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1. Introduction

The classical Morrey spaces Lp,λ were originally introduced in [17] in order to prove local
Hölder continuity of solutions to certain systems of partial differential equations (PDEs).
A real-valued function f is said to belong to the Morrey space Lp,λ(Rn) with p ∈ [1,∞),
λ ∈ (0, n), provided that the norm

‖f‖Lp,λ(Rn) =
(

sup
(x,r)∈Rn×R+

1
rλ

∫
Br(x)

|f(y)|p dy

)1/p

.

is finite. The main result connected with these spaces is the following celebrated lemma:
let |Df | ∈ Lp,λ even locally, with λ < p; u is then Hölder continuous of exponent
α = 1 − λ/p. This result has applications in the study of the regularity of the strong
solutions to elliptic and parabolic PDEs and systems. In [5] Chiarenza and Frasca showed
boundedness of the Hardy–Littlewood maximal operator, which allowed them to prove
continuity in Lp,λ(Rn) of some classical integral operators. These operators appear in the
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representation formulae of the solutions of various linear PDEs. Thus, the results in [5]
allow us to study the regularity of the solutions of these operators in Lp,λ (see [20,21,24]
and the references therein). In [16] Mizuhara extended the Morrey concept of integral
average over a ball with a certain growth, taking a weight function ω(x, r) : R

n×R+ → R+

instead of rλ. Thus he put the beginning of the study of the generalized Morrey spaces
Lp,ω, under various conditions on the weight ω. In [18] Nakai studied continuity of
some classical integral operators in Lp,ω imposing the following doubling and integral
conditions on ω:

C1 � ω(x, s)
ω(x, r)

� C2, r � s � 2r,

∫ ∞

r

ω(x, s)
sn+1 ds � C3

ω(x, r)
rn

,

where the constants do not depend on s, r and x. Furthermore, in [19] Nakai extended
the theory of Morrey spaces on homogeneous spaces (X, d, μ) endowed with a quasi-
distance d and a non-negative measure μ. The generalized Morrey space is then defined
to be the set of all f ∈ L1

loc(X) such that

‖f‖Lp,φ(X) = sup
B

1
φ(B)

(
1

μ(B)

∫
B

|f(x)|p dμ(x)
)1/p

,

where the supremo is taken over all balls B = B(a, r) with respect to the quasi-distance d.
The weight function φ(B) = φ(a, r) satisfies the integral condition

∫ ∞

r

φ(a, s)
s

ds � Cφ(a, r) ∀a ∈ X, r > 0. (1.1)

As a consequence, the boundedness of the Hardy–Littlewood maximal function and the
Calderón–Zygmund singular integral operators in Morrey-type spaces on spaces of homo-
geneous type hold. Some applications of these operators in the regularity theory of partial
differential equations are presented in [23,25,26]. Therein, the second author obtained
global Lp,ω-regularity for elliptic and parabolic boundary-value problems. The approach
is based on explicit representation formulae for the higher-order derivatives of the solution
and estimates for the above-mentioned operators.

Other generalizations of the Morrey spaces are considered in [2, 8, 9, 12]. In these
works Guliyev et al . studied the continuity of known integral operators acting from one
Morrey-type space, Mp,ϕ1(R

n), to another, Mp,ϕ2(R
n), where the couple (ϕ1, ϕ2) satisfies

the condition

∫ ∞

r

ess infs<ζ<∞ ϕ1(x, ζ)ζn/p

s(n+p)/p
ds � Cϕ2(x, r), (x, r) ∈ R

n × R+. (1.2)

The technique consists of obtaining some estimates for sublinear operators generated by
various classical integral operators such as the Calderón–Zygmund operator, the commu-
tator with bounded mean oscillation (BMO) functions, the Riesz potential, the Hardy–

https://doi.org/10.1017/S0013091513000758 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000758


Parabolic equations in generalized Morrey spaces 201

Littlewood maximal operator and others. We note that the condition (1.2) is weaker
than (1.1). Indeed, if (1.1) holds and ϕ1 = ϕ2 = ϕ, then∫ ∞

r

ess infs<ζ<∞ ϕ(x, ζ)ζn/p

s(n+p)/p
ds �

∫ ∞

r

ϕ(x, s)
s

ds � Cϕ(x, r).

