∇ · ū + dR0

dz
w̄ = 0, (3.3a)

R0
∂ū
∂t

− M0∇2ū − 1
3

M0∇ (∇ · ū) + ∇ p̄ + GR̄ez − dM0

dz
ε = 0, (3.3b)

H0

(
P

∂ T̄

∂t
+ dT0

dz
w̄

)
− K0∇2T̄ − K̄

d2T0

dz2 − dT0

dz

∂K̄
∂z

− dK0

dz

∂ T̄

∂z
= 0, (3.3c)

P L−1 ∂φ̄

∂t
+ φ0L−1∇· ū + dφ0

dz

(
L−1w̄ − η

∂ T̄

∂z

)
− ηφ0∇2T̄ − η

∂

∂z

(
dT0

dz
φ̄

)
− ∇2φ̄ = 0,

(3.3d)
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where

ε =
⎛⎜⎝ ūz + w̄x

v̄z + w̄y

2w̄z − 2
3
∇ · ū

⎞⎟⎠ (3.3e)

is a vector containing the two off-diagonal and one diagonal components of the strain rate
associated with the z-direction.

The linearised boundary conditions at z = 0 are

ū = 0, K0
∂ T̄

∂z
+ K̄

dT0

dz
= 0, ηφ0

∂ T̄

∂z
+ η

dT0

dz
φ̄ + ∂φ̄

∂z
= 0. (3.4)

Note that (3.3a), (3.3b), (3.3c), and (3.3d) represent the linearised versions of
the continuity, three-dimensional momentum conservation, energy and mass diffusion
equations, respectively.

The linearised boundary conditions at z = 1 are

P
∂ζ̄

∂t
− w̄ = 0, (3.5a)

∂p0

∂z
ζ̄ + p̄ + 2

3
M0

(
∇ · ū − 3

∂w̄

∂z

)
+ Σ0∇2⊥ζ̄ = 0, (3.5b)

MS

(
∇⊥φ̄ + dφ0

dz
∇⊥ζ̄

)
+ MT

(
∇⊥T̄ + dT0

dz
∇⊥ζ̄

)
+ M0ε⊥ = 0, (3.5c)

K̄
dT0

dz
+ K0

∂ T̄

∂z
+
[

dT0

dz

(
B + dK0

dz

)
+ K0

d2T0

dz2

]
ζ̄ + BT̄ = 0, (3.5d)

∂φ̄

∂z
+
[
η

dT0

dz

dφ0

dz
+ ηφ0

d2T0

dz2 + d2φ0

dz2

]
ζ̄ + η

dT0

dz
φ̄ + ηφ0

∂ T̄

∂z
= 0, (3.5e)

where ∇⊥ ≡
(

∂

∂x
,

∂

∂y

)ᵀ
and

ε⊥ =
(

ūz + w̄x
v̄z + w̄y

)
. (3.5f )

Equations (3.5a), (3.5b), (3.5c), (3.5d), and (3.5e) represent the linearised versions of
the kinematic, balance of normal stresses, two-dimensional balance of tangential stresses,
heat and mass fluxes boundary conditions, respectively. In what follows, we constrain our
study to the two-dimensional (2-D) case in the x−z plane.

By applying the ∇× operator to the momentum conservation equations and
differentiating the normal stress balance boundary condition along the interface followed
by substituting there the pressure gradient components obtained from the momentum
conservation equations, we completely eliminate the pressure from the momentum
conservation equations.

Normal perturbation modes are introduced in the form(
ū, w̄, T̄ , φ̄, ζ̄ ; X̄

)
(x, z, t) = (u(z), w(z), θ(z), ϕ(z), ζ ; X) exp(ikx + λt), (3.6)

where u, w, θ, ϕ, ζ , and X ≡ (R(z), M(z), K(z), H(z)) are the amplitudes of the
horizontal and vertical fluid velocity components, temperature, concentration, interfacial
deformation and material properties (all expressed via ϕ) perturbations, respectively, with
k and λ representing the wavenumber and the growth rate of the disturbances, respectively.
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In this representation, positive and negative values of the real part of λ correspond to
instability and stability regimes of the system, respectively. We note that X represents
the material properties of the nanofluid which are concentration-dependent and does not
contain independent variables following (3.2).

The resulting eigenvalue problem which determines the growth rate λ of the disturbance
as a function of its wavenumber k and the rest of the problem parameters reads

R0
(
w′ + iku

)+ λPR + wR′
0 = 0, (3.7a)

− iGkR + k2M0u′ + 2k2uM′
0 − ikw

(
k2M0 + λR0 + M′′

0

)
+ ikM0w

′′ − u′′′M0

− 2u′′M′
0 + λR0u′ − u′M′′

0 + λuR′
0 = 0, (3.7b)

− T ′′
0 K + θ

(
k2K0 + λPH0

)
+ T ′

0
(
wH0 − K′)− K0θ

′′ − K′
0θ

′ = 0, (3.7c)

ϕ
(

k2L − ηLT ′′
0 + λP

)
+ ηk2Lθφ0 + φ0

(
iku − ηLθ ′′ + w′)+ φ′

0
(
w − ηLθ ′)

− ηLT ′
0ϕ

′ − Lϕ′′ = 0. (3.7d)
The boundary conditions at z = 0 are

u = (aφmφ0 + 1) θ ′ + aφm T ′
0ϕ = ηφ0θ

′ + ηT ′
0ϕ + ϕ′ = 0. (3.7e)

The boundary conditions at the deformable interface z = h projected onto z = 1 are

ζλP − w = 0, (3.7f )

T ′
0
(
aφm

(
ζφ′

0 + ϕ
)+ Bζ

)+ (aφmφ0 + 1) θ ′ + ζ T ′′
0 (aφmφ0 + 1) + Bθ = 0, (3.7g)

ζφ′′
0 + ηφ0

(
θ ′ + ζ T ′′

0
)+ ηT ′

0
(
ζφ′

0 + ϕ
)+ ϕ′ = 0, (3.7h)

k MS
(
ζφ′

0 + ϕ
)+ k MT

(
ζ T ′

0 + θ
)+ M0

(
kw − iu′)= 0, (3.7i)

iζk3Σ0 + u
(

2k2M0 + λR0

)
+ i
(−ζkp′

0 + kM0w
′ − kM′

0w + iM0u′′ + iM′
0u′)= 0.

(3.7j)
Here and on, primes denote differentiation with respect to z. We reiterate that
R0, M0, K0, H0 represent the base state values of the thermophysical properties of
the system given by (3.2), whereas R, M, K, H are the amplitudes of their respective
disturbances depending on z. Finally, we note that normal perturbations imposed on
the bulk concentration φ automatically preserve the average bulk concentration due to
periodicity of the x-component exp(ikx) of the perturbation φ̄.

4. Results

4.1. Numerical procedure
To precondition the eigenvalue problem equations (3.7) for a more efficient numerical
solution, we substitute the expression of the perturbed longitudinal velocity component
u from (3.7a) into the rest of the equations of the eigenvalue problem (3.7). We also
extract the expression for the interfacial deformation ζ from (3.7j) and substitute it into
the rest of the boundary conditions at z = 1. Hence, our eigenvalue problem is formulated
in terms of w, θ, ϕ and it is treated numerically in this format. We note here that in the
case of the non-deformable interface considered in § 4.4, the pressure will be eliminated
without substituting its gradients into the normal stress boundary condition, since the latter
is redundant, and ζ = 0 is imposed.

The numerical solution of the linear eigenvalue problem given by (3.7), or any of its
simplified versions discussed in what follows, is obtained using the open-source code
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developed by Pearce et al. (2018). It is based on the shooting method and numerical
construction of the complex-valued Evans function (Evans & Feroe 1977) whose roots
represent the eigenvalues of the given problem. The solution is initiated by specifying the
range where the roots of the Evans function are searched and adjusted if needed.

Alternatively, it is possible to locate the eigenvalues graphically by sampling the Evans
function on the complex plane of λ, and by doing so, one obtains contour plots of
the Evans function for a specified range of (λr , λi ), where λr ≡ 
(λ) and λi ≡ �(λ).
Then, the intersection points of the contour lines with the reference point of the plane
or with the axis λi = 0 are traced. These intersection points represent the eigenvalues
of the problem among which one finds the eigenvalue relevant for the onset of either
monotonic or oscillatory instability of the system, respectively. However, this approach is
computationally costly, and the available routine to locate roots of the Evans function is
preferable and is therefore used in our investigation.

The shooting method is implemented by solving the differential equations of the
eigenvalue problem (3.7) or any of their simplified versions discussed below as a
boundary-value problem using the compound matrix method (Ng & Reid 1979) to
construct the Evans function by satisfying the boundary conditions separately at each of
the two endpoints z = 0 and z = 1, and then matching the solutions at the interim point
either in the middle of the domain or elsewhere.

To verify the convergence of the computation procedure, we check the accuracy of the
results by changing the number of decimal digits used in the computation and by varying
the matching point where the Evans function is created. We find that the values obtained
for the critical values of the Marangoni number for various parameter sets of the problem
based on three different matching points within the layer domain 0 � z � 1, namely
z = 1/3, z = 1/2 and z = 2/3, converge up to the third digit.

