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Reliability theory and survival analysis, the residual entropy is known as a measure suit-
able to describe the dynamic information content in stochastic systems conditional on
survival. Aiming to analyze the variability of such information content, in this paper we
introduce the variance of the residual lifetimes, “residual varentropy” in short. After a
theoretical investigation of some properties of the residual varentropy, we illustrate cer-
tain applications related to the proportional hazards model and the first-passage times of
an Ornstein–Uhlenbeck jump-diffusion process.
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1. INTRODUCTION

The differential entropy is a well-known information measure that represents the expectation
of the information content of an absolutely continuous random variable. The corresponding
variance is termed varentropy and is used in various applications of information theory,
such as for the estimation of the performance of optimal block-coding schemes. Recent
contributions on the varentropy can be found in various papers by Arikan [1], Bobkov
and Madiman [6], Fradelizi et al. [17], Kontoyiannis and Verdú [21, 22], and Verdú and
Kontoyiannis [38]. Most of such results have been aimed to mathematical properties or to
applications in information theory. However, it should be pointed out that such information
measures often deserve interest in other fields, such as reliability and survival analysis. See,
for instance, Nanda and Chowdhury [31] for a recent comprehensive review on the Shannon’s
entropy and its applications in various fields. Several investigations have been oriented in
the past to assess the information content of stochastic systems with special attention to
dynamic measures related to the residual lifetime, the past lifetime, and the inactivity time
and their suitable generalizations. However, no efforts have been dedicated to the analysis
of the variance of the information content in dynamic contexts.

On the ground of the above remarks, the motivation of this paper is to investigate
the varentropy of residual lifetimes in a field related to reliability theory. The main aim is
to measure the variability of the dynamic information content of stochastic systems that
are conditioned on survival. This investigation is motivated by the need of constructing
new mathematical tools suitable to describe the time course of the information content
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in addition to the residual entropy. Our attention is devoted to disclose properties of the
varentropy of residual lifetimes. We give special attention to the conditions such that it
is constant. We also discuss the effect of linear transformations and provide suitable lower
and upper bounds. Moreover, we focus on certain applications involving the proportional
hazards model and the first-passage times for Ornstein–Uhlenbeck jump-diffusion processes.

The paper is organized as follows: In Section 2, we recall some basic results on useful
notions of information theory and reliability theory, with special attention to the varentropy
and the residual lifetimes. In Section 3, we introduce the residual varentropy and investi-
gate some properties of such new measure. Among other facts, we find conditions involving
the generalized hazard rate such that the residual varentropy is constant, we discuss the
effect of linear transformations, and obtain suitable upper and lower bounds for the residual
varentropy. Section 4 is devoted to some applications. We first deal with the proportional
hazard rates model and the reliability analysis of series system. We also discuss an applica-
tion to first-passage times of the Ornstein–Uhlenbeck jump-diffusion process arising from
the Ehrenfest model subject to catastrophes.

Throughout the paper, E[ · ] denotes expectation, g′ means the derivative of g, “log” is
the natural logarithm, and we set 0 log 0 = 0 by convention. Moreover, notation [X|B] is
adopted for a random variable whose distribution is identical to that of X conditional on B.

2. BACKGROUND

Let X be a random variable defined on a probability space (Ω,F , P), and let F (t) = P(X ≤
t), t ∈ R, be its cumulative distribution function (cdf). We denote by F (t) = 1 − F (t), the
complementary distribution function, also known as survival function.

2.1. Varentropy

If X is absolutely continuous with probability density function (pdf) f(t), we can introduce
the random variable

IC(X) = − log f(X), (1)

that is often referred as the (random) information content of X. We recall that IC(X) is
the natural counterpart of the number of bits needed to represent X in the discrete case
by a coding scheme that minimizes the average code length (see [37]). A very common
uncertainty measure is the expectation of the information content of X, given by

H(X) := E[IC(X)] = −E[log f(X)] = −
∫ ∞

−∞
f(x) log f(x) dx, (2)

which is termed differential entropy. Intuitively, H(X) measures the expected uncertainty
contained in f(x) about the predictability of an outcome of X. We remark that H(X) may or
may not exist (in the Lebesgue sense). We remark that the differential entropy is also related
to the evaluation of the size of the smallest set containing the realizations of typical random
samples taken from X (see Chapter 9 of [8]). When the differential entropy exists, it takes
values in the extended real line [−∞,∞], whereas the entropy of discrete random variables
is always nonnegative. Other incongruities have been pointed out in various investigations
(see, for instance, [10, 35]). Nevertheless, the use of differential entropy is largely adopted
in stochastic modeling and applied fields. In information theory, large attention is given to
the so-called entropy power of a continuous random variable X, which is a positive quantity
expressed in terms of H(X). Rather than in stochastic modeling, it is usually adopted
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to compare the differential entropy of a sum of independent random variables with their
individual differential entropies, and with the entropy of a suitable sum of independent
normal random variables (see Chapter 16 of [8] and [27] also for its connection to the Fisher
information). Hence, the entropy power is useful to analyze stochastic systems governed
by unbounded random variables that are comparable to Gaussian ones. However, in the
following sections, we shall concern mainly with nonnegative random lifetimes.