The following example shows that there exist functions satisfying (1.2) but not (1.1).

Example 1.1. For β ∈ (0, n/p), consider the weight function

ϕ(r) = r(βp−n)/p

∣∣∣∣sin
(

max
{

1,
π

r

})∣∣∣∣.
Direct calculations give

ess inf
r<ζ<∞

ϕ(ζ)ζn/p =

{
0 if r ∈ (0, π),

rβ sin 1 if r ∈ (π,∞).

Then,

∫ ∞

r

ess infs<ζ<∞ ϕ(ζ)ζn/p

s(n+p)/p
ds =

{
0 if r ∈ (0, π),

r(βp−n)/p sin 1 if r ∈ (π,∞)
� Cϕ(r).

The function ϕ does not satisfy the condition (1.1).

In [11] we applied the results obtained in [2] to the study of the global Mp,ϕ-regularity
for the Dirichlet problem for linear uniformly elliptic equations with vanishing mean
oscillation (VMO) coefficients. In the present work we extend our study over singular
integral operators with a parabolic-type kernel. As a by-product we obtain regularity
results for strong solutions of parabolic boundary-value problems. The unique strong
solvability of the problem under consideration is guaranteed by [3]. Furthermore, its
regularity has been studied in the frameworks of the Morrey, Morrey-type and weighted
Lebesgue spaces, in [21], [25] and [10], respectively, while in [27] we deal with the oblique
derivative problem in Mp,ϕ spaces. Our approach is based on estimates for sublinear
operators generated by singular integrals with parabolic kernels (see § 3). The singular
integral operators enter in the interior representation formula of the derivatives Diju

of the solution of (2.1). In § 4 we establish continuity of sublinear operators generated
by non-singular integral operators. A similar result also holds for the commutators of
these operators with BMO functions. The last integrals are included in the boundary
representation formula for Diju, and allow us to obtain a local a priori estimate near
the boundary. The global a priori estimate for u is obtained in § 6.

The following notation is used throughout this paper:

• x = (x′, t), y = (y′, τ) ∈ R
n+1 = R

n × R, R
n+1
+ = R

n × R+;

• x = (x′′, xn, t) ∈ D
n+1
+ = R

n−1 × R+ × R+, D
n+1
− = R

n−1 × R− × R+;

• | · | is the Euclidean metric, |x| = (
∑n

i=1 x2
i + t2)1/2;
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• Br(x′) = {y′ ∈ R
n : |x′ − y′| < r}, |Br| = Crn;

• Ir(x) = {y ∈ R
n+1 : |x′ − y′| < r, |t − τ | < r2}, |Ir| = Crn+2;

• S
n is the unit sphere in R

n+1;

• Diu = ∂u/∂xi, Du = (D1u, . . . , Dnu), ut = ∂u/∂t;

• Diju = ∂2u/∂xi∂xj , D2u = {Diju}n
ij=1 denotes the Hessian matrix of u;

• for any f ∈ Lp(A), A ⊂ R
n+1, we write

‖f‖p,A ≡ ‖f‖Lp(A) =
( ∫

A

|f(y)|p dy

)1/p

;

• the standard summation convention on repeated upper and lower indices is adopted;

• the letter C is used for various positive constants and may change from one occur-
rence to another.

2. Definitions and statement of the problem

In the following, besides the standard parabolic metric �(x) = max(|x′|, |t|1/2) we use
the equivalent one

ρ(x) =
( |x′|2 +

√
|x′|4 + 4t2

2

)1/2

considered by Fabes and Riviére in [7] (see also [28]). The topology induced by ρ(x)
consists of the ellipsoids

Er(x) =
{

y ∈ R
n+1 :

|x′ − y′|2
r2 +

|t − τ |2
r4 < 1

}
, |Er| = Crn+2, E1(x) ≡ B1(x).

