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AVERAGING THE SUM OF DIGITS FUNCTION TO AN
EVEN BASE

by D. M. E. FOSTER

(Received 31st July 1990)

For a fixed integer q^2, every positive integer k = YJ,*oar(<l>k)qr where each ar(q,k)e{0, \,2,...,q— 1}.
The sum of digits function a{q, k) = Y.r£oar{q,k) behaves rather erratically but on averaging has a
uniform behaviour. In particular if A(q,n) = Yj,Z\ a(q,k), where n > l , then it is well known that
A(q,n)~\ ((q — l)/log<j)nlogn as n-»oo. For even values of q, a lower bound is now given for the difference
\S(q,n) = A(q,n) — {(q — l)[logn/logq]n, where [logn/logq] denotes the greatest integer glogn/logq, comple-
menting an earlier result for odd values of q.
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As is well known, if q 2; 2 is a fixed integer then every positive integer k has a unique
(finite) expression in scale q of the form

fc=f a,(q,k)qr where a^q,k)e{0,l,2,...,q-l}.
r = 0

The sum of digits function

«(«,*)=£ ar{q,k)
r = O

and for n > 1 its sum

,n)=Ji a(q,k).
k = l

In 1940, Bush [1] proved the best possible asymptotic result, namely that

A(q,ri)~^- ^nlogn as n-*co,

log q

and since then more precise estimates for the behaviour of A(q, ri) and related functions
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have been obtained. In a recent paper in this journal [3] several references are given,
including one to a wide ranging survey by Stolarsky [4]. In [3] a lower bound was
obtained for

for all odd values of q ̂  9. (As usual, [log n/log q] denotes the greatest integer less than
or equal to logn/logg). Since then an analogous result for all even values of q^6 has
been found. The smaller values of q yield more precise inequalities (see [2]). In fact
these lower bounds complement the upper bound, namely

for all integers q^.2 obtained in [2].
The strategy of the proof does not depend on the parity of q, but when q is even, the

critical case takes one of two different forms and this difference is reflected in
establishing the required inequality. The rather lengthy proof for odd values of q was
explained in some detail in [3]. However, using a slight modification of the ideas used
there, we now indicate an easier method for even q. With this in mind it is now better
to keep the original digits notation, thereby allowing for possible zero coefficients. Then
every positive integer n is of the form n = nm where

for some meNu{0} and with coefficients ao,a1,...,ame{0,1,2,...,q— 1} and am^0. In
addition, for 1 ^ ii ̂  m — 1 we introduce

n_1=0,no = ao and n, = ao + a1q + —\-atq',

and, as described in [2], we have

S(q,nm)= £ Iar{ar-l)<f + (2ar-q+l)nr.1l
r = 0

We define /?. as the unique even integer satisfying

and note that equality cannot occur since 8<j2 — 9q + l is odd when q is even. (For odd
values of q, pq was the odd integer defined by the same inequalities, uniquely determined
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except when %q2 — 9q +1 is a perfect square.) In the course of the derivation of the lower
bound for S(q, nm)/nm two cases arise according as

(i) (3q+l-pq)
2q<8q3-9q2 + 2

or (ii) (3q+l-pq)
2q>Sq3-9q

2 + 2,

and it is this fact which makes the details of the proof twice as long as in the case of
odd q.

Numerical evidence by my colleague Mrs M. F. McCall for 5^q^l3 has brought to
light the critical cases, and hence the choice of Pq. In case (i), when nm is of the form

for / = 0 (mod 2) it can be seen that

where hq = <xq + 1 with

— ha as m-KXi and m—l remains fixed,

q\q-S)-(f}q-4)2q-(PQ-2)(f}q-Z)
3

Similarly the critical form for nm = n* in case (ii) occurs when / = 0 (mod 2) and

Once again,

— h. as m-»oo and m — l remains fixed,

where ha = <x. + l, as before, but now

3q2 + 4q-Pq(q+l)

Theorem. For all even q^6, (S(q,nm)/nJ> — hq. When q = 2 or 4 there is a more
precise result, namely
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(see [2]) and

f 9.4m-6
23.4m-2

9.4m-4
23.4m + 2

ifm is odd,

ifm(>0) is even.