Bobkov and Madiman [6] investigated a relevant problem concerning the concentration
of the information content around the entropy in high dimensions when the pdf of X is
log-concave. Restricting our attention to the one-dimensional case, hereafter we focus on a
relevant quantity related to the concentration of IC(X) around H(X), namely the so-called
varentropy of X, which is defined as the variance of the information content of X, i.e.

V (X) := Var[IC(X)] = Var[log f(X)] = E[(IC(X))2] − [H(X)]2

=
∫ ∞

−∞
f(x)[log f(x)]2 dx −

[∫ ∞

−∞
f(x) log f(x) dx

]2

. (3)

The varentropy thus measures the variability in the information content of X. The relevance
of this measure has been pointed out in various investigations, especially from Fradelizi et al.
[17], that start from the concept of varentropy of a random variable X and use it to find
an optimal varentropy bound for log-concave distributions. Furthermore, a sharp uniform
bound on varentropy for log-concave distributions is found in the work of Madiman [28].
An alternative way to calculate a bound for varentropy is discussed in Goodarzi et al. [18]
where the authors use some concepts of reliability theory. The generalization from log-
concave to convex measures has been studied in the work of Li et al. [26] where a bound on
the varentropy for convex measures is discussed. We recall other works that deal with the
bounds of the varentropy in the contest of source coding. In particular, Arikan [1], analyzing
the case of the polar transform, shows that varentropy decreases to zero asymptotically as
the transform size increases. In studies on the lossless source code, it is possible to relate
varentropy to the dispersion of the source code, as shown in the papers by Kontoyiannis and
Verdú [21, 22], and Verdú and Kontoyiannis [38]. Specifically, together with the entropy rate,
the varentropy rate serves to tightly approximate the fundamental nonasymptotic limits of
fixed-to-variable compression for all but very small block lengths.

We remark that, due to (2) and (3), both the entropy and varentropy do not depend
on the realization of X but only on its pdf f.

In analogy with (2) and (3), the entropy and the varentropy of a discrete random
variable X taking values in the set {xi; i ∈ I} are expressed, respectively, as

H(X) = E[IC(X)] = −
∑
i∈I

P(X = xi) log P(X = xi) (4)

and

V (X) = Var[IC(X)] =
∑
i∈I

P(X = xi)[log P(X = xi)]2 − [H(X)]2. (5)

Hereafter, we analyze an illustrative example related to a three-valued random variable.
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Figure 1. Plots of varentropy (8) (left: 3D plot; right: contourplot).

Example 2.1: Let X be a discrete random variable such that, for a fixed h>0,

P(X = h) = p, P(X = 0) = 1 − p − q, P(X = −h) = q, (6)

with 0 ≤ q ≤ 1 − p ≤ 1. Thus, from (4) and (5), we have

H(X; p, q) = −p log p − (1 − p − q) log (1 − p − q) − q log q, (7)

and

V (X; p, q) = p(log p)2 + (1 − p − q)[log (1 − p − q)]2 + q(log q)2 − [H(X; p, q)]2. (8)

Figure 1 shows the varentropy given in (8) as a function of (p, q). Clearly, it confirms
the symmetry property V (X; p, q) = V (X; q, p). We can see that the varentropy vanishes in
the following 7 cases: (p, q, 1 − p − q) = (0, 0, 1), (0, 1, 0), (1, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5),
(0, 0.5, 0.5), (1/3, 1/3, 1/3). Moreover, the maximum of V (X; p, q) is attained for (p, q, 1 −
p − q) = (0.06165, 0.06165, 0.8767), (0.8767, 0.06165, 0.06165), (0.06165, 0.8767, 0.06165).

Now consider a system based on the superposition of three Gaussian signals. Namely,
we deal with a random variable, say Y , whose pdf is a mixture of Gaussian densities with
unity variance and mean given by h, 0, −h according to the probability law specified in (6).
Hence, for x ∈ R, one has

fY (x) = (2π)−1/2[pe−(x−h)2/2 + (1 − p − q)e−x2/2 + qe−(x+h)2/2]. (9)

Figure 2 shows some instances of the corresponding varentropy as a function of h, determined
numerically by means of (3). It can be shown that V (Y ) is not monotonic in h; moreover it
reaches large values for the choices of (p, q) that maximize V (X; p, q) and for large values
of h.