It is easy to see that the metrics ρ(·) and �(·) are equivalent. In fact, for each Er there exist
parabolic cylinders I and I with measure comparable to rn+2 such that I ⊂ Er ⊂ I. In
what follows, all estimates obtained over ellipsoids also hold true over parabolic cylinders,
and we use this property without explicit references (see [28]).

Let Ω ⊂ R
n be a bounded C1,1-domain and Q = Ω × (0, T ), T > 0, be a cylinder in

R
n+1
+ . We give the definitions of the functional spaces that we are going to use.

Definition 2.1. Let a ∈ Lloc
1 (Rn+1) and let aEr = |Er|−1

∫
Er

a(y) dy be the mean
integral of a. Denote

ηa(R) = sup
r�R

1
|Er|

∫
Er

|f(y) − fEr | dy for every R > 0,

where Er ranges over all ellipsoids in R
n+1. We say that the following hold.
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• a ∈ BMO (bounded mean oscillation [13]) provided the following is finite:

‖a‖∗ = sup
R>0

ηa(R).

The quantity ‖ · ‖∗ is a norm in a BMO modulo constant function under which
BMO is a Banach space.

• a ∈ VMO (vanishing mean oscillation [22]) if a ∈ BMO and

lim
R→0

ηa(R) = 0.

The quantity ηa(R) is called the VMO-modulus of a.

For any bounded cylinder Q we define BMO(Q) and VMO(Q) taking a ∈ L1(Q) and
Qr(x) = Q ∩ Er(x), x ∈ Q, instead of Er in the definition above.

According to [1, 14], having a function a ∈ BMO(Q) or VMO(Q), it is possible to
extend the function in the whole of R

n+1 preserving its BMO-norm or VMO-modulus,
respectively. In the following we use this property without explicit references. Any
bounded uniformly continuous (BUC) function f with modulus of continuity ωf (R)
belongs to VMO with ηf (R) = ωf (R). Besides that, BMO and VMO also contain dis-
continuous functions, and the following example shows the inclusion W1,n+2(Rn+1) ⊂
VMO ⊂ BMO.

Example 2.2. We have that

f(x) = |log ρ(x)| ∈ BMO \ VMO, sin f(x) ∈ BMO ∩ L∞(Rn+1),

fα(x) = |log ρ(x)|α ∈ VMO for any α ∈ (0, 1),

fα ∈ W1,n+2(Rn+1) for α ∈ (0, 1 − 1/(n + 2)),

fα /∈ W1,n+2(Rn+1) for α ∈ [1 − 1/(n + 2), 1).

Definition 2.3. Let ϕ : R
n+1 × R+ → R+ be a measurable function and p ∈ [1,∞).

The generalized parabolic Morrey space Mp,ϕ(Rn+1) consists of all f ∈ Lloc
p (Rn+1) such

that

‖f‖p,ϕ;Rn+1 = sup
(x,r)∈Rn+1×R+

ϕ(x, r)−1
(

r−(n+2)
∫

Er(x)
|f(y)|p dy

)1/p

< ∞.

The space Mp,ϕ(Q) consists of Lp(Q) functions provided the following norm is finite:

‖f‖p,ϕ;Q = sup
(x,r)∈Q×R+

ϕ(x, r)−1
(

r−(n+2)
∫

Qr(x)
|f(y)|p dy

)1/p

.

The generalized weak parabolic Morrey space WM1,ϕ(Rn+1) consists of all measurable
functions such that

‖f‖WM1,ϕ(Rn+1) = sup
(x,r)∈Rn+1×R+

ϕ(x, r)−1r−(n+2)‖f‖WL1(Er(x)),

where WL1 denotes the weak L1 space.
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The generalized Sobolev–Morrey space W 2,1
p,ϕ(Q), p ∈ [1,∞), consists of all Sobolev

functions u ∈ W 2,1
p (Q) with distributional derivatives Dl

tD
s
xu ∈ Mp,ϕ(Q), 0 � 2l+|s| � 2,

endowed by the norm

‖u‖W 2,1
p,ϕ(Q) = ‖ut‖p,ϕ;Q +

∑
|s|�2

‖Dsu‖p,ϕ;Q.