In what follows, we concentrate on physical systems in which the solvent is water.
Therefore, the corresponding value of the Prandtl number is taken in our investigation
as P = 7. The value of the Lewis number used in most cases discussed below is
L = 10−3, which is quite representative for a moderately dense nanosuspension mixture.
For reference, in the case of nanoparticles of diameter d∗

p ∼ 10 nm, the Lewis number
estimated using the Stokes–Einstein formula (2.4), is L = 4.22 × 10−4 when the solvent
temperature is T ∗ = 300 K. Furthermore, we consider the range of the values for the
Soret coefficient η ∈ (0.31, 3.1) corresponding to the temperature drop of �T ∗ ∈ (1, 10)

K across the layer. In addition, we determine the dimensionless parameters related to
nanoparticle density via

ρnp = ρ∗
np

ρ∗
b f

≈ 4 and (ρc)np = ρ∗
npc∗

np

ρ∗
b f c∗

b f
≈ 0.68, (3.7j)

which corresponds to alumina nanoparticles in water, also taking a = 7.47 in this
investigation, except for § 4.4 where the parameter a is changing.

Before we present the results of the linear stability analysis, we note that the equilibrium
surface tension σ ∗

r ranges for aqueous solutions from ∼10−3 to 30 × 10−3 Nm−1 (De Wit,
Gallez & Christov 1994); therefore, the dimensionless surface tension for a layer of density
ρ∗

b f = 103 kg m−3, viscosity μ∗
b f = 10−3 kg (m · s)−1, thermal diffusivity κ∗

b f = 0.146 ×
10−6 m2 s−1 and thickness h∗

0 = 10−4 m is approximately Σ0 = 2 × 104. Similarly, the
modified Galileo number for the terrestrial gravity of g∗ = 9.81 m s−2 yields G = 67.2 for
h∗

0 = 10−4 m and G ∼ 10−4 for h∗
0 = 10−6 m. A list of typical values of the thermophysical

properties of the nanofluid and the dimensionless numbers is given in table 1.

1011 A52-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.374


Journal of Fluid Mechanics

Parameter Symbol Values

Base fluid viscosity μ∗
b f 10−3 kg (m · s) −1

Base fluid density ρ∗
b f 1000 kg m−3

Base fluid kinematic viscosity ν∗
b f 10−6 m2 s−1

Base fluid thermal conductivity K ∗
b f 0.61 W (m · K) −1

Base fluid heat capacity c∗
b f ≈ 4.18 kJ (kg · K) −1

Base fluid thermal diffusivity κ∗
b f 0.146 × 10−6 m2 s−1

Ambient gas temperature T ∗∞ ≈ 300 K

Equilibrium surface tension σ ∗
r ∼10−3−30 × 10−3 N m −1

Surface tension coefficient σ ∗
T ∗ 0.069 × 10−3 N (m K) −1

Gravity g∗ ∼0.981−9.81 m s−2

Temperature difference across nanofluid layer �T ∗ ∼0.1−10 K

Prandtl number P 7

Modified Galileo number G ∼ 10−4−67

Dimensionless surface tension Σ0 ∼10–2 × 104

Biot number B ∼10−3−10−1

Random close-packing volume fraction (RCP) φm ≈ 0.65

Nanoparticle bulk concentration Φ ∼0.01−0.027

Nanoparticle diameter d∗
p ≈ 10 nm

Boltzmann constant K B 1.380649 × 10−23 J K −1

Nanoparticle density ρ∗
np ∼4000 kg m−3

Nanoparticle heat capacity c∗
np ≈ 0.718 kJ (kg · K) −1

Lewis number L ∼10−3−4.22 × 10−4

Soret coefficient η ∼0.31−3.1

Equilibrium nanofluid thickness h∗
0 ∼10−6−10−4 m

Table 1. Parameter nomenclature and their typical values used in this investigation.

4.2. Cooling at the substrate (Q= −1)

In this section, we study the onset of the thermosolutocapillary instability when the
nanofluid layer is cooled at the substrate. Studies of this configuration for pure fluids are
quite rare in the literature (Deissler & Oron 1992; Oron & Rosenau 1992; Burgess et al.
2001; Alexeev & Oron 2007). Recently, Sarma & Mondal (2021b) studied thermosolutal
Marangoni instability in a layer of a viscoelastic binary fluid in the presence of the
Soret effect. They also presented some results for the limiting case of a Newtonian fluid
associated with a zero Deborah number. However, due to the fact they used a linearised
version for the Soret component of the mass flux along with constant thermophysical
properties of the fluid in contradistiction to the particle concentration-dependent Soret
coefficient and other thermophysical properties of the nanofluid used in this paper,
any quantitative comparison between the results is impossible. However, a qualitative
comparison is possible and it will be made at the end of this section.
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Figure 4. Monotonic solutocapillary instability in the case of cooling at the substrate Q= −1 at Φ = 0.01,

a = 7.47, η = 0.31, L = 10−3, Σ0 ≈ 2 × 104 and G = 6.71. (a) Neutral curves MS(k) for the pure
solutocapillarity instability, MT = 0, versus the wavenumber k for various Biot numbers B. (b) Neutral curves
MS(k) for various values of MT with B = 0.01. The rise of the neutral curves with an increase in MT illustrates
a stabilising effect of thermocapillarity on the monotonic solutocapillary instability. In both panels, the symbols
U and S denote the unstable and stable domains of the system, respectively.

First, it must be clear that in the configuration at hand, thermocapillarity is stabilising for
MT > 0, because any small elevation (depression) at the layer interface will have a higher
(lower) temperature than in its vicinity along the interface, and thermocapillary interfacial
tractions will lead to flattening of the interface. Figure 2(a) shows a stably stratified
concentration profile and this configuration suggests a possibility of the emergence of the
solutocapillary instability. Indeed, we find that solutocapillarity destabilises the system
when the layer is cooled at the substrate and figure 4(a) displays the neutral curves for the
pure monotonic solutocapillary instability for varying Biot numbers B. We note that the
solutal Marangoni number MS exhibits non-monotonic variation with the wavenumber k.
We also infer that the variation of the Biot number does not significantly affect the critical
value of the solutal Marangoni number. However, we note that the neutral curves display
the emergence of two local minima, one of them is associated with a low value of the
wavenumber k, whereas the second one belongs to the finite range of k. Both of them are
clearly seen in the neutral curve for B = 0.01 in figure 4(a).

In addition, we note that when the layer is cooled at the substrate, the temperature
base state increases with height z, as shown in figure 2(b). This implies that at the
interfacial hump, the temperature is higher than that at its depression. Thus, the emerging
thermocapillary shear stress will lead to fluid flow from the hump into the depression,
causing the tendency of interface flattening and therefore indicating a tendency to
stabilisation (Deissler & Oron 1992; Alexeev & Oron 2007). Figure 4(b) illustrates
a significant stabilisation effect imparted by thermocapillarity on the solutocapillary
instability threshold. In the range of MT presented in this figure, the critical value of MS
slightly increases with MT ; however, the finite-wave modes are strongly stabilised with an
increase in MT .

Figure 5(a) shows that the threshold value of the solutal Marangoni number MS in
the pure solutocapillary instability increases linearly with the modified Galileo number
G. However, as we already mentioned, the neutral curves MS(k) exhibit two minima:
one of them, MS = m f , is in the finite-wave domain, whereas the second one, MS = ml ,
belongs to the long-wave domain. The relative importance of these two minima with
respect to the onset of the purely solutocapillary instability is now under scrutiny. The inset
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Figure 5. Onset of a purely solutocapillary monotonic instability in the case of cooling at the substrate
Q= −1 at Φ = 0.01, a = 7.47, η = 0.31, L = 10−3, MT = 0, Σ0 ≈ 2 × 104 and B = 0.01. (a) Variation of
the critical value of the solutal Marangoni number MS versus the modified Galileo number G that shows
both the finite-wave range minimum MS = m f and the long-wave minimum MS = ml ; the inset presents the
variation of the difference ml − m f versus G. FW and LW stand for domains of finite-wave and long-wave
instability, respectively. (b) Variation of the critical wavenumber kc with G; the inset shows a decrease in the
critical wavenumber kc corresponding to the long-wave minimum MS = ml with G. The symbols U and S
denote the unstable and stable domains of the system, respectively.

of figure 5(a) shows that in the domain of intermediate values of the modified
Galileo number 14.8 � G � 66.6, the long-wave minimum MS = ml corresponding to the
deformational mode prevails over the finite-wave minimum MS = m f , namely ml < m f ,
and corresponds to the instability onset. In addition, we find that in the rest of the G range,
i.e. for relatively low and sufficiently high values of G, ml > m f , and the finite-wave
solutocapillary instability emerges. VanHook et al. (1997) and Golovin, Nepomnyashchy
& Pismen (1997) observed an analogous effect of the competition between the long-wave
deformational and finite-wave pattern forming modes for the thermocapillary instability
in a layer with a deformable interface. Figure 5(b) displays the variation of the critical
wavenumber kc with G. We note that the critical wavenumber kc for the finite-wave
minimum MT = m f exhibits two distinct domains of variation with G. For moderate
values of the modified Galileo number G, kc varies slowly; however, for sufficiently large
values of G, the critical wave number kc sharply increases. The inset of figure 5(b) shows
a decrease in the critical wavenumber kc of the long-wave instability corresponding to the
minimum MS = ml with G.

Figure 6(a) shows that in the case of a purely solutocapillary instability, the critical solu-
tal Marangoni number MS monotonically increases with the dimensionless surface tension
number Σ0 when the rest of the parameters are fixed and saturates at a very high value of
Σ0 that corresponds to the non-deformable interface. Slightly above it, a dashed curve
corresponding to the secondary minimum of the corresponding neutral curve is located.
The critical value of MS is attained at the local minimum of the neutral curves correspond-
ing to MS = m f and varies weakly with Σ0. The variation of the critical wavenumber kc
is non-monotonic with Σ0 in the finite but relatively low wavenumber range, as shown
in figure 6(b), so the instability is finite-wave. The wavenumber corresponding to the
secondary local minimum of the neutral curves MS(k) = ml remains almost unchanging
with Σ0 and small, k ≈ 2.0 × 10−3; therefore, this secondary mode is long-wave.