The relevance of the entropy in information theory and other disciplines is very well
known, whereas the varentropy has attracted less attention. Nevertheless, the latter plays a
relevant role in the assessment of the statistical significance of entropy. Specifically, in the
discrete case, the entropy (4) represents the expected number of symbols, in natural base,
required to code an event produced by a source of information governed by the probability
distribution of X. In this case, the varentropy (5) measures the variability related to such
a coding. In other terms, if two sources of information have the same entropy, than the
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Figure 2. The varentropy corresponding to pdf (9) for p = q = 0.06165, 0.1, 0.2, 0.45,
0.4, 0.3 (from top to bottom for large values of h).

number of digits required in the average to code two sequences produced by such sources
is the same and is proportional to H(X). However, the number of digits required for a
single observed sequence in the average is closer to the expected one for the source having
the smallest varentropy. Hence, V (X) measures how much the entropy is meaningful in the
coding of sequences of symbols generated by X.

Example 2.2: Let Y be a Bernoulli random variable having distribution P(Y = 0) = 1 − θ,
P(Y = 1) = θ, with 0 ≤ θ ≤ 1. By means of numerical calculations, it is easy to see that for
θ ≈ 0.337009, one has H(Y ) ≈ 0.639032 and V (Y ) ≈ 0.1023. For the distribution considered
in Example 2.1, if p = q = 0.1 from (7) and (8), we have H(X) ≈ 0.639032 and V (X) ≈
0.691852, respectively. Hence, the considered random variables have the same entropy, but
the varentropy of X is larger. This implies that the coding procedure is much more reliable
for sequences generated by Y.

2.2. Residual lifetimes

In order to investigate the role of the varentropy in reliability theory, we now recall some
relevant notions in this area. Consider a system (such as an item or a living organism) that
starts its activity at time 0 and works regularly up to its failure time. Now, we assume
that X is a nonnegative absolutely continuous random variable that describes the random
lifetime of such a system. Hence, H(X) is a suitable measure of uncertainty of the failure
time. However, the use of H(X) is adequate for a brand new system, whereas it is somewhat
unrealistic whenever the initial age of the considered system is non-zero. In this case, it is
appropriate to recall the residual lifetime

Xt = [X − t |X > t], t ∈ D, (10)

where D := {t ≥ 0 : F (t) > 0}. Clearly, Xt denotes the system lifetime conditioned to the
survival of the system at time t. The survival function and the pdf of (10), for any t ∈ D,
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are given, respectively, by

F t(x) =
F (x + t)

F (t)
, ft(x) =

f(x + t)
F (t)

, x > 0. (11)

Hence, recalling (2), the generalization of the entropy to the residual lifetime distributions
is given by (see [15, 16, 30])

H(Xt) = E[IC(Xt)] = −
∫ ∞

t

f(x)
F (t)

log
f(x)
F (t)

dx, t ∈ D, (12)

which is named residual entropy, for short. The conventional approach used to characterize
the failure distribution of X is either by its (instantaneous) hazard rate function

λ(t) =
f(t)
F (t)

= lim
h→0+

1
h

P[X ≤ t + h |X > t], t ∈ D, (13)

or by its mean residual lifetime function, defined as

m(t) = E(Xt) = E[X − t |X > t] =
1

F (t)

∫ ∞

t

F (x) dx, t ∈ D. (14)

For future needs, we recall also the cumulative hazard rate function of X,

Λ(t) = − log F (t) =
∫ t

0

λ(x) dx, t ∈ D, (15)

which plays a relevant role in numerous contexts. Furthermore, we pinpoint the following
alternative forms of the residual entropy (12):

H(Xt) = −Λ(t) − 1
F (t)

∫ ∞

t

f(x) log f(x) dx, (16a)

H(Xt) = 1 − 1
F (t)

∫ ∞

t

f(x) log λ(x) dx, (16b)

for t ∈ D. Differentiating relation (16a), one has (see, e.g., Eq. (2.4) of [15])

H ′(Xt) = λ(t)[H(Xt) − 1 + log λ(t)]. (17)

Moreover, it is known that each of the functions F , λ, and m uniquely determines the other
two. More specifically, for t ∈ D, we have

F (t) = exp
{
−

∫ t

0

λ(x) dx

}
=

m(0)
m(t)

exp
{
−

∫ t

0

1
m(x)

dx

}
, λ(t) =

m′(t) + 1
m(t)

.