We also define the space
◦

W 2,1
p,ϕ(Q) = {u ∈ W 2,1

p,ϕ(Q) : u(x) = 0, x ∈ ∂Q}, ‖u‖ ◦
W 2,1

p,ϕ(Q)
= ‖u‖W 2,1

p,ϕ(Q),

where ∂Q means the parabolic boundary Ω ∪ (∂Ω × (0, T )).

We consider the linear Cauchy–Dirichlet problem

ut − aij(x)Diju(x) = f(x) for almost all (a.a.) x ∈ Q, u ∈
◦

W 2,1
p,ϕ(Q), (2.1)

where the coefficient matrix a(x) = {aij(x)}n
i,j=1 satisfies

∃Λ > 0: Λ−1|ξ|2 � aij(x)ξiξj � Λ|ξ|2 for a.a. x ∈ Q, ∀ ξ ∈ R
n,

aij(x) = aji(x), which implies aij ∈ L∞(Q).

}
(2.2)

Theorem 2.4 (main result). Let a ∈ VMO(Q) with ηa =
∑n

i,j=1 ηaij satisfy (2.2),
and, for each p ∈ (1,∞), let u ∈

◦
W 2,1

p (Q) be a strong solution of (2.1). If f ∈ Mp,ϕ(Q)
with ϕ(x, r) being a measurable positive function satisfying∫ ∞

r

(
1 + ln

s

r

)
ess infs<ζ<∞ ϕ(x, ζ)ζ(n+2)/p

s(n+2+p)/p
ds � Cϕ(x, r), (x, r) ∈ Q × R+, (2.3)

then u ∈
◦

W 2,1
p,ϕ(Q) and

‖u‖ ◦
W 2,1

p,ϕ(Q)
� C‖f‖p,ϕ;Q (2.4)

with C = C(n, p, Λ, ∂Ω, T, ηa, ‖a‖∞;Q).

3. Sublinear operators generated by parabolic singular integrals in
generalized Morrey spaces

Let f ∈ L1(Rn+1) be a function with a compact support and a ∈ BMO. For any
x /∈ suppf define the sublinear operators T and Ta such that

|Tf(x)| � C

∫
Rn+1

|f(y)|
ρ(x − y)n+2 dy, (3.1)

|Taf(x)| � C

∫
Rn+1

|a(x) − a(y)| |f(y)|
ρ(x − y)n+2 dy. (3.2)

Suppose, in addition, that both the operators are bounded in Lp(Rn+1) satisfying the
estimates

‖Tf‖p;Rn+1 � C‖f‖p;Rn+1 , ‖Taf‖p;Rn+1 � C‖a‖∗‖f‖p;Rn+1 (3.3)
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with constants independent of a and f . The following known result concerns the Hardy
operator Hg(r) = (1/r)

∫ r

0 g(s) ds, r > 0.

Theorem 3.1 (Carro et al . [4]). The inequality

ess sup
r>0

w(r)Hg(r) � A ess sup
r>0

v(r)g(r) (3.4)

holds for all non-increasing functions g : R+ → R+ if and only if

A = C sup
r>0

w(r)
r

∫ r

0

ds

ess sup0<ζ<s v(ζ)
< ∞. (3.5)

Lemma 3.2. Let f ∈ Lloc
p (Rn+1), p ∈ [1,∞), be such that

∫ ∞

r

s−(n+2+p)/p‖f‖p;Es(x0) ds < ∞ ∀(x0, r) ∈ R
n+1 × R+, (3.6)

and let T be a sublinear operator satisfying (3.1).

(i) If p > 1 and T is bounded on Lp(Rn+1), then

‖Tf‖p;Er(x0) � Cr(n+2)/p

∫ ∞

2r

s−(n+2+p)/p‖f‖p;Es(x0) ds. (3.7)

(ii) If p = 1 and T is bounded from L1(Rn+1) on WL1(Rn+1), then

‖Tf‖WL1(Er(x0)) � Crn+2
∫ ∞

2r

s−(n+3)‖f‖1,Es(x0) ds, (3.8)

where the constants are independent of r, x0 and f .