We next study the variation of the onset of the pure solutocapillary instability with the
averaged nanoparticle bulk concentration Φ. Figure 7(a) displays a significant monotonic
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Figure 6. Variation of the onset of the pure solutocapillary monotonic instability with the dimensionless
surface tension number Σ0 for the case of cooling at the substrate Q= −1 at Φ = 0.01, a = 7.47, η =
0.31, L = 10−3, MT = 0, G = 6.71 and B = 0.01. The ml and m f points correspond to the long-wave and
finite-wave modes, respectively. The symbols U and S denote the unstable and stable domains of the system,
respectively. (a) Variation of the values of the solutal Marangoni number MS corresponding to the two local
minima MS = ml and MS = m f of the neutral curves MS(k). The instability threshold MS increases with Σ0.
The right vertical scale corresponds to MS related to the long-wave minimum MS = ml . (b) Variation of the
wavenumbers corresponding to the two local minima of the neutral curves with Σ0. The critical wavenumber
kc corresponding to the onset of the instability lies in the finite-wave range and varies non-monotonically with
the dimensionless surface tension number Σ0. The wavenumber k corresponding to the long-wave competing
mode is almost constant with Σ0.

decrease in the threshold value of the solutal Marangoni number MS (for both modes
m f and ml ) with an increase in Φ. The reason for this effect is mainly due to the Soret
effect whose strength is proportional to the local concentration φ. In the case of cooling
at the substrate, the temperature gradient is directed upward; therefore, the Soret effect
with η > 0 drives the thermophoretic component of the mass flux downward and becomes
stronger with an increase in the average particle concentration Φ. This leads to a stronger
decrease in particle concentration in the neighbourhood of the interface and to an enhanced
decrease in local viscosity there with an increase in Φ. Thus, the critical solutal Marangoni
number MS driving the instability decreases with Φ.

It is natural to observe such a decrease of the solutocapillary instability threshold
for a nanofluid suspension or a mixture with a surfactant where the surface tension
linearly decreases with the interfacial concentration (Morozov et al. 2014; Shklyaev &
Nepomnyashchy 2017). However, for an inorganic salt where the surface tension increases
with the interfacial concentration, the opposite behaviour could be observed (Oron &
Nepomnyashchy 2004). Further, we note that the critical wavenumber kc for the finite-
wave minimum gradually increases with Φ, whereas the wavenumber for the long-wave
minimum remains almost constant around kc ≈ 8 × 10−4. Since the finite-wave minimum
MS = m f remains always slightly below the long-wave one MS = ml , the instability
remains finite-wave, with the wavenumber variation shown in figure 7(b). We also find
that the structure of the neutral curves remains unchanged with the variation of Φ and a
typical neutral curve is shown in the inset of figure 7(a).

Figure 8(a) illustrates the non-monotonic variation of the critical solutal Marangoni
number MS with the Soret coefficient η for both competing modes. We find that the
temperature difference across the layer of the base state given by �T ∗ = q∗h∗

0/K ∗
b f

influences the value of the Soret coefficient η defined in (2.17) and affects the competition
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Figure 7. Variation of the onset of the pure solutocapillary monotonic instability with the averaged bulk
nanoparticle concentration Φ for the case of cooling at the substrate Q= −1 and a = 7.47, η = 0.31,

L = 10−3, MT = 0, G = 6.71, Σ0 = 2 × 104 and B = 0.01. (a) Variation of the two minimal values MS = m f
and MS = ml of the neutral curves MS(k). The inset shows the neutral curve for Φ = 0.03. (b) Variation
of the wavenumbers corresponding to the two local minima of the neutral curves with Φ. The upper curve
corresponding to MS = m f represents the critical wavenumber kc. The symbols U and S denote the unstable
and stable domains of the system, respectively.
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Figure 8. (a) Variation of the critical value of the solutal Marangoni number MS for a pure solutocapillary
monotonic instability with the Soret coefficient η in the case of cooling at the substrate Q= −1 with
a = 7.47, Φ = 0.01, L = 10−3, MT = 0, G = 6.71, Σ0 = 2 × 104 and B = 0.01; the inset shows the
difference m f − ml between the two minimal values of MS of the two solutocapillary modes versus η. (b)
Variation of the critical wavenumber kc corresponding to the short-wave minimum MS = m f with η; the inset
shows the variation of the wavenumber k corresponding to the long-wave mode MS = ml with η. The dashed
lines display various ranges of the data fit for the critical wavenumber as a function of η. The symbols U
and S denote the unstable and stable domains of the system, respectively. FW and LW stand for domains of
finite-wave and long-wave instability, respectively.

between the long-wave deformational mode MS = ml and the finite-wave pattern forming
mode MS = m f . The inset of figure 8(a) displays the domains of instability versus the
parameter η. We find that in the narrow range of the Soret coefficient 0.62 � η � 1.24
corresponding to the temperature difference 2K ��T ∗ � 4K, the deformational mode
MS = ml dominates over the finite-wave mode MS = m f in terms of the instability onset,
namely ml < m f . Outside of this range of η, with a sufficiently low value of the modified
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Galileo number G, the finite-wave mode MS = m f prevails over the long-wave mode
MS = ml and determines the instability onset, namely m f < ml . Figure 8(b) displays the
variation of the critical wavenumber kc with the Soret coefficient η. We observe that the
critical wavenumber increases with η and exhibits three different functional variations
with η. Notably, we observe that the critical wavenumber kc follows the scaling kc ∼ η1/2

up to the value of η corresponding to the minimum of kc for MS = ml , which is shown in
the inset of figure 8(a). This is followed by two different scalings kc ∼ η4/3 and kc ∼ η2/3

for higher values of η. The inset of figure 8(b) also shows that the critical wavenumber
for the long-wave mode MS = ml exhibits a non-monotonic variation with η in its relevant
subdomain.

Finally, we conclude that in the case of the layer cooled at the substrate, the pure
solutocapillary instability is monotonic. It also remains monotonic when stabilising
thermocapillarity is present along with gravity, the Soret effect and interfacial
deformation. The type of this instability is finite-wave for both sufficiently low and
sufficiently high values of the modified Galileo number G, whereas in the intermediate
range of G, it is long-wave. A similar feature takes place with a variation of the Soret
coefficient η. Last, but not least, the fact that only the monotonic solutocapillary instability
emerges in the case of cooling at the substrate is similar to what Sarma & Mondal (2021b)
found in this case making a statement that the monotonic mode is independent of the
degree of viscoelasticity of the binary fluid. However, in contrast with the results obtained
by Sarma & Mondal (2021b) pointing to the emergence of the long-wave instability, our
results show that the emerging solutocapillary instability may be either long-wave or
finite-wave depending on the system parameters. This difference in the results between
the current paper and Sarma & Mondal (2021b) is possibly due to the presence of
concentration-dependent thermophysical properties of the nanofluid.

4.3. Heating at the substrate (Q= 1)

In this section, we investigate the onset of instability in the case of a heated substrate
and reveal that it may be either monotonic or oscillatory. Joo (1995) and Oron &
Nepomnyashchy (2004) found that in the case of a layer of a dilute binary mixture
with either deformable or non-deformable interface, the system exhibits competition
between destabilising thermocapillarity and stabilising solutocapillarity, and as a result,
the oscillatory instability emerges.

In the case of a nanofluid layer heated from below, the base state displays a profile
of the particle concentration increasing with height. Therefore, if the particle density is
higher than that of the liquid, then, in the presence of gravity, there exists an ingredient of
Rayleigh–Taylor instability (Chandrasekhar 1961), which, in what follows, will be referred
to as a solutal buoyancy due to its qualitative similarity to the thermal buoyancy.

Figure 9 presents a typical example of the structure of the eigenspectrum of the problem
given by (3.7) by following the two leading eigenvalue branches by increasing the thermal
Marangoni number MT for G = 1 near the critical wavenumber kc ≈ 0.18 for a parameter
set specified in the caption. The entire variation range of MT is naturally subdivided into
five different subdomains. With an increase in MT , the first subdomain (subdomain I ) is
where the two tracked eigenvalues are real and negative. The two branches of subdomain
I merge with an increase in MT and split into two branches, along which the eigenvalues
are complex conjugate with the negative real part λr ; this is subdomain I I . A combination
of subdomains I and I I belongs to the stability domain of the system. Following the two
branches in the subdomain I I in figure 9, we observe that with an increase in MT , the
frequency λi of the two leading eigenvalues increases in its absolute value, whereas the
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Figure 9. Eigenspectrum map of the two leading eigenvalues λ in the complex plane spanned by their growth
rate (the real part 
(λ) ≡ λr the vertical axis on the left) and their frequency (the imaginary part �(λ) ≡ λi –
the vertical axis on the right) versus MT in the case of heating at the substrate Q= 1 with Φ = 0.01, G = 1,

Σ0 = 10, η = 0.31, L = 10−3, a = 7.47, MS = 0, P = 7, B = 0.01 and k = 0.18. The domains I−V are the
domains with two negative real eigenvalues (2
−), two complex conjugate eigenvalues with a negative real
part (2C−), two complex conjugate eigenvalues with a positive real part (2C+), two positive real eigenvalues
(2
+), and two real eigenvalues (one positive (
+) and one negative (
−) ), respectively. The circle (◦) and
star (�) points correspond to the real and imaginary parts of the complex growth rate λ, respectively. The
vertical dashed lines represent the transition from the subdomain I I to the subdomain I I I , from I I I to I V
and from I V to V . The horizontal dashed line represents λr = 0.

growth rate λr increases and crosses zero. We emphasise that the oscillatory instability
emerges here in the case of MS = 0; hence, solutocapillarity is irrelevant. This is where
the subdomain I I ends and the subdomain I I I begins. In the subdomain I I I , the two
leading eigenvalues are still complex conjugates, but their real part λr is positive and,
therefore, the system undergoes oscillatory instability. In the subdomain I I I , the growth
rate λi increases with MT , whereas the absolute value of the frequency |λi | decreases
until it reaches its zero value, and the two leading eigenvalues become real and positive.
At this point, the subdomain I I I ends at MT = M2 and the subdomain I V begins. In
the subdomain I V , there are two real positive eigenvalues, one of them increases with an
increase in MT , whereas the other one decreases until it reaches zero, where the subdomain
I V ends at MT = M1, and the subdomain V begins. In the subdomain V , there is only one
positive eigenvalue and the second leading eigenvalue is negative.