We recall also that Ebrahimi [15] showed that H(Xt) uniquely determines F under wide
assumptions. Useful applications of residual lifetime distributions in actuarial science can
be found in Sachlas and Papaioannou [34].
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Table 1. Selected distributions with constant varentropy

Pdf Residual entropy Residual varentropy

Distribution f(x) H(Xt) V (Xt)

Uniform D = (0, θ)
1

θ
log (θ − t) 0

Exponential D = (0,∞) λe−λx, λ > 0 1 − log λ 1

Triangular D = (0, 1) 2(1 − x)
1

2
+ log

1 − t

2

1

4

3. RESIDUAL VARENTROPY

Recalling that the varentropy of a random lifetime X is defined in (3), we can now extend
the notion of varentropy to the residual lifetime considered in (10). Namely, recalling the
second of (11), for t ∈ D, we define the varentropy of the residual lifetime distribution
(residual varentropy, in short) as

V (Xt) := Var[IC(Xt)] =
∫ ∞

t

f(x)
F (t)

(
log

f(x)
F (t)

)2

dx − [H(Xt)]2

=
1

F (t)

∫ ∞

t

f(x)[log f(x)]2 dx − [Λ(t) + H(Xt)]2, (18)

where Λ(t) is given in (15), and H(Xt) is provided in (12) and (16). Making use of Eq. (18),
we can show, in Table 1, some examples in which the residual varentropy is constant.

In the following, we determine the conditions for which the residual varentropy is
costant. To this aim, we first obtain an expression of its derivative.

Proposition 3.1: For all t ∈ D, the derivative of the residual varentropy is

V ′(Xt) = λ(t){V (Xt) − [H(Xt) + log λ(t)]2}. (19)

Proof: By differentiating both sides of Eq. (18), and recalling (13), we have

V ′(Xt) = λ(t)
{

1
F (t)

∫ ∞

t

f(x)[log f(x)]2 dx − [log f(t)]2
}

− 2[Λ(t) + H(Xt)][λ(t) + H ′(Xt)], t ∈ D. (20)

Then, making use of Eqs. (17) and (18), from (20) we get

V ′(Xt) = λ(t){V (Xt) + [Λ(t) + H(Xt)]2 − [log f(t)]2

− 2[Λ(t) + H(Xt)][H(Xt) + log λ(t)]}, t ∈ D.

Hence, due to (15), after some calculations, we obtain Eq. (19). �

As a consequence of Proposition 3.1, we can now provide some useful results involving
the residual varentropy, the residual entropy, the hazard rate, and the varentropy of a
lifetime X.
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Theorem 3.1: Let X have a pdf such that f(t) > 0 for all t ∈ (0, r), with r ∈ (0,∞].

(i) If the residual varentropy V (Xt) is constant, say

V (Xt) = v ≥ 0, ∀t ∈ [0, r), (21)

then the following relation holds:

|H(Xt) + log λ(t)| =
√

v, ∀t ∈ (0, r). (22)

(ii) Let c ∈ R; if

H(Xt) + log λ(t) = c, ∀t ∈ (0, r), (23)

then

V (Xt) = c2 +
V (X) − c2

F (t)
, ∀t ∈ [0, r). (24)

Proof: Since f(t) > 0 for all t ∈ (0, r), the assumption (21) immediately gives (22), due to
(19). Moreover, if condition (23) holds, then Eq. (19) becomes

V ′(Xt) = λ(t){V (Xt) − c2}, t ∈ (0, r),

with the initial condition V (Xt)|t=0 = V (X). Finally, it is not hard to see that the solution
of such problem yields Eq. (24). �

Let us now recall the notion of generalized hazard (or failure) rate of X expressed by
(see [36])

λα(t) =
f(t)

[F (t)]1+α
, t ∈ D, (25)

for α ∈ R. Clearly, recalling (13), one has λ0(t) = λ(t) for all t. Other parameterizations of
λα(t) have been treated in Bieniek and Szpak [5] as a special case of the generalized failure
rate defined by Barlow and van Zwet [4]. Further forms of generalized hazard rates have
been considered in the past. For instance, Lariviere and Porteus [24] and Maoui et al. [29]
considered t λ(t) as a generalized hazard rate. Moreover, a different version has been treated
in Li and Tewari [25].

We are now able to provide necessary and sufficient conditions in terms of the residual
entropy (cf. point (ii) of Theorem 3.1), such that the generalized hazard rate of X is constant.
Recall that H(X) denotes the entropy given in (2).

Theorem 3.2: Let X possess a pdf such that f(t) > 0 for all t ∈ (0, r), with r ∈ (0,∞]. The
generalized hazard rate of X is constant, such that

λc−1(t) = ec−H(X), t ∈ [0, r), (26)

if and only if Eq. (23) is fulfilled for a given c ∈ R.
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Proof: Assume that Eq. (26) is fulfilled. Making use of (13) and (16a), we have

H(Xt) + log λ(t) = log f(t) +
1

F (t)

{
H(X) +

∫ t

0

f(x) log f(x) dx

}
. (27)

From the assumption (26), it is not hard to see that∫ t

0

f(x) log f(x) dx = −F (t)H(X) − cF (t) log F (t).