Proof. (i) Fix a point x0 ∈ R
n+1 and consider an ellipsoid Er(x0). Define 2Er(x0) =

E2r(x0), Ec
r (x0) = R

n+1 \ Er(x0) and consider the decomposition of f ,

f = fχ2Er(x0) + fχ2Ec
r (x0) = f1 + f2.

Because of the (p, p)-boundedness of the operator T and f1 ∈ Lp(Rn+1) we have that

‖Tf1‖p;Er(x0) � ‖Tf1‖p;Rn+1 � C‖f1‖p;Rn+1 = C‖f‖p;2Er(x0).

It is easy to see that for arbitrary points x ∈ Er(x0) and y ∈ 2Ec
r (x0) it holds that

1
2ρ(x0 − y) � ρ(x − y) � 3

2ρ(x0 − y). (3.9)
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Applying (3.1), (3.9), the Fubini theorem and the Hölder inequality to Tf2, we get that

|Tf2(x)| � C

∫
2Ec

r (x0)

|f(y)|
ρ(x0 − y)n+2 dy

� C

∫
2Ec

r (x0)
|f(y)|

( ∫ ∞

ρ(x0−y)

ds

sn+3

)
dy

� C

∫ ∞

2r

( ∫
2r�ρ(x0−y)<s

|f(y)| dy

)
ds

sn+3

� C

∫ ∞

2r

( ∫
Es(x0)

|f(y)| dy

)
ds

sn+3

� C

∫ ∞

2r

‖f‖p;Es(x0)
ds

s(n+2+p)/p
.

Direct calculations give

‖Tf2‖p,Er(x0) � Cr(n+2)/p

∫ ∞

2r

‖f‖p;Es(x0)
ds

s(n+2+p)/p
, (3.10)

which holds for all p ∈ [1,∞). Thus,

‖Tf‖p;Er(x0) � C

(
‖f‖p;2Er(x0) + r(n+2)/p

∫ ∞

2r

‖f‖p;Es(x0)
ds

s(n+2+p)/p

)
. (3.11)

On the other hand,

‖f‖p,2Er(x0) � Cr(n+2)/p

∫ ∞

2r

‖f‖p;Es(x0)
ds

s(n+2+p)/p
, (3.12)

which, unified with (3.11), gives (3.7).

(ii) Let f ∈ L1(Rn+1); the weak (1, 1)-boundedness of T implies that

‖Tf1‖WL1(Er(x0)) � ‖Tf1‖WL1(Rn+1)

� C‖f1‖1,Rn+1

= C‖f‖1,2Er(x0)

� Crn+2
∫ +∞

2r

‖f‖1,Es(x0)
ds

sn+3 ,

which, unified with (3.10), gives (3.8). �

Theorem 3.3. Let p ∈ [1,∞), let ϕ(x, r) be a measurable positive function satisfying

∫ ∞

r

ess infs<ζ<∞ ϕ(x, ζ)ζ(n+2)/p

s(n+2+p)/p
ds � Cϕ(x, r) ∀(x, r) ∈ R

n+1 × R+, (3.13)

and let T be a sublinear operator satisfying (3.1).
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(i) If p > 1 and T is bounded on Lp(Rn+1), then T is bounded on Mp,ϕ(Rn+1), and

‖Tf‖p,ϕ;Rn+1 � C‖f‖p,ϕ;Rn+1 . (3.14)

(ii) If p = 1 and T is bounded from L1(Rn+1) to WL1(Rn+1), then it is bounded from
M1,ϕ(Rn+1) to WM1,ϕ(Rn+1), and

‖Tf‖WM1,ϕ(Rn+1) � C‖f‖1,ϕ;Rn+1 (3.15)

with constants independent on f .

Proof. (i) By Lemma 3.2, we have that

‖Tf‖p,ϕ;Rn+1 � C sup
(x,r)∈Rn+1×R+

ϕ(x, r)−1
∫ ∞

r

‖f‖p;Es(x)
ds

s(n+2+p)/p

= C sup
(x,r)∈Rn+1×R+

ϕ(x, r)−1
∫ r−(n+2)/p

0
‖f‖p;E

s−p/(n+2) (x) ds

= C sup
(x,r)∈Rn+1×R+

ϕ(x, r−p/(n+2))−1
∫ r

0
‖f‖p;E

s−p/(n+2) (x) ds.

