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AVERAGING THE SUM OF DIGITS FUNCTION TO AN
EVEN BASE

by D. M. E. FOSTER
(Received 31st July 1990)

For a fixed integer g2, every positive integer k=Y ,,,a,(q,k)qg where each a(q,k)€{0,1,2,...,q—1}.
The sum of digits function «(g,k)=Y,0a{q,k) behaves rather erratically but on averaging has a
uniform behaviour. In particular if A(q,n)=22;’l a(g, k), where n>1, then it is well known that
A(g,n)~4% ((g—1)/logg)nlogn as n—co. For even values of g, a lower bound is now given for the difference
18(g,n) = A(q,n) —3(g— 1)[log n/log q]n, where [logn/log q] denotes the greatest integer <logn/logq, comple-
menting an earlier result for odd values of g.
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As is well known, if g=2 is a fixed integer then every positive integer k has a unique
(finite) expression in scale g of the form

k=Y al(q,k)q¢ where a,(q,ke{0,1,2,...,q—1}.
r=0

The sum of digits function

<o

a(g, k)= a,q,k)
r=0
and for n>1 its sum
n—1
Alg,m)= Y alg, k).
k=1

In 1940, Bush [1] proved the best possible asymptotic result, namely that
Lo
A(g,n)~ %Tl)n logn as n-ooo,

and since then more precise estimates for the behaviour of A(q,n) and related functions
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have been obtained. In a recent paper in this journal [3] several references are given,
including one to a wide ranging survey by Stolarsky [4]. In [3] a lower bound was
obtained for

i5(an)=Alg. 1~ Ka= | 222
0gq
for all odd values of ¢=9. (As usual, [logn/logq] denotes the greatest integer less than
or equal to logn/logq). Since then an analogous result for all even values of ¢= 6 has
been found. The smaller values of g yield more precise inequalities (see [2]). In fact
these lower bounds complement the upper bound, namely

S(q,n)
S0 g1
n < 1

for all integers g=2 obtained in [2].

The strategy of the proof does not depend on the parity of g, but when g is even, the
critical case takes one of two different forms and this difference is reflected in
establishing the required inequality. The rather lengthy proof for odd values of g was
explained in some detail in [3]. However, using a slight modification of the ideas used
there, we now indicate an easier method for even ¢g. With this in mind it is now better
to keep the original digits notation, thereby allowing for possible zero coefficients. Then
every positive integer n is of the form n=n,, where

Np=Go+a14+a:4"+* +8,q"

for some meN u {0} and with coefficients ag,ay,...,a,€{0,1,2,...,q—1} and a,#0. In
addition, for 1 <i<m—1 we introduce

n_,=0,np=a, and m=ay,+a,q+ " +a,q’,

and, as described in [2], we have

S(q’ nm)= Z [a,(a,—l)q'+(2a,—q+l)n,_l].

r=0

We define f, as the unique even integer satisfying

3g—-./8¢>—9q+1<B,<3q—/8¢>*—9q+1+2

and note that equality cannot occur since 8g2 —9g+1 is odd when ¢ is even. (For odd
values of g, B, was the odd integer defined by the same inequalities, uniquely determined
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except when 8q2—9q+1 is a perfect square.) In the course of the derivation of the lower
bound for S(q, n,,)/n,, two cases arise according as

(i) (3q+1-B,)2q<8¢>—9¢*+2
or (i) (3g+1—8,)*q>84—9¢>+2,

and it is this fact which makes the details of the proof twice as long as in the case of

odd q. .
Numerical evidence by my colleague Mrs M. F. McCall for 5<gq=<13 has brought to

light the critical cases, and hence the choice of f,. In case (i), when n,, is of the form

M=t +3(q—2)q" " +39.q" 2+ 3(q—2)g" P +3g.4" L
+3(@—2)q" > +39.4" 2 +3(q—B)q"  +4"
for I=0 (mod 2) it can be seen that

S@n) |, _,

. as m—oo and m—Iremains fixed,
nm

q

where h,=o,+1 with

Yo = *(a—8)—(B,—4)*q—(B,—2)(B,—8)
e 32 +49+2—B,(q+1) '

Similarly the critical form for n,,=n¥ in case (ii) occurs when /=0 (mod 2) and
My =tp+3q.4" T g -2 P +3q. 4" T +H(g - g
+o 439"+ -2)g" " P +Ha— B +qm

Once again,
S(g,ny, .
__(q,* m) _,_ h, as m—oo and m—I remains fixed,

n q

m

where h,=a,+1, as before, but now

Qo0 = qZ(q_ 8) _(Bq_4)2q_ﬁq(ﬂq_6)
! 3¢° +49—By(q+1)

Theorem. For all even q=6, (S(q,n,)/n)>—h,. When q=2 or 4 there is a more
precise result, namely
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S(g,n,) 2(22m—1)
Tn, o M) where hatm = am
(see [2]) and
94"-6 . .
Bar—g Imiodd
ha(m)=
94"—4 ;
R ifm(>0) is even.

The sequence of even integers (f,) increases with g, as does a,, and starts off as
follows:

4 if g=6 (case (i)), 8, 10, 12 (case (ii))
B,=1 6if g=14, 16, 18 (case (i)), 20, 22, 24 (case (ii))
8 if g=26, 28, 30 (case (i), 32, 34, 36 (case (ii)).
The sequence (a,), correct to two decimal places, begins with

(t6; s, 10, 01 2) =(—0.30;0.02, 0.35, 0.68),

(0145 %16, %185 Az0022, X24) =(1.01,1.36,1.70; 2.05,2.39,2.72),
and
(06, X5, X305 X32034, A36) =(3.06,3.41,3.75;4.10,4.44,4.78).