Hence, due to Eqs. (26) and (27), we have

H(Xt) + log λ(t) = H(X) + log
f(t)

[F (t)]c
= c,

so that (23) holds. Now, let us prove that (23) implies the validity of Eq. (26). In fact,
rearranging Eq. (17), we have

H(Xt) + log λ(t) =
H ′(Xt)

λ(t)
+ 1,

so that, due to Eq. (23), one has

H ′(Xt) = (c − 1)λ(t), t ∈ (0, r).

By integration over [0, t], and recalling (15), one obtains

H(Xt) − H(X) = (c − 1)Λ(t), t ∈ [0, r).

Comparing the latter identity with Eq. (23) and in virtue of (15), after some algebraic
calculations, we get

log
f(t)

[F (t)]c
= c − H(X),

which gives immediately relation (26) by virtue of (25). �

Remark 3.1:

(i) It is worth pointing out that, due to Theorem 3.1 of Asadi and Ebrahimi [3], the
condition expressed in Eq. (23) is fulfilled if and only if X has a generalized Pareto
distribution, with survival function

F (t) =
(

b

at + b

)(1/a)+1

, t ≥ 0, (28)

for a > −1 and b > 0. The generalized Pareto distribution is a flexible statistical
model which is employed in several research areas, such as statistical physics, econo-
physics, and social sciences, since its distribution possesses a tail of general form.
Specifically, it includes the exponential distribution (a → 0), the Pareto distribution
(a > 0, with heavy tail), and the power distribution (−1 < a < 0, with bounded sup-
port). An intuitive reason leading to the above result is due to the property that
the generalized Pareto distribution is the only family of distributions whose mean
residual function (14) is linear (see [20]). Indeed, for the survival function (28), we

https://doi.org/10.1017/S0269964820000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000133


RESIDUAL VARENTROPY OF RANDOM LIFETIMES 689

have m(t) = at + b, with hazard rate function λ(t) = (1 + a)/(at + b). For a recent
characterization of this distribution in the context of shape functionals, see Arriaza
et al. [2].

(ii) A special case arises from (28) in the limit as a → ∞ and b → ∞, with a/b → λ > 0,
by which the pdf and the survival function of X are given, respectively, by

f(t) =
λ

(1 + λt)2
, F (t) =

1
1 + λt

, t ∈ [0,∞).

In this case, X has a modified Pareto distribution that describes the first arrival
time in a Geometric counting process with parameter λ > 0 (cf. Section 2.2 of [14],
for instance). From Eq. (25), it immediately follows that the generalized hazard rate
of X is a constant for α = 1, i.e. λ1(t) ≡ λ. As a consequence, Eq. (26) is fulfilled
for c = 2 and H(X) = 2 − log λ. From Theorems 3.1 and 3.2, we thus obtain the
(increasing) residual entropy,

H(Xt) = 2 − log
λ

1 + λt
, t ≥ 0,

and the corresponding constant residual varentropy, V (Xt) = 4. It is worth pointing
out that in this special case, the mean residual lifetime is infinite. Hence, for such
a stochastic model, the residual entropy and the residual varentropy provide useful
information even if the mean residual lifetime is not finite.

The following example is concerning a family of distributions for which the residual
varentropy exhibits different behaviors.

Example 3.1: Let Xλ,k have Weibull distribution, with pdf

fλ,k(x) =
k

λ

(x

λ

)k−1

e−(x/λ)k

, x > 0, (29)

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Recall that this family of
distributions includes special cases of interest, such as the exponential distribution (for k =1)
and the Rayleigh distribution (for k = 2). A characterization of the Weibull distribution in
terms of a Gini-type index of interest in reliability theory is provided in Theorem 1 of [33].
The expression of the residual varentropy is omitted being quite cumbersome. The behavior of
the pdf (29) and of the corresponding residual varentropy is visualized in Figure 3 for some
choices of the shape parameter. It can be seen that the residual varentropy is decreasing,
constant, increasing, and nonmonotonic for k = 0.5, 1, 1.5, 3.5, respectively.

Let us now analyze the effect of linear transformations to the residual varentropy. We
recall that if

Y = aX + b, a > 0, b ≥ 0, (30)

then the residual entropy of X and Y are related by (see Eq. (2.6) of [16])

H(Yt) = H(X(t−b)/a) + log a, ∀ t. (31)

Proposition 3.2: Let X and Y be related by (30). Hence, for their residual varentropies,
we have:

V (Yt) = V (X(t−b)/a) ∀ t. (32)
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Figure 3. (left) Weibull pdf, given in (29), and (right) residual varentropy for λ = 1 and
various choices of k (as indicated in the label).