As an illustration for figure 9, figure 10 presents the neutral curves MT (k) in the case
of a moderately low Galileo number G, G = 1, and the parameter set of figure 9, where
the pure thermocapillary oscillatory instability sets in at a finite wavenumber k ≈ 0.18.
Along with the neutral curve MT (k), we present in figure 10 two more boundary curves
that illustrate important features of the spectrum of the eigenvalue problem (3.7). The
boundary located just above the threshold of the oscillatory instability in figure 10 marked
as M2 separates the domain where two complex conjugate eigenvalues with a positive real
part exist from the domain of two real leading positive eigenvalues. The space between the
MO and M2 lines constitutes the subdomain I I I . Slightly further above the boundary
M2 lies one more boundary marked as M1 along which one of the leading positive
eigenvalues turns to be zero, whereas the other one remains positive. The emergence of
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Figure 10. Pure thermocapillary oscillatory instability for the case of heating at the substrate Q= 1 and the
parameter set of figure 9. The lowest curve marked as MO represents the onset of instability MT (k) showing
the thermal Marangoni number versus the wavenumber k. The subdomains I−V correspond to the respective
subdomains in figure 9. M1, M2 and MO are transition values of MT between domains I V to V , from I I I to
I V and from I I to I I I , respectively.

several boundaries in a close proximity illustrates a competition between thermocapillarity,
gravity and other factors such as the Soret effect, interfacial deformability and possibly
concentration-dependence of the thermal conductivity of the suspension which will be
discussed below.

The branch of the larger real eigenvalue in the subdomains I V and V corresponds to the
thermocapillary mode which increases almost linearly with an increase in the Marangoni
number MT . The branch of the smaller real eigenvalue, which remains positive but very
small in the domain I V and crossing zero at M = M1, is driven by particle diffusion,
which is coupled with the unstable thermal mode. To check this observation, we have
increased the Lewis number L ten-fold, thereby effectively leading to a ten-fold increase
in the smaller eigenvalue and, as a result of this, the positive decreasing branch of the
second leading eigenvalue has decayed much faster and, therefore, M1 has decreased.
It turns out that the same decreasing branch weakly depends on the surface tension number
Σ0 as well.

Based on our earlier discussion, it is essential to understand the role of gravity in
the onset of instability of the system at hand. Figure 11(a) displays the variation of the
critical value of the thermal Marangoni number MT with the modified Galileo number G
in the case of a pure thermocapillary instability. Here, we note that for sufficiently low
values of G, the monotonic instability sets in. Note the difference with the case of G = 1
presented in figures 9 and 10, where the oscillatory instability takes place. Following
the monotonic branch of the MT −G plane, we observe that at G ≈ 10−1, the monotonic
branch becomes the M1- branch presented in figures 9 and 10 for G = 1, and the system
undergoes the oscillatory instability. The left vertical dashed line in figure 11(a) represents
the asymptotic line for the monotonic branch λ= 0. Note the M2 branch is not presented
here to not overburden the figure. Also, there exists a branch above which the long-wave
mode becomes unstable (shown in the inset). However, since the values of MT along this
branch are much higher than those along the monotonic and oscillatory branches discussed
above, it is irrelevant for the onset of instability.
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Figure 11. Pure thermocapillary instability in the case of heating at the substrate Q= 1 with Φ = 0.01,

Σ0 = 10, η = 0.31, L = 10−3, B = 0.01, MS = 0, P = 7. (a) Variation of the instability threshold MT with
the modified Galileo number G. The circle (◦) and star (�) points correspond to the monotonic and oscillatory
modes, respectively; inset shows the upper line MT (G) above which the long-wave mode becomes unstable.
Note that these values of MT are much larger than the critical values of MT for the oscillatory instability for
G < 55.6, so the values of the latter appear as zero. However, for G � 55.6, the solutal buoyancy becomes
dominant and drives the long-wave solutal buoyancy monotonic instability with the critical Marangoni number
MT = 0 and the critical wavenumber kc = 0. (b) Variation of the growth rate λ versus wavenumber k for
MT = 0 for several values of G in the domain of solutal buoyancy instability, G > 55.6. The dashed lines
illustrate data fit proportional to k2 with the proportionality coefficient increasing with G. The symbols U, U †,

and S represent the domains where the two leading eigenvalues are real and positive, complex conjugates with
a positive real part and complex conjugates with a negative real part, respectively.

As mentioned above, in the case of heating at the substrate considered now, the
density stratification in the layer is unstable for particles heavier than the carrier fluid,
e.g., ρnp = 4, and, in addition to the Marangoni effect, there exists at least one more
instability ingredient referred to as solutal buoyancy. Also, gravity plays both stabilising
and destabilising roles in the long-wavelength range, i.e. an increase in G may promote
the solutal buoyancy instability, but at the same time, the deformable interface tends to
flatten out and to relieve a tendency to instability. We note that for relatively low values of
G, the solutal buoyancy mechanism is weak and the monotonic thermocapillary instability
dominates. However, we find that with an increase in the value of G, the solutal buoyancy
mechanism becomes stronger, and, at a sufficiently large value of G, G ≈ 55.6 (marked
by the right vertical dashed line shown also in the inset) for the given parameter set,
it dominates over both the oscillatory thermocapillary instability and a long-wave solutal
buoyancy instability emerging at MT = 0 marked by a horizontal thick line for G � 55.6
with the critical wavenumber kc = 0. Figure 11(b) illustrates the growth rate λ variation for
different values of G, G > 55.6 with the data fit proportional to k2 for MT = 0. We also
find that the proportionality constant increases with the value of G within the unstable
domain. As expected, the range of instability widens with an increase in G.

Figure 12 presents more details related to the structure of the eigenspectrum of the
system for the parameter set used in figure 11 in the range of G adjacent to the onset of
the solutal buoyancy instability. We observe that the long-wave monotonic branch λ= 0
of the thermocapillary mode crosses zero at a finite but small wavenumber kc shown in
figure 11(b). These curves represent boundaries of stabilisation of the thermocapillarity
where the domain of instability and stability of the system are located beneath and
above the corresponding curve. Therefore, higher values of MT stabilise the system. The
instability range of the system in the solutal buoyancy regime expands with an increase in
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Figure 12. Pure thermocapillary stability boundaries versus wavenumber k in the domain of solutal buoyancy
instability for the case of heating at the substrate Q= 1 with Φ = 0.01, Σ0 = 10, η = 0.31, L = 10−3, MS = 0,

a = 7.47, P = 7 and B = 0.01. The two solid (blue) curves on the left and the solid (red) curve on the right
represent the monotonic and oscillatory boundaries with the vertical axes on the left and right vertical axes,
respectively, for the two values of G, G = 55.8 and G = 56. Note that, unlike the curves for the monotonic
instability, the curves for the oscillatory instability almost overlap. Straight dashed lines represent the data
fit MT ∼ αk−β with (α = 5.77 × 10−5, β = 2.2) for G = 55.8 and (α = 1.91 × 10−4, β = 2.12) for G = 56.
The symbols U, U †, and S represent the domains of monotonic solutal buoyancy instability, of two complex
conjugate leading eigenvalues with a positive real part, and that of stability, respectively.

G in terms of MT and kc. In the same range of G, we also find that the oscillatory branch
shown in the inset of figure 11(a) continues further into the solutal buoyancy domain, as
also shown in figure 12 with the corresponding scale on the right-hand side of the figure.
It is noted that the values of MT along the oscillatory finite-wave branch are much higher
than those along the monotonic branches. Hence, in the range of finite wavenumbers k,
the oscillatory mode emerges in the solutal buoyancy instability domain and, within the
range of the wavenumbers corresponding to this instability, the long-wave instability does
not set in.

The variation of the critical wavenumber kc along the instability curves MT (G) shown
in figure 11(a), are displayed in figure 13(a). We note that the critical wavenumber kc
increases monotonically with G along both the monotonic and oscillatory instability
thresholds. Also, along the stretch of the monotonic mode when it does not represent
the instability onset, the minimal wavenumber is lower than the critical wavenumber kc.
In addition, we find that the critical wavenumber kc along the monotonic stabilisation
boundary tends to zero with an increase in G. Figure 13(b) displays a non-monotonic
variation of the growth rate λ with k for several values of G near the onset of the
solutal buoyancy instability. Figure 13(c) shows the monotonic increase in the critical
frequency along the oscillatory branch presented in figure 13(a) with the modified Galileo
number G.