Applying Theorem 3.1 with

w(r) = v(r) = rϕ(x, r−p/(n+2))−1, g(r) = ‖f‖p;E
r−p/(n+2) (x),

Hg(r) = r−1
∫ r

0
‖f‖p;E

s−p/(n+2) (x) ds,

where the condition (3.5) is equivalent to (3.13), we obtain (3.14).

(ii) The estimate follows after using (3.8) and (3.4):

‖Tf‖WM1,ϕ(Rn+1) � C sup
(x0,r)∈Rn+1×R+

ϕ(x0, r)−1
∫ ∞

r

‖f‖1,Es(x0)
ds

sn+3

= C sup
(x0,r)∈Rn+1×R+

ϕ(x0, r
−1/(n+2))−1

∫ r

0
‖f‖1,E

s−1/(n+2) (x0) ds

� C sup
(x0,r)∈Rn+1×R+

ϕ(x0, r
−1/(n+2))−1r‖f‖1,E

r−1/(n+2) (x0)

= C‖f‖1,ϕ;Rn+1 .

�

Our next step is to show boundedness of Ta in Mp,ϕ(Rn+1). For this we recall some
properties of the BMO functions.

Lemma 3.4 (John–Nirenberg lemma [3, Lemma 2.8]). Let a ∈ BMO and p ∈
[1,∞). Then, for any Er,(

1
|Er|

∫
Er

|a(y) − aEr |p dy

)1/p

� C(p)‖a‖∗.
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As an immediate consequence of Lemma 3.4 we get the following property.

Corollary 3.5. Let a ∈ BMO. Then, for all 0 < 2r < s,

|aEr
− aEs

| � C(n)
(

1 + ln
s

r

)
‖a‖∗. (3.16)

Proof. Since s > 2r, there exists k ∈ N, k � 1, such that 2kr < s � 2k+1r and, hence,
k ln 2 < ln(s/r) � (k + 1) ln 2. By [3, Lemma 2.9] we have that

|aEs − aEr | � |a2kEr
− aEr | + |a2kEr

− aEs
|

� C(n)k‖a‖∗ +
1

|2kEr|

∫
2kEr

|a(y) − aEs | dy

� C(n)
(

k‖a‖∗ +
1

|Es|

∫
Es

|a(y) − aEs | dy

)

< C(n)
(

ln
s

r
+ 1

)
‖a‖∗.

�

To estimate the norm of Ta we employ the same idea that we have used in the proof
of Lemma 3.2.

Lemma 3.6. Let a ∈ BMO and let Ta be a bounded operator in Lp(Rn+1), p ∈ (1,∞),
satisfying (3.2) and (3.3). Suppose that, for any f ∈ Lloc

p (Rn+1),

∫ ∞

r

(
1 + ln

s

r

)
‖f‖p;Es(x0)

ds

s(n+2+p)/p
< ∞ ∀(x0, r) ∈ R

n+1 × R+. (3.17)

Then,

‖Taf‖p;Er(x0) � C‖a‖∗r
(n+2)/p

∫ ∞

2r

(
1 + ln

s

r

)
‖f‖p;Es(x0)

ds

s(n+2+p)/p
, (3.18)

where C is independent of a, f , x0 and r.

Proof. Fix a point x0 ∈ R
n+1 and consider the decomposition

f = fχ2Er(x0) + fχ2Ec
r (x0) = f1 + f2.