In Lemma 2.1 of [3], we proved that 3<f, —a,<5, and the same inequality holds for
even g. More precisely, a routine calculation gives

4<p,—a,<5 in case (i)
and

3<B,—a,<4 in case (ii),

inequalities which, once again, are useful in the later stages of the proof of the theorem.
Lemma 2.2 of [3] is no longer needed, but Lemma 2.3 needs to be adapted because of
the two different values of a, when g is even. As in [3], for 2<I<m+1, we introduce

m—1 m
F(-D=a,(a,+a)g"+ Y a,{ y [2as—q+1]+a,+aq}q’

r=m—-Ii+1 s=r+1

and, once again
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h(x)=x(x+3+0,—B,), k(x)=x(x+4+a,—pB,)
and, in addition,

p(x)=x(x+5+a,—B,)
and

u(x)=x(x+3+a,).

When [=m+1, F,(m)=S(q,n,)+h,n, and the theorem will follow if we can find a
simple form for F,(m) and then prove that it is positive. Using the ideas of {3],
substitutions for a,,_,, a,_,,... once again are chosen to reflect the critical case in
which the sequence (4,), to be defined, begins with a run of zeros. Thus, for 2<r<m
and for those values of ¢ in case (i), we introduce

qg—26, _,+20, (r even)
2a,=2+264,20,,_,=q—B,—20,+26 d 2a,_,=
On=2+200,20p -1 =q—f,=200+20, and 2a {4—2—25,_1+25, (r 0dd).
When /=2, it may be verified directly that

4F,(1)g~ ™ V=4(qg—1)u(d,) +4h(51)+(g—:—?> (g—8 —2a,+28,).

Using induction on [ we see that, for 3</<m+1,

4F,(I—1)g~tm=1*D
=4(g—1){q' "*u(30) +q' >k(8,) +q'*p(32) +4'k(d3) +q'~ ®p(3s) + - +p(3;-2)}

q+2

+4h(5,_1)+<'q‘—+—1

)(q—8—2aq+2ﬂq)

if I is even, whereas

4F,(I—1)g~ =1+

=4(g—1){q' " *u(8o) +4q' "3k(8,)+q' " *p(8;)+ 4 "*k(d3)+q' " Cp(84) + - +k(5,-,)}

q
+4k(5,_1)+m(q—8—2aq+2ﬁq)
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if 1 is odd.
Now, for 2<r<m and for those values of g in case (ii), we introduce

28, =2+260,20,,_=q—B,—28,+25, and 2a,,._ {q—2—25,_1+25r (r even)

" 1g—26,_,+26,  (rodd).

Once again an inductive proof leads to
4F, (1)~ ™V =4(q — 1)u(So) + 4h(d,) + ﬁ(q —6—20,+28,)

and, for 351<m,
4Fm(l— l)q—(m—l+1)

=4(q—1){q' " *u(bo) +q' k(8,) +q' "*h(S,) +q' ">k(83)+q' "Ch(84) + ...+ h(8;-5)}
+4h(6,_1)+#(q—6—2aq+2ﬁq)

if I is even, whereas
4F (I—1)q m-1*D=

4a—D{q' "*u(d0) +q'*k(1) +4' "*h(6,) +q' T k(J3) + ' °h(8s) + - + k(8- )}

+48,_,(8y_ 1 +2+a, —ﬂq)+(q+2>(q 6—20,+28,)

if I is odd.
It is now an easy matter to see that F,(m)>0 in each of cases (i) and (ii). Since §,=0
and 3+4a,>0 for all g2 6, u(d,) has a minimum value when 6= 0 giving u(d,) =0.

In case (i) with 4<B,—a,<S5, h(,-;) has a minimum value when §,_;=1 and
accordingly

415, 1)+<Z+2>(q 8—20,+26,) 24(4+a, —Bq)+<q+2>(q 8 —2a,+26,)

q q’
=9 _(4+10-2(8,— 4o
Z g (8, aq)}>q+1>0
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Furthermore each of k(3;) and p(é;) has a minimum (zero) value when ;=0, and in
addition g—8—2a,+28,>g>0. Consequently F,(I—-1)>0for 2gI<m+1.

In case (ii), with 3<fB,—a, <4, it is clear that u(d,)20, h(d,)2h(0)=0 and k(5;)=
k(0)=0 together with g—6—2a,+28,>q>0. Also d,_,(6;-, +2+a,—pB,) has a mini-
mum value when §;_, =1, in which case we find that

q+2 q q°
61_1(51_1 +2+aq_ﬂq)+(q_+1’>(q_6—2aq+2ﬁq)=q_ﬁ(q+8_2(ﬂq_aq))>q+—1 >0.

It follows again that F,(I—1)>0for 2<I<m+1.

For odd values of g, referring back to the earlier paper [3] and once again changing
to the original notation with all the exponents ¢;=1, a similar modification of Lemma
2.3 can be obtained to deduce the theorem without any of the later stages of the proof.
More precisely, all we have to do is to put in the additional substitution 2a,,=2+23,
together with 2a,,_,=q9—p,—26,+26,, 2a,_,=9g—1—26,+26, and so on. Then the
inductive method of that lemma goes through much as before to yield

1

1

4T(g,n,,)=4(g—1) {q"'" 160(60+3 o)+ z q ! _sk(és)} +4h(d,,) +q—T7—20,+ 28,

which is easily seen to be positive.
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