Figure 14(a) shows the neutral curves in the case of a pure thermocapillary monotonic
instability for a small Galileo number G = 0.01 for different Biot numbers B. The results
for the instability threshold shown in the MT −G plane in figure 11(a) suggest that the
parameter set here for B = 0.01 corresponds to the monotonic instability. The instability
remains monotonic for the two other values of the Biot number B. As in the case of
the Marangoni instability in a simple fluid (Pearson 1958), we find that the stability
domain located underneath the neutral curves expands with an increase in the Biot number
accompanied with an increase of the critical Marangoni number MT at the minimum of
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Figure 13. Pure thermocapillary instability in the case of heating at the substrate Q= 1 with Φ = 0.01,

η = 0.31, L = 10−3, a = 7.47, Σ0 = 10, MS = 0, B = 0.01. (a) Variation of the critical wavenumber kc versus
the modified Galileo number G. The ◦, � and × points in the inset represent the critical wavenumber kc for the
monotonic, oscillatory and solutal buoyancy instability, respectively. Inset shows the variation of the minimal
wavenumber k in the long-wave mode versus G in the transition domain, 55 � G � 56.5. (b) Variation of the
growth rate λ versus wavenumber k in the transition domain for various G. (c) Variation of the frequency λi
versus the modified Galileo number G along the oscillatory instability threshold of panel (a).

the corresponding neutral curve. This is due to the fact that a higher Biot number implies
that the system loses some of the heat to the atmosphere, and therefore it requires a higher
temperature drop or the heat flux transferred into the system, equivalently, a higher MT to
drive the Marangoni instability (Davis 1987). Further, figure 14(b) presents the variation of
the critical wavenumber kc with the Biot number B. It follows the relationship kc ∼ B1/4

which is a known asymptotic limit for the Marangoni instability in a simple Newtonian
fluid (Sivashinsky 1982) and is also one of the two known asymptotic limits for the long-
wave instability in dilute binary fluids (Podolny et al. 2005) in the limit of small Biot
numbers.

Figure 15(a) presents the variation of the critical thermal Marangoni number MT with
the mean particle concentration Φ. We note that the latter directly influences the viscosity
and the heat conductivity of the fluid as given by (2.2f ) and (2.2c), respectively. We find
that the enhanced nanoparticle concentration near the interface promoted by both the base
state concentration profile and the Soret effect significantly affects the fluid viscosity near
the layer interface, and thereby, notably leads to the delay of the pure thermocapillary
instability and an increase in the critical value of the Marangoni number MT . We also
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Figure 14. Pure monotonic thermocapillary instability in the case of heating at the substrateQ= 1 at Φ = 0.01,

η = 0.31, L = 10−3, a = 7.47, MS = 0, Σ0 = 10, G = 0.01. (a) Neutral curves MT (k) for various Biot numbers
B. The symbols U and S denote the unstable and stable domains, respectively. (b) Variation of the critical
wavenumber kc with the Biot number B. The dashed line represents the data fit kc ∼ B1/4 with the factor of
0.178. The filled circle points correspond to the numerical solution of the EVP, (3.7).
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Figure 15. Pure monotonic thermocapillary instability in the case of heating at the substrate Q= 1 at B = 0.01,

η = 0.31, L = 10−3, a = 7.47, MS = 0 and G = 0.01 for several values of the inverse capillary number Σ0.
(a) Variation of the critical thermal Marangoni number MT with the averaged bulk nanoparticle concentration
Φ, where MT /2 and MT /10 are presented for Σ0 = 10 and Σ0 = 100, respectively. The symbols U and S
denote the unstable and stable domains of the system, respectively. (b) Variation of the critical wavenumber kc
with Φ, where 2kc and 3kc are presented for Σ0 = 10 and Σ0 = 100, respectively.

find that the concentration-dependent thermal conductivity also delays the thermocapillary
instability, but weakly, whereas the destabilising impact of the unstable stratification is
also weak for the given small value of G. Hence, the overall impact of an increase in Φ

is stabilisation of the system, i.e. an ensuing increase in the critical value of MT . It is
also revealed that an increase in the inverse capillary number Σ0 leads to an increase
in the rigidity of the interface and a significant increase in the critical value of the
thermal Marangoni number. We also observe that the critical wavenumber kc of the purely
thermocapillary instability gradually decreases with an increase in Φ and also with an
increase in Σ0, as presented in figure 15(b).
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Figure 16. Variation of the critical values of the thermal Marangoni number MT in the case of a pure
monotonic thermocapillary instability with the Soret coefficient η in the case of heating at the substrate
Q= 1 at B = 0.01, Φ = 0.01, L = 10−3, a = 7.47, MS = 0, Σ0 = 10, G = 0.01; inset shows variation of the
critical wavenumber kc with η. The symbols U and S denote the unstable and stable domains of the system,
respectively.

We recall that in the base state when the system is heated at the substrate, the Soret effect
with η > 0 causes an increase in the concentration of particles near the layer interface, as
shown in figure 3. A change in η may be caused by a change in the heat flux q∗ supplied to
the system. Interestingly, an increase in the Soret coefficient η leads to an increase in fluid
viscosity in general and in the vicinity of the layer interface. As a result of this, the system
stabilises, which is expressed by an increase in the critical Marangoni number MT , as illus-
trated in figure 16. The critical wavenumber kc is found to decrease with η, similarly to the
variation with Φ, as presented in the inset to figure 16. We note in passing that the solutal
buoyancy instability is highly sensitive to the nanoparticle concentration at and near the
interface, and indirectly to the strength of the Soret effect; nevertheless, we find that for low
values of the modified Galileo number G, the solutal buoyancy mechanism remains weak.

We now consider the onset of the combined soluto-thermocapillary instability. We find
that the threshold value of the thermal Marangoni number MT increases with an increase
in the value of the solutal Marangoni number MS , which implies that solutocapillarity has
a stabilising effect, as shown in figure 17. As a reference, in the pure thermocapillary case
(MS = 0), the instability in the case of the given parameter set with G = 0.01 is monotonic,
as seen in figure 11. With an increase of the solutal Marangoni number, the instability turns
from monotonic to oscillatory. With a very small value of the modified Galileo number G,
e.g., G = 0.01, and with a sufficiently small solutal Marangoni number MS , MS � 2, the
emerging instability is monotonic suggesting that thermocapillarity dominates. However,
the system undergoes transition from monotonic instability to oscillatory instability with
an increase in the value of MS at approximately MS = 2, as shown in figure 17(a).
The oscillatory instability is apparently induced by the disparity between the characteristic
times of the thermal diffusivity and the nanoparticle diffusivity, i.e. L � 1. For higher
values of G, e.g., G = 1, the instability is oscillatory, MS = 0 in the pure thermocapillary
case, as shown in figure 11. In the combined soluto-thermocapillary case considered here,
the instability is oscillatory, as the monotonic boundary remains above the oscillatory one
for all MS > 0, as presented in figure 17(b). The critical wavenumber kc is presented in
figure 18(a), which shows that kc weakly depends on MS in the case of the monotonic
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Figure 17. Threshold of the combined soluto-thermocapillary instability shown in the plane MT −MS in the
case of heating at the substrate Q= 1 with Φ = 0.01, η = 0.31, L = 10−3, Σ0 = 10, B = 0.01. Panels (a) and
(b) correspond to G = 0.01 and G = 1, respectively. The symbols U, U † and S represent the domains of one
real positive eigenvalue, of two complex conjugate leading eigenvalues with a positive real part, and that of
stability, respectively.

instability, whereas it significantly increases with MS for the oscillatory instability. It is
also interesting to note that the value of kc exhibits a discontinuity at MS corresponding to
the change in the instability type. This suggests that the transition from the monotonic
to oscillatory instability takes place through the codimension-two point. The critical
frequency λi is presented in figure 18(b). It is found to increase monotonically and almost
linearly with MS and collaterally with MT along the critical curve.

Figure 19 presents the neutral curves MT (k) for three values of MS with both monotonic
and oscillatory branches shown. In the case of MS = 0 displayed in figure 19(a), the
oscillatory branch bifurcates off the monotonic one at MT higher than the minimum of
the neutral curve, and being a monotonically increasing function of k, it remains above the
critical value of MT corresponding to the onset of the monotonic instability of the system,
as also shown in figure 17. The case of MS = 2.1 presented in figure 19(b), illustrates
the emergence of a codimension-two point, so the minimal values of the monotonic and
oscillatory branches are attained at the same MT , see the borderline between the two
domains in figure 17(a). The critical wavenumber kc of the oscillatory instability is larger
than that of the monotonic instability. This case is in particular interesting due to the dual
mechanism of the selection of the type of the emerging instability. Near the threshold of the
thermocapillary instability, the emerging instability may be monotonic or oscillatory or of
both types, and thus exhibits a competition between the monotonic and oscillatory modes
(Brand, Hohenberg & Steinberg 1984). With an increase in MS , the oscillatory branch
bifurcates off the monotonic branch near the minimum of the monotonic branch and
descends below it; hence, the emerging instability is oscillatory. The critical wavenumber
kc of the oscillatory instability is larger than that for MS = 2.1, which is consistent with
an increase of kc with MS shown in figure 18(a) for the oscillatory instability.

4.4. Influence of the thermal conductivity stratification of the nanofluid
In this subsection, we study the effect of thermal conductivity stratification of the nanofluid
on the type of Marangoni instability. To simplify the analysis, we assume here the
absence of gravity, G = 0, the non-deformability of the interface, ζ = 0, and the absence
of solutocapillarity, MS = 0. Figure 20 displays the variation of the critical thermal
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Figure 18. The case of heating at the substrate Q= 1 at Φ = 0.01, η = 0.31, L = 10−3, a = 7.47, Σ0 = 10,

G = 0.01, B = 0.01. (a) Variation of the critical wavenumber kc with the solutal Marangoni number MS along
the critical curve shown in figure 17(a). Note that the values of k along the monotonic curve protruding into the
domain of the oscillatory instability which are shown by the hollow circles are not critical. (b) Variation of the
critical frequency λi with the solutal Marangoni number MS along the critical curve presented in figure 17(a)
in the domain of the oscillatory instability.