Proof: Clearly, from (30), we have that the cdfs and the pdfs of Y and X are related by
FY (x) = FX((x − b)/a) and fY (x) = (1/a)fX((x − b)/a). Hence, recalling (18) and (31), it
is not hard to see that

V (Yt) =
∫ ∞

(t−b)/a

fX(x)
FX( t−b

a )

[
log

fX(x)
FX( t−b

a )
− log a

]2

dx − [H(X(t−b)/a) + log a]2.

The thesis (32) thus follows after some calculations. �

3.1. Bounds

We conclude this section by discussing some bounds to the residual varentropy.
First, we provide a lower bound for V (Xt). It will be expressed in terms of the “variance

residual life function,” defined as the variance of (10), that is,

σ2(t) = Var(Xt) = Var[X − t |X > t] =
2

F (t)

∫ ∞

t

dx

∫ ∞

x

F (y) dy − [m(t)]2, (33)

with m(t) defined in (14). For instance, see Gupta [19] for characterization results and
properties of σ2(t).

Theorem 3.3: Let Xt be a residual lifetime as defined in (10), and assume that the corre-
sponding mean residual lifetime m(t) and variance residual lifetime σ2(t) are finite (cf. (14)
and (33), respectively). Then, for all t ∈ D,

V (Xt) ≥ σ2(t)(E[w′
t(Xt)])2 (34)

where the function wt(x) is defined by

σ2(t)wt(x)ft(x) =
∫ x

0

[m(t) − z]ft(z) dz, x > 0,

with ft(x) given in the second of (11).

Proof: We recall that if X is an absolutely continuous random variable with pdf f(x),
mean μ and variance σ2, then (cf. [7])

Var[g(X)] ≥ σ2(E[w(X)g′(X)])2, (35)

where w(x) is defined by σ2w(x)f(x) =
∫ x

0
(μ − z)f(z) dz. Hence, by taking Xt as reference,

with g(x) = − log f(x) and integrating by parts, similarly as Eq. (3.9) of Goodarzi et al. [18],
we obtain (34). �
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Note that the equality in (35) holds if and only if X is exponentially distributed.
Hereafter, we determine suitable upper bounds to the residual varentropy, thus pro-

viding conditions on its finiteness. First, we recall that X is said to be ILR (increasing
in likelihood ratio) if its pdf f(x) is such that log f(x) is a concave function on (0,∞);
equivalently, we say that X has a log-concave pdf.

Theorem 3.4: Given a random lifetime X with log-concave pdf f(x), then

V (Xt) ≤ 1, for all t ∈ D.

Proof: We note that if f(x) is log-concave, then also ft(x) is log-concave due to (11).
Hence, the proof is a direct consequence of Theorem 2.3 of Fradelizi et al. [17], which states
that the varentropy of a random lifetime with log-concave pdf is not greater than 1. �

The following bound is expressed in terms of the weighted residual entropy of X, which
is a weighted version of the residual entropy (12) and is given by (see [12] for details)

Hw(Xt) = −
∫ ∞

t

x
f(x)
F (t)

log
f(x)
F (t)

dx

= − 1
F (t)

∫ ∞

t

xf(x) log f(x) dx − Λ(t)
F (t)

∫ ∞

t

xf(x) dx, t ∈ D. (36)

Furthermore, it is based on the so-called vitality function of X, that is,

δ(t) := E[X|X > t] = m(t) + t, t ∈ D. (37)

Namely, since X denotes the random lifetime of a system, δ(t) can be interpreted as the
average life span of a system whose age exceeds t.

Theorem 3.5: If X is a random lifetime such that its pdf satisfies

e−αx−β ≤ f(x) ≤ 1 ∀x ≥ 0, (38)

with α > 0 and β ≥ 0, then for all t ≥ 0

V (Xt) ≤ α[Λ(t)δ(t) + Hw(Xt)] + β[Λ(t) + H(Xt)] − [Λ(t) + H(Xt)]2. (39)

Proof: From Eq. (18), due to (38) one has

V (Xt) ≤ − 1
F (t)

∫ ∞

t

(αx + β)f(x) log f(x) dx − [Λ(t) + H(Xt)]2, t ≥ 0. (40)

We note that Eqs. (14) and (37) give∫ ∞

t

xf(x) dx = F (t)δ(t), t ≥ 0.

Hence, recalling (15) and (37), Eq. (36) implies∫ ∞

t

x f(x) log f(x) dx = −F (t)[Λ(t)δ(t) + Hw(Xt)], t ≥ 0. (41)

Moreover, from (16a), we have∫ ∞

t

f(x) log f(x) dx = −F (t)[Λ(t) + H(Xt)], t ≥ 0. (42)

Finally, substituting (41) and (42) in (40), we immediately obtain the inequality (39). �
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4. SOME APPLICATIONS

In this section, we consider some applications of the residual varentropy. We first deal
with the proportional hazard rates model, which in turn can be employed to the reliability
analysis of series systems. A further case of interest is concerning the first-passage time
problem of an Ornstein–Uhlenbeck jump-diffusion process which arises as a limit of the
continuous-time Ehrenfest model.