The sequence of even integers (/?,) increases with q, as does aq, and starts off as
follows:

4 if q = 6 (case (i)), 8, 10, 12 (case (ii))

6 if q = 14, 16, 18 (case (i)), 20, 22, 24 (case (ii))

8 if q = 26, 28, 30 (case (i)), 32, 34, 36 (case (ii)).

The sequence (a,), correct to two decimal places, begins with

(«6; a8, a10, ax 2) =( -0.30; 0.02,0.35,0.68),

(a14, a16, a, 8; a2Oa22, a 2 4 )=( 1.01,1.36,1.70; 2.05,2.39,2.72),

(a26, a28, a30; a32«34> a36)=(3.06,3.41,3.75; 4.10,4.44,4.78).

and

In Lemma 2.1 of [3], we proved that 3^Pq — aq^5, and the same inequality holds for
even q. More precisely, a routine calculation gives

and

4 < p — a < 5 in case (i)

3 < Pq — a < 4 in case (ii),

inequalities which, once again, are useful in the later stages of the proof of the theorem.
Lemma 2.2 of [3] is no longer needed, but Lemma 2.3 needs to be adapted because of
the two different values of aq when q is even. As in [3], for 2^l^m + l, we introduce

and, once again
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h(x) = x(x + 3 + <xq - /?,), k(x) = x(x + 4 + <xq - Pq)

and, in addition,

and

u(x) = x(x + 3 + <*„).

When / = m + l , Fm(m) = S(q,nm) + hqnm and the theorem will follow if we can find a
simple form for Fm(m) and then prove that it is positive. Using the ideas of [3],
substitutions for am_i, am_2)... once again are chosen to reflect the critical case in
which the sequence (<5n), to be defined, begins with a run of zeros. Thus, for 2 ̂  r ̂  m
and for those values of q in case (i), we introduce

o n w -> ft ox _i_™ A o $q-25r-1+2dr (r even)
2a_ = 2 + 2oo, 2a__, =q — pa — 2oa+2o, and 2a__P = <

a —2 —2<5r_,+2dr (r odd).

When / = 2, it may be verified directly that

Using induction on / we see that, for 3 ^ / ^ w + 1,

if / is even, whereas
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if / is odd.
Now, for 2 ̂  r ̂  m and for those values of q in case (ii), we introduce

, - ,q — 2-25.-1 + 23. (reven)
1 ^ 2a-' = <q-2Sr_1+2S, (rodd)!

Once again an inductive proof leads to

and, for 3 ^ / ̂  m,

if / is even, whereas

if / is odd.

It is now an easy matter to see that Fm(m)>0 in each of cases (i) and (ii). Since So^0
and 3 + <x,>0 for all q^6, u(d0) has a minimum value when 5o = 0 giving u(<50)^0.

In case (i) with 4<pq—xq<5, /i(^(-i) has a minimum value when <5,_1 = 1 and
accordingly
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Furthermore each of /c(<5,) and p(8,) has a minimum (zero) value when <5, = 0, and in
addition g - 8 - 2 a , + 2/?,>g>0. Consequently Fm(/- l )>0 for 2^ /gm + l.

In case (ii), with 3</S,-a,<4, it is clear that u(<50)^0, h(St);>/i(0) = 0 and fc(<5,-)^
fc(0) = 0 together with q-6-2<xq + 2fiq>q>0. Also «5,_1(5,_1 + 2 + a,-j?1)) has a mini-
mum value when <5,_! = 1, in which case we find that

It follows again that F m ( / - l )>0 for 2 ^ / g
For odd values of q, referring back to the earlier paper [3] and once again changing

to the original notation with all the exponents r, = l, a similar modification of Lemma
2.3 can be obtained to deduce the theorem without any of the later stages of the proof.
More precisely, all we have to do is to put in the additional substitution 2am = 2 + 250

together with 2am_l = q — Pq — 250 + 28l, 2an_1 = q—\—2bx+2b2 and so on. Then the
inductive method of that lemma goes through much as before to yield

» = i
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