Marangoni number MT with the thermal conductivity stratification parameter a. We find
that the monotonic instability sets in for sufficiently small values of a < ac ∼ 6 × 10−4.
However, the oscillatory instability emerges when the thermal conductivity stratification
further increases. Therefore, fluids with nanoparticles with a low thermal conductivity
undergo the monotonic instability, whereas those made of metals, i.e. with a higher thermal
conductivity, for instance, alumina, copper, etc. (Buongiorno 2006; Coccia, Tomassetti &
Di Nicola et al. 2021), are expected to exhibit oscillatory instability.

We recall that throughout this paper, we used a constant value for the Brownian
diffusion coefficient. As follows from (2.19), with low values of the thermal conductivity
parameter a, the coefficient of the term linear in φ for D(φ) in equation (2.19) is larger
than a; therefore, it may be inferred that the variation of the Brownian diffusivity with
particle concentration must be accounted for. Figure 20 also demonstrates the threshold
of the thermocapillary instability for the case in which the nanoparticle concentration-
dependent Brownian diffusion coefficient D(φ) given by (2.19) is taken into account.
We find that the critical value of MT based on the use of the concentration-dependent
Brownian diffusion coefficient given by Batchelor (1976) differs from MT determined
using a constant Brownian diffusion coefficient DB by less than 2 %. We also find that
the instability type, either monotonic or oscillatory, and the transition value of a = ac
from one to another are not affected by whether a constant or particle concentration-
dependent Brownian diffusion coefficient is used. Moreover, we note that the variation
of the threshold of the oscillatory thermocapillary instability up to the upper bound of
the Hashin–Shtrikman interval (Hashin & Shtrikman 1962; Keblinski et al. 2008) remains
smooth, and an increase in a leads to a substantial increase in MT (not shown).

Figure 21(a) demonstrates that the critical wavenumber kc for the onset of Marangoni
instability lies in the short-wave domain for both monotonic and oscillatory instabilities.
The critical wavenumber slowly increases with a continuously changing through the
transition value of a = ac from the monotonic to oscillatory domains. Figure 21(b) shows
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Figure 19. Neutral curves MT (k) in the case of heating at the substrate Q= 1 with Φ = 0.01, η = 0.31,

L = 10−3, a = 7.47, Σ0 = 10, G = 0.01 and B = 0.01. Panels (a), (b) and (c) display the structure of the
neutral curves for the monotonic (◦) and oscillatory branches (�) for MS = 0, 2.1 and 20, respectively. Panel
(b) shows the emergence of the co-dimension two point at MS = 2.1. The symbols U, U † and S represent the
domains of one real positive eigenvalue, two leading complex conjugate eigenvalues with a positive real part,
and that of the system stability, respectively.

an increase in the critical frequency λi with an increase in a. Again, the difference between
the results based on a constant DB and nanoparticle concentration-dependent forms for the
Brownian diffusivity D(φ) is minor.

The variation of the critical thermal stratification parameter ac for the onset of
oscillatory instability with the Lewis number L is shown in figure 22 for the case of
a layer with the non-deformable interface. It is found that in the limit of small L , the
value of ac is proportional to L2. We note that having a large value for the proportionality
factor, the nanofluid layer with the particle concentration diffusion time scale comparable
to the thermal diffusion time scale, e.g., with the Lewis number L ∼ O(10−1), requires
a significantly higher value of the thermal stratification parameter a = ac for the system
to switch from the monotonic to oscillatory instability. However, with a sufficiently low
value of the Lewis number L � 1, the oscillatory instability occurs already at a very low
thermal conductivity stratification parameter ac � 1. We also note that the critical value
ac in figure 22 will be different for a layer when the interfacial deformation is present. The
effect of the interfacial deformation via the dimensionless surface tension number Σ0 on
the variation of ac will be discussed elsewhere.
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Figure 20. Variation of the critical thermal Marangoni number MT with the thermal conductivity stratification
parameter a in the case of heating at the substrate Q= 1 with Φ = 0.01, η = 0.31, L = 10−3, MS = 0, ζ = 0,

G = 0 and B = 0.01. The symbols U, U † and S denote the domains with one real positive eigenvalue, with
two leading complex conjugate eigenvalues with a positive real part, and that of stability, respectively. The ◦
and � symbols denote, respectively, the onset of the monotonic and oscillatory instabilities in the case of a
constant Brownian diffusivity DB , whereas × and � symbols represent, respectively, the onset of monotonic
and oscillatory instability with nanoparticle concentration-dependent Brownian diffusion D(φ) given by (2.5b).
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Figure 21. The case of heating at the substrate Q= 1 at Φ = 0.01, η = 0.31, L = 10−3, MS = 0, ζ = 0,

G = 0 and B = 0.01. (a) Variation of the critical wavenumber kc with the thermal conductivity stratification
parameter a. The ◦ and � symbols show kc of the monotonic and oscillatory instabilities, respectively, when
a constant Brownian diffusivity DB is used, whereas the × and � symbols denote kc of the monotonic and
oscillatory instability, respectively, when the nanoparticle concentration-dependent Brownian diffusion D(φ)

is used. The circles in the oscillatory domain denote the values of the wavenumber corresponding to the
monotonic mode and they do not represent critical values. The U, U †, and S symbols represent the domains of
monotonic instability, oscillatory instability and stability of the system, respectively. (b) Variation of the critical
frequency λi with the thermal conductivity stratification parameter a in the domain where the oscillatory
instability sets in. The � and � symbols represent the critical frequency λi corresponding to a constant and
nanoparticle concentration-dependent forms for the Brownian diffusivity, DB and D(φ), respectively.
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Figure 22. Variation of the critical thermal conductivity stratification parameter ac with the Lewis number L
in the case of heating at the substrate Q= 1 with Φ = 0.01, η = 0.31, MS = 0, ζ = 0, G = 0 and B = 0.01.
The thermal conductivity stratification parameter a varies in the domain a ∈ (0, 7.47). The dashed line
represents the data fit ac ∝ L2 with the factor of 8.80 × 102.

4.5. Eigenfunctions and physical mechanism
We examine the underlying physical mechanism driving the instabilities of our system by
presenting sets of eigenfunctions near the criticality, i.e. the critical wavenumber kc, where
the growth rate is the highest and the value of the control parameter, here the solutal or the
thermal Marangoni number, reaches the minimal value along the neutral curve.

The purely solutocapillary mechanism of instability in the case of a nanofluid layer
cooled at the substrate works in the following way. The concentration profile in this
configuration exhibits a gravity stable stratification, e.g., a higher concentration of
heavier nanoparticles near the substrate compared with their lower concentration near the
interface. Now, suppose that due to an infinitesimal disturbance, a fluid packet with a
higher concentration and lower temperature from underneath the interface is displaced
towards it, where the surface tension decreases with the concentration. This creates a
cooler spot with a higher concentration at the layer interface. If the thermocapillary effect
is absent, σ ∗

T ∗ = 0, a higher concentration spot represents a spot with a lower surface
tension inducing flow along the interface emanating from it towards the domain with a
higher surface tension which is that of a lower concentration. The flow is then fed by mass
conservation bringing fresh fluid packets with even higher concentration from the bulk.

Figure 23 displays a typical set of the eigenfunctions for the monotonic instability
emerging in the case of the system cooled at the substrate. Panels (a) and (b) present the
eigenfunctions for the concentration disturbances φ̄(x, z) and those for the temperature
T̄ (x, z), respectively, both superimposed with the flow velocity field presented by the
velocity vectors. In figure 23(a) of nanoparticle concentration φ̄(x, z), we observe a rising
flow in the high-concentration domain which is driven by the solutocapillary shear stress
towards the low-concentration domain forming a descending flow there. Gravity, thermal
diffusion and viscosity of the fluid all act against the destabilising solutocapillary effect
and saturate the instability, so that the latter is monotonic. It is interesting to note that both
fields of concentration and temperature disturbances φ̄ and T̄ , respectively, form stripes.
This is explained by the fact that the functions φ and θ found from the numerical solution
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Figure 23. Normalised eigenfunctions of the EVP (3.7) in the case of cooling at the substrate Q= −1 for
the critical wavenumber kc = 0.16 with L = 10−3, Φ = 0.01, η = 0.31, a = 7.47, B = 0.01, Σ0 ≈ 2 × 104,

G = 6.71, MS = 23, MT = 0 and λ= 1.1707 × 10−7. The eigenfunctions φ̄(x, z) and T̄ (x, z) superimposed
with the velocity vector field ū(x, z) are shown in panels (a) and (b), respectively. The velocity vector field
ū(x, z) shows the convective flow driven from the low surface tension spot (high nanoparticle concentration)
towards that of the high surface tension (low nanoparticle concentration).
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Figure 24. Normalised eigenfunctions of the EVP (3.7) in the case of heating at the substrate Q= 1 for
the critical wavenumber kc = 0.18 with L = 10−3, Φ = 0.01, η = 0.31, a = 7.47, B = 0.01, Σ0 = 10, G = 1,

MS = 0, MT = 1.22 and λ= 2.0773 × 10−6 + 3.6965 × 10−5i. The eigenfunctions for the concentration
φ̄(x, z) and temperature T̄ (x, z) disturbances superimposed with the velocity vector field |ū(x, z)|, are shown
in panels (a) and (b), respectively.

of the eigenvalue problem (3.7) weakly vary with the height z when the former retains its
sign, whereas the latter changes its sign.