4.1. Proportional hazards model

Consider a family of absolutely continuous nonnegative random variables {X(a); a > 0},
where the survival function and the pdf of X(a) are expressed, respectively, as

F
(a)

(t) = P[X(a) > t] = [F (t)]a, f (a)(t) = a[F (t)]a−1f(t), t > 0, (43)

with F (t) a suitable baseline survival function and f(t) = −(d/dt)F (t) the associated pdf.
This model is known as the proportional hazards model, see Cox [9], since the hazard rate
function of X(a) is proportional to the hazard rate corresponding to the baseline survival
function. For instance, see Parsa et al. [33] for a recent characterization of the proportional
hazards model in terms of the Gini-type index.

Let us now address the problem of evaluating the residual varentropy for the model
(43) when X(a) is a random lifetime. First, noting that the cumulative hazard rate function
is given by

Λ(a)(t) = − log F
(a)

(t) = aΛ(t), t > 0, (44)

from (16a), it is not hard to see that the residual entropy of X(a) is expressed as

H(X(a)
t ) = −Λ(a)(t) − 1

[F (t)]a

∫ ∞

t

f (a)(x) log f (a)(x) dx

= −aΛ(t) − 1
[F (t)]a

∫ [F (t)]a

0

	(y; a) dy, t > 0, (45)

with y = [F (x)]a, and where

	(y; a) := log {ay1−1/af [F
−1

(y1/a)]}, 0 < y < 1. (46)

Hence, recalling (18), from (44) and (45) after some calculations, we obtain the residual
varentropy of X(a), for t > 0:

V (X(a)
t ) =

∫ ∞
t

f (a)(x)[log f (a)(x)]2 dx

[F (t)]a
−

[∫ ∞
t

f (a)(x) log f (a)(x) dx

[F (t)]a

]2

=
1

[F (t)]a

∫ [F (t)]a

0

[	(y; a)]2 dy −
{

1
[F (t)]a

∫ [F (t)]a

0

	(y; a) dy

}2

. (47)

Making use of Eqs. (13) and (15), one has f(x) = λ(x)e−Λ(x), so that the function introduced
in (46) can be rewritten also as follows:

	(y; a) = log
{

ayλ

(
Λ−1

(
−1

a
log y

))}
.

An application can be immediately given to series systems.
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Figure 4. The residual varentropy of X
(a)
t for the series system of Example 4.1, for a =

n = 1, 2, 3, 4 (from bottom to top) and for b and λ as indicated.

Example 4.1: Consider a system composed of n units in series and characterized by
i.i.d. random lifetimes X1, . . . , Xn. Let the survival function of each unit be denoted with
F (t) = P(Xi > t). Since the system lifetime is given by X(n) = min{X1, . . . , Xn}, the model
of series system satisfies the proportional hazards model specified in (43), for a = n ∈ N.

For an illustrative example, we assume that the random lifetimes Xi have generalized
exponential distribution with survival function F (t) = 1 − (1 − e−λt)b, t ≥ 0, for b > 0. (We
recall that this distribution plays a role in the construction of probabilistic models for damped
random motions with finite velocities [13]). From (46), thus we have

	(y; a) = log{abλy1−1/a(1 − y)1−1/b[1 − (1 − y)1/b]}, 0 < y < 1.

From Eq. (47), we come to the residual varentropy of the system lifetime X(n). The expres-
sion of V (X(a)

t ) cannot be obtained in a closed form, but it can be evaluated via numerical
computations. Figure 4 shows some plots of the residual varentropy for some choices of a =
n. It is clear that the varentropy increases when the number of units grows, and generally
when t becomes larger.

Example 4.2: Under the proportional hazards model, Eq. (47) can be used to construct
time-varying reference sets for the information content of the residual lifetime (10).
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Figure 5. Residual entropy H(X(a)
t ) (full) and extremes of the intervals (48) (dot-

ted) with a = 2 (left) and a = 4 (right), for the following baseline pdfs: (i)
(Weibull) f(t) = (k/λ)(t/λ)k−1 exp{−(t/λ)k}, t > 0, for k = 2, λ = 2/π; (ii) (gamma)
f(t) = (1/θ)(t/θ)r−1 exp{−t/θ}(1/Γ(r)), t > 0, for r = 2, θ = 1

2 ; (iii) (lognormal)
f(t) = (1/

√
2πσt) exp{−(log t − μ)2/2σ2}, t > 0, for μ = − 1

2 , σ = 1.

Specifically, we determine intervals of the form

H(X(a)
t ) ± k

√
V (X(a)

t ) = E[IC(X(a)
t )] ± k

√
Var[IC(X(a)

t )], k = 2, 3 (48)

for suitable baseline distributions (Weibull, gamma, and lognormal). Since closed forms are
not available, we illustrate such results with some graphics given in Figure 5. For comparison
purposes, the relevant parameters are chosen in order that the baseline distributions have
unity means.
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Figure 6. Residual entropy for the FPT pdf (49), when y = 1, α = 1, ν = 1 (left), ν = 2
(right), and ξ = 0, 0.35, 0.7, 1 (from top to bottom).

4.2. First-passage times of an Ornstein–Uhlenbeck jump-diffusion process

The continuous-time Ehrenfest model describes a simple diffusion process as a suitable
Markov chain, where molecules of a gas diffuse at random in a container divided into two
equal parts by a permeable membrane. Recently, Dharmaraja et al. [11] proposed an exten-
sion of such stochastic system that includes the occurrence of stochastic resets, also named
‘catastrophes’, i.e. instantaneous transitions to the state zero at constant rate ξ > 0. A
jump-diffusion approximation was considered under a suitable scaling procedure. Specifi-
cally, the resulting jump-diffusion process, say {X(t), t ≥ 0}, consists in a mean-reverting
time-homogenous Ornstein–Uhlenbeck process with catastrophes (occurring with rate ξ),
having state-space R, with drift and infinitesimal variance given by

A1(x) = −αx, A2(x) = αν (α > 0, ν > 0).

In this case, denoting by f(t) the first-passage time (FPT) pdf of X(t) through 0, with
X(0) = y �= 0, we have (cf. Eq. (49) of [11])

f(t) = e−ξt f̃(t) + ξ e−ξtErf(|y|e−αt [ν(1 − e−2αt)]−1/2), t > 0, (49)

with f(0) = ξ, where Erf(·) is the error function, and where (cf. Eq. (38) of [11])

f̃(t) =
2α|y|e−αt

√
πν(1 − e−2αt)3/2

exp
{
− y2e−2αt

ν(1 − e−2αt)

}
, t > 0,

with f̃(0) = 0, is the FPT pdf of the corresponding diffusion process in the absence of
catastrophes. We recall that the FPT pdf (49) deserves interest in the realm of stochastic
processes with stochastic reset (see, for instance, [23, 32]). To analyze the relevant infor-
mation content, Figures 6 and 7 show some instances of the residual entropy related to pdf
(49), whereas the corresponding residual varentropy is provided in Figures 8 and 9. It is
shown that the residual entropy is decreasing in ξ and in ν; moreover, it tends to a constant
when t grows, such limit being decreasing in ξ and constant in ν. The residual varentropy
exhibits a different behavior, since it is decreasing in ξ and is increasing in ν for sufficiently
large values of t. Moreover, it tends to an identical limit when t grows. This latter property
is confirmed by extensive computations performed for various choices of the parameters.
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Figure 7. Same as Figure 6, for ξ = 1 (left), ξ = 2 (right), and ν = 0.15, 0.3, 0.45, 0.6
(from top to bottom).

Figure 8. Residual varentropy for the same cases of Figure 6, with ξ = 0, 0.35, 0.7, 1
(from top to bottom).

Figure 9. Residual varentropy for the same cases of Figure 7, with ν = 0.15, 0.3, 0.45, 0.6
(from bottom to top).

5. CONCLUSIONS

The differential entropy (2) is largely used in information theory and other related areas,
being the analogue of the Shannon entropy for a continuous random variable. It constitutes
the expected value of the information content (1), whereas its variance is given by the
varentropy (3). The latter is useful to assess the effectiveness of the differential entropy as
a measure of the information content of a random system.
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Motivated by possible application in reliability theory and survival analysis, in this
paper we investigated the residual varentropy, that is the varentropy of the residual lifetime
distribution. Together with the residual entropy, this measure allows to analyze the dynami-
cal information content of time-varying systems conditional on being active at current time.
We discussed various properties, with connections to the generalized hazard rate, the effect
of linear transformations, and a suitable lower bound that involves the variance residual life
function. We also addressed the use of the residual varentropy in connection with classi-
cal distributions and within some applications concerning the proportional hazards model
and the first-passage time problem of an Ornstein–Uhlenbeck jump-diffusion process with
catastrophes.

Future developments will be oriented to applications of the varentropy to other stochas-
tic models of interest (such as order statistics, spacings, record values, inaccuracy measures
based on the relevation transform, and its reversed version) and to construct an empirical
version of the residual varentropy in order to come to suitable estimates.
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