We next present a set of eigenfunctions in the case of a pure oscillatory thermocapillary
instability in a layer heated at the substrate in figure 24. Both ϕ(z) and θ(z) are found to
weakly depend on z, so both eigenfunctions φ̄(x, z) and T̄ (x, z) display rolls contained
between the extrema of the interfacial deformation. Since the depression of the interface
is closer to a hot substrate and the interfacial elevation is farther away from it, their
temperatures correspond to the maximum and the minimum of the interfacial temperature,
respectively. This creates thermocapillary shear stresses directed away from the depression
where the surface tension is the lowest to the elevation where the surface tension is
the highest, thereby driving a flow within the entire bulk by means of fluid viscosity.
In figure 24(b) of T̄ (x, z), we note the formation of the upwelling flow in the higher-
temperature domain and the descending flow in the lower-temperature domain. As in
the case shown in figure 23, the patterns shown in the profiles of the concentration and
temperature disturbances eigenfunctions are stripes, since their amplitude functions φ and
θ , respectively, depend weakly on z. However, there is a phase shift between these stripes.
This phase shift is due to the fact that in one of them, the real part dominates its imaginary
part, whereas the opposite takes place in the other.
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4.6. Incompressibility simplification
The fluid density, as described in § 2.1, varies with space, time and depends on the particle
concentration which itself evolves in time and space. Therefore, generally speaking, the
fluid in the problem at hand is ‘compressible’. It is possible to rewrite the non-dimensional
form of the nanofluid continuity equation (2.13a) as

∇ · u = − (ρnp − 1
)
φm [Pφt + ∇ · (φu)] . (4.1)

Based on (4.1) and on the nanoparticle mass flux balance equation (2.13d), the
divergence of the velocity vector is obtained in the form

∇ · u = −L
(
ρnp − 1

)
φm

[
∇2φ + ∇ · (ηφ∇T )

]
. (4.2)

The right-hand side of (4.2) represents the deviation of the full ‘compressible’ system
from an incompressible one. Assuming that for a moderately dense nanofluid in the case
of a small Lewis number L satisfying the condition L ∈ (10−4, 10−2), the parameter
L(ρnp − 1) is O(10−4 − 10−2). Thus, (4.2) suggests that the nanofluid system at hand
can be, by neglecting its right-hand side, simplified by imposing its ‘incompressibility’.
The question is now about the implications of this simplification.

We now compare the results obtained for the problem governed in its full formulation
by the EVP (3.7) with a non-uniform density depending on the space-time dependent
particle concentration, and in this case, the problem is referred to as ‘compressible’, with
those obtained for a simplified problem where the right-hand side of (4.2) is neglected and
the rest of the governing equations and boundary conditions remain with no change. This
simplified formulation will be referred to as an ‘incompressible’ one. In some sense, the
latter is akin to the Boussinesq approximation where the density is assumed to be constant
except for allowing for the buoyancy force arising from the variation in the fluid density.

Figure 25(a) illustrates the comparison between the neutral curve MS(k) for a pure
solutocapillary instability in the case of cooling at the substrate for compressible and
incompressible formulations of the problem. We observe that the neutral curve of the
simplified incompressible problem displays a close match with the neutral curve obtained
for the compressible formulation. Note the difference between the two which does not
exceed 2 %. Further, figure 25(b) illustrates an excellent agreement between the variation
of the critical thermal Marangoni number MT with the thermal conductivity stratification
parameter a for both monotonic and oscillatory instabilities in the case of heating at the
substrate. Note that the curves for both the compressible and incompressible formulations
almost fully overlap with the maximal difference of 1.66 %. Therefore, we infer that the
incompressible simplification can be safely used for a nanofluid with stratification of ther-
mophysical properties. We emphasise that all of the results presented here were obtained
without using the incompressibility simplification, but note that this simplification may
significantly reduce the numerical effort needed for treatment of the problem.

5. Summary and conclusions
In this paper, we present a set of model governing equations and boundary conditions
describing the dynamics of a moderately dense heated nanofluid layer with a deformable
gas–liquid interface when the carrier fluid is Newtonian. This set of equations is based on
continuity, momentum conservation, energy conservation and particle mass conservation
equations, and represents an extension of the governing equations valid for dilute binary
mixtures. Since, in the case at hand, the mixture is moderately dense, it is unrealistic
to assume that its thermophysical properties, e.g., density, dynamic viscosity, thermal
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Figure 25. (a) Neutral curves for a pure solutocapillary monotonic instability MS(k) for the case of cooling
at the substrate Q= −1 with B = 0.01, Φ = 0.01, η = 0.31, a = 7.47, L = 10−3, MT = 0, Σ0 ≈ 2 × 104 and
G = 6.71. The ◦ and � points correspond to the cases of the full EVP (3.7) and a simplified incompressible
formulation, respectively. (b) Variation of the critical thermal Marangoni number with the thermal conductivity
stratification parameter a for a pure thermocapillary instability in the case of heating at the substrate Q= 1 with
Φ = 0.01, η = 0.31, L = 10−3, MS = 0, ζ = 0, G = 0, and B = 0.01. The ◦, �, � and × points represent the
values obtained for the monotonic and oscillatory instabilities based on the full EVP (3.7), respectively, and
the monotonic and oscillatory instabilities obtained for a simplified incompressible formulation, respectively.
The U, U †, and S symbols represent the domains of monotonic instability, oscillatory instability, and stability
of the system, respectively.

conductivity and heat capacity, are constant. Therefore, here they are assumed to depend
on the local particle concentration (Maron & Pierce 1956; Krieger & Dougherty 1959; de
Kruif et al. 1985; Buongiorno 2006). We also assume that the Soret effect is present and
the thermodiffusion coefficient is also local-particle-concentration dependent (Scriven &
Sternling 1964; Platten & Legros 1984).

We apply our equations to investigate the stability of a nanofluid layer open to the
atmosphere at its deformable interface and subjected to a specified heat flux whether
heating or cooling at its underneath support in the gravity field. We also assume
that surface tension is both temperature- and particle-concentration dependent, so the
thermocapillary and solutocapillary effects are present and accounted for. However, we
assume that the considered layer is sufficiently thin, so buoyancy effects arising from an
unstable temperature distribution with height is neglected. It is important to emphasise that
since the fluid density in our model depends on the local particle concentration varying in
both time and space, the system considered here is compressible, so the fluid velocity field
is not solenoidal.

We find a steady base state of the system which is written out analytically in terms of
the Lambert W function. In the case of cooling at the substrate, the base state exhibits
stable stratification in terms of both temperature and particle concentration, which affects
directly the fluid density. In contrast, in the case of heating at the substrate, the temperature
decreases with height, whereas the particle concentration increases with height; therefore,
both conceive several instability mechanisms.

We carry out the linear stability analysis of the base state of the system based on
normal mode disturbances. We find that in the case of the system cooled at the substrate,
the solutocapillary effect destabilises the system, whereas the thermocapillarity provides
a stabilising effect. Interestingly, we note that the neutral curves vary weakly with the
disturbance wavenumber and exhibit the emergence of two local minima, one of them
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located in the long-wave domain, whereas the other is in the finite-wave domain. These two
minima compete with each other owing to the variation of the modified Galileo number G
and the Soret coefficient η. We also find that only the finite-wave minimum of the neutral
curves is sensitive to variation of the inverse capillary number which is related to the
interfacial deformability.

In the case of heating at the substrate, the linear stability properties of the system are
by far more diverse than in the case of a cooled substrate. We find the emergence of
both monotonic and oscillatory instabilities. The former is more typical for low values of
the modified Galileo numbers G equivalent to thinner nanofluid layers, mainly driven
by thermocapillarity, whereas the latter is typical for moderate values of the Galileo
number equivalent to thicker layers and displays a competition between thermocapillarity,
solutocapillarity, and gravity. It is interesting to note that the low-Galileo number
monotonic instability is long-wave with the critical wavenumber kc that follows the well-
known scaling with the Biot number B for a pure fluid and is one of the two possible
scalings found in the literature for a dilute binary mixture, namely kc ∼ B1/4. Further, we
find that the long-wave thermocapillary instability is stabilised with an increase in the
averaged bulk nanoparticle concentration Φ and in the Soret coefficient η. We also reveal
that the oscillatory instability for moderate values of G is finite-wave. For sufficiently
high values of G, the instability becomes again monotonic and long-wave driven solely
by gravity, referred as to solutal buoyancy instability emerging from an unstable density
stratification due to the number of particles which increases with height.

We have also elucidated the details of the structure of a typical eigenspectrum by
following the two leading eigenvalues for different values of the thermal Marangoni
number MT . Among other details, we find that near the emergence of the monotonically
growing mode driven by thermocapillarity, there exists another, slowly decreasing with the
Marangoni number diffusional mode with a small growth rate which depends on the Lewis
number and which is small. Near the inception point where the two modes are comparable,
oscillations may emerge.

When both thermocapillarity and solutocapillarity are active, the instability is
monotonic for lower values of the solutal Marangoni numbers, whereas with an increase
in the latter, the instability becomes oscillatory via the codimension-two point. Both of
these instabilities occur at non-zero wavenumbers with the critical wavenumber for the
oscillatory instability higher than that for the monotonic instability.

As mentioned above, since the nanofluid density depends on the local nanoparticle
concentration which is time- and space-dependent, the problem is essentially
compressible, so the fluid velocity is not solenoidal. This fact poses additional difficulties
in the numerical treatment of the linear eigenvalue problem solved to carry out the linear
stability analysis. However, despite the fact that all of the results presented in this paper
are obtained by solving the full formulation of the problem, we find that in many cases,
the difference between the results obtained by solving the problem in its full version and,
alternatively, in its simplified version in which the continuity equation is written in the
form identical to that of an incompressible fluid is small.

The presence of nanoparticles in a fluid causes a variation in the thermal conductivity of
the nanofluid. As mentioned by Buongiorno (2006), thermal conductivity of the nanofluid
in the case of alumina particles in water is linear with the local particle concentration
with the parameter a referred to here as the thermal conductivity stratification parameter.
Our results show that the value of a affects the type of instability, namely, a pure
thermocapillary instability is monotonic for small a and oscillatory when a exceed a
certain critical value which is found to be proportional to the square of the Lewis number
when the layer interface is non-deformable and in the absence of gravity. This oscillatory
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instability adds a new mechanism leading to the oscillatory instability induced by the
thermal conductivity stratification in addition to other cases known in the literature (Joo
1995; Nepomnyashchy & Simanovskii 1995).

Most of the instabilities found and discussed here are finite-wave instabilities. However,
many of the instabilities, both monotonic and oscillatory dealt with in the similar setting
but in the context of dilute binary mixtures (Oron & Nepomnyashchy 2004; Podolny,
Oron & Nepomnyashchy 2006; Shklyaev et al. 2007, 2009) with both constant Soret
coefficient and the thermal conductivity of the mixture, were long-wave. To resolve this
apparent mismatch, we emphasise that in our setting of a moderately dense mixture with
concentration-dependent thermal conductivity and the Soret coefficient, the instabilities
become also long-wave in the combined limit of mean particle concentration Φ, the Soret
coefficient η, the thermal conductivity stratification parameter a and the Biot number
B being all very low. In this case, our present theory matches the critical values of the
Marangoni number derived by Oron & Nepomnyashchy (2004) and Podolny et al. (2005)
for the layers with either non-deformable or deformable interface. This issue will be further
discussed in detail elsewhere.

Finally, we emphasise that various analytical approximations have been derived over the
years for the thermophysical properties of dilute monodisperse suspensions. At first order
with respect to the low local particle concentration, they introduce factors which depend on
the respective thermophysical properties of the base fluid and the suspended hard spherical
particles. To mention the most prominent ones, these are the expressions for the viscosity
(Einstein 1906), thermal conductivity (Maxwell 1873) and Brownian diffusivity (Batchelor
1976) of a suspension. In contrast, there are various empirical fits for these properties
which are based on experiments conducted with different nanofluids. To bridge between
the differences, we have employed the expressions arising from the experimental data, but
also compared the results with those based on the theoretical expressions mentioned above.
We have found that in terms of the thresholds of the thermosolutal instabilities investigated
here, the differences appear to be very small within several percent and without any
qualitative discrepancies.
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Appendix A. Base state of the system

A.1. Nanoparticle concentration-dependent Soret coefficient and thermal conductivity
First, we note that since we seek a quiescent (u0 = 0) equilibrium state of the system, the
fluid viscosity does not affect the result. To proceed with this task, we rewrite here for the
reader’s convenience the system of equations and boundary conditions given by (2.21),
(2.22), and (2.23) with prime denoting differentiation with respect to z:

p′
0 = −G − Gφm

(
ρnp − 1

)
φ0, (A1a)[

(1 + aφmφ0)T
′

0
]′ = 0, (A1b)(

φ′
0 + ηφ0T ′

0
)′ = 0, (A1c)

z = 0 : (1 + aφmφ0) T ′
0 = −Q, φ′

0 + ηφ0T ′
0 = 0, (A2a)

z = 1 : p0 = 0, (1 + aφmφ0)T
′

0 + BT0 = 0, φ′
0 + ηφ0T ′

0 = 0, (A2b)
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and ∫ 1

0
φ0(z)dz = Φ. (A3)

Integrating once (A1b) and (A1c) with the boundary conditions (A2) at the substrate
and at the interface, we obtain

φ′
0 + ηφ0T ′

0 = 0; thus T ′
0 = − φ′

0
ηφ0

,

(1 + aφmφ0) T ′
0 = c1,

}
(A4)

where c1 is the integration constant. Substituting T ′
0 from the upper equation (A4) into the

equation in its lower line, yields

(1 + aφmφ0)

(
φ′

0
φ0

)
= −c1η. (A5)

Equation (A5) is then solved to obtain

φ0 exp (aφmφ0) = exp (−c1ηz + c2) , (A6)

with c2 being another integration constant and which, upon a definition χ = aφmφ0,
yields a solution in terms of function χ = χ(z) based on the definition of the Lambert
W function, (2.25), as

χ =W (aφm exp (−c1ηz + c2)) (A7)

and, therefore,

φ0 = 1
aφm

W (aφm exp (−c1ηz + c2)) . (A8)

Choosing the constant c2 in the form c2 = ln γ + aφmγ with γ as a new alternative
constant of integration to be determined in what follows, and under definition

P(z) ≡W (aφmγ exp (−c1ηz + aφmγ )) , (A9)

(A8) becomes

φ0 = 1
aφm

W (aφmγ exp (−c1ηz + aφmγ )) ≡ 1
aφm

P(z). (A10)

To proceed, we now need to derive a differentiation rule for P with respect to z. By
definition of the Lambert function, (2.25),

P exp (P) = aφmγ exp (−c1ηz + aφmγ ). (A11)

Solving (A11) for z, differentiating z with respect to P and employing the inverse
function theorem, we find

P ′ = − c1ηP
P + 1

. (A12)

Using the differentiation rule (A12) and combining (A5) and the heat flux boundary
condition (A2a) at z = 0 yields c1 = −Q.

Equation (A10) now reads

φ0 = 1
aφm

W (aφmγ exp (ηQz + aφmγ )) ≡ 1
aφm

P(z). (A13)

A yet unknown value of γ is found from (A3) which represents the conservation of the
volume of nanoparticles. For this reason, γ from hereon will be denoted as γ (Φ) to stress
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its origin. The integral
∫ 1

0
φ0(z) dz can be determined using (A12) with c1 = −Q, and

(A3) results in[
1 +W (aφmγ (Φ) exp (ηQ+ aφmγ (Φ)))

]2 − [1 +W (aφmγ (Φ) exp (aφmγ (Φ)))
]2

= 2aφmηQΦ. (A14)

Equation (A14) is solved numerically in terms of γ (Φ) as a function of the parameter
set. It is emphasised that the value of γ (Φ) depends, in addition to Φ, on four more
parameters, namely a, φm, η and Q.

We now proceed to the derivation of the equilibrium temperature T0 based on (A4) with
substituting φ0 given by (A13) to obtain

T ′
0 = −P ′(z)

ηP(z)
. (A15a)

Hence,

T0 = −1
η

(ln P(z) − ln P(1)) + c3, (A15b)

where c3 is an integration constant to be determined now.
Using T0 given by (A15b), we apply the boundary condition (A2b) and obtain the value

of the integration constant c3 = Q
B

. Henceforth, the equilibrium temperature distribution
is given by

T0 = 1
ηB

[
B ln

(
1

aφm
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

)
− B ln

(
1

aφm
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz))

)
+ ηQ

]
. (A16)

Finally, using (A1a) and the boundary condition p0 = 0 at z = 1 along with a
substitution of φ0 given by (A10), we obtain

p0 = G(1 − z) + G
(
ρnp − 1

)
2aηQ [(P(1) −P(z)) × (P(1) +P(z) + 2)]

= G(1 − z) + G
(
ρnp − 1

)
2ηQa

([
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

−W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz))

]
×
[
W (γ (Φ)aφm exp (γ (Φ)aφm + ηQ))

+W (γ (Φ)aφm exp (γ (Φ)aφm + ηQz)) + 2
])

. (A17)

In the particular case of a = 0, (A1b) and (A1c) are easily solved and the following
equilibrium state is obtained:

φ0 = γ (Φ) exp (Qzη) , (A18a)

T0 = −Qz + Q(1 + B)

B
, (A18b)

p0 = G(1 − z) + G

(
γ (Φ)φm

(
ρnp − 1

)
(exp (ηQ) − exp (ηQz))

ηQ

)
(A18c)
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with

γ (Φ) = ΦQη

exp (Qη) − 1
. (A18d)

We note that power series expansion of the base state given by (A13), (A16), (A17) and
(A14) around a = 0 leads to their reduction to their respective expressions given by (A18).

A.2. Effect of gravitational settling with constant thermal conductivity and
concentration-dependent Soret coefficient

To account for the possibility of a nanoparticle mass flux due to gravitational settling,
jg = −Sgφ0ez (Shliomis & Smorodin 2005; Cherepanov & Smorodin 2019; Chang & Ruo
2022) is added to (A1c). The base state of the system under the assumption of a constant
thermal conductivity a = 0 and particle concentration-dependent Soret coefficient ηφ is
readily found to be

T0 =Q
(
1 − z + 1

B

)
, φ0 = γ (Φ) exp

(
z(Qη − Sg)

)
with γ (Φ) = Φ

(Qη − Sg
)

exp
(Qη − Sg

)− 1
.

(A19)
We note that the concentration component φ0 of the base state in (A19) contains two

factors: (i) the mechanism sustaining the unstable stratification due to an increase of the
concentration with height z, which is induced by the Soret effect for Qη > 0; (ii) the
contribution of gravitational settling Sg promoting a stable stratification by hindering an
increase of φ0 with height z,

To summarise, similar to the conclusions of Chang & Ruo (2022) in the case of
heating at the substrate, Q= 1, the base state for the particle concentration φ0(z)
features a gravitationally unstable configuration increasing with height z for η > Sg and a
gravitationally stable configuration decreasing with height z otherwise. For a layer cooled
at the substrate Q= −1, the configuration is gravitationally stable for any η > 0. Finally,
we emphasise that the competition between the Soret effect and gravitational settling
takes place mainly for nanoparticles of a sufficiently large size and for a sufficiently
thick layer of a nanofluid. For sufficiently small particles and a sufficiently thin nanofluid
layer, gravitational settling may be neglected. We also note that the Soret coefficient η

may depend on both the particle size and the fluid temperature (Braibanti et al. 2008;
Michaelides 2015).
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