Hence,
‖Taf‖p;Er(x0) � ‖Taf1‖p;Er(x0) + ‖Taf2‖p;Er(x0)

and by (3.3) as in Lemma 3.2 we have that

‖Taf1‖p;Er(x0) � C‖a‖∗‖f‖p;2Er(x0). (3.19)
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On the other hand, because of (3.9) we can write

‖Taf2‖p;Er(x0) � C

( ∫
Er(x0)

( ∫
2Ec

r (x0)

|a(x) − a(y)||f(y)|
ρ(x0 − y)n+2 dy

)p

dx

)1/p

� C

( ∫
Er(x0)

( ∫
2Ec

r (x0)

|a(y) − aEr(x0)||f(y)|
ρ(x0 − y)n+2 dy

)p

dx

)1/p

+ C

( ∫
Er(x0)

( ∫
2Ec

r (x0)

|a(x) − aEr(x0)||f(y)|
ρ(x0 − y)n+2 dy

)p

dx

)1/p

= I1 + I2.

Applying (3.2), the Fubini theorem and the Hölder inequality as in Lemmas 3.2 and 3.4,
we get

I1 � Cr(n+2)/p

( ∫ ∞

2r

∫
Es(x0)

|a(y) − aEr(x0)||f(y)| dy

)
ds

sn+3

� Cr(n+2)/p

( ∫ ∞

2r

∫
Es(x0)

|a(y) − aEs(x0)||f(y)| dy

)
ds

sn+3

+ Cr(n+2)/p

∫ ∞

2r

|aEr(x0) − aEs(x0)|
( ∫

Es(x0)
|f(y)| dy

)
ds

sn+3

� Cr(n+2)/p

∫ ∞

2r

( ∫
Es(x0)

|a(y) − aEs(x0)|p/(p−1) dy

)(p−1)/p

‖f‖p;Es(x0)
ds

sn+3

+ Cr(n+2)/p

∫ ∞

2r

|aEr(x0) − aEs(x0)|‖f‖p;Es(x0)
ds

s(n+2+p)/p

� C‖a‖∗r
(n+2)/p

∫ ∞

2r

(
1 + ln

s

r

)
‖f‖p;Es(x0)

ds

s(n+2+p)/p
.

In order to estimate I2 we note that

I2 =
( ∫

Er(x0)
|a(x) − aEr(x0)|p dx

)1/p ∫
2Ec

r (x0)

|f(y)|
ρ(x0 − y)n+2 dy.

By Lemma 3.4 and (3.10) we get that

I2 � C‖a‖∗r
(n+2)/p

∫
2Ec

r (x0)

|f(y)|
ρ(x0 − y)n+2 dy

� C‖a‖∗r
(n+2)/p

∫ ∞

2r

‖f‖p;Es(x0)
ds

s(n+2+p)/p
.

Summing up (3.19), I1 and I2 we get that

‖Taf‖p;Er(x0) � C‖a‖∗

(
‖f‖p;2Er(x0) + r(n+2)/p

∫ ∞

2r

(
1 + ln

s

r

)
‖f‖p;Es(x0)

ds

s(n+2+p)/p

)

and the statement follows after applying (3.12). �
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Theorem 3.7. Let p ∈ (1,∞) and ϕ(x, r) be measurable positive functions such that∫ ∞

r

(
1+ln

s

r

)
ess infs<ζ<∞ ϕ(x, ζ)ζ(n+2)/p

s(n+2+p)/p
ds � Cϕ(x, r) ∀(x, r) ∈ R

n+1×R+ (3.20)

where C is independent of x and r. Suppose that a ∈ BMO and let Ta be a sublinear
operator satisfying (3.2). If Ta is bounded in Lp(Rn+1), then it is bounded in Mp,ϕ(Rn+1),
and

‖Taf‖p,ϕ;Rn+1 � C‖a‖∗‖f‖p,ϕ;Rn+1 (3.21)

with a constant independent of a and f .

The statement of the theorem follows by Lemma 3.6 and Theorem 3.1 in the same
manner as for Theorem 3.3.

Example 3.8. The functions

ϕ(x, r) = rβ−(n+2)/p and ϕ(x, r) = rβ−(n+2)/p logm(e + r),

with 0 < β < (n + 2)/p and m � 1, are weight functions satisfying the condition (3.20).

4. Sublinear operators generated by non-singular integrals in generalized
Morrey spaces

For any x ∈ D
n+1
+ , define x̃ = (x′′,−xn, t) ∈ D

n+1
− and x0 = (x′′, 0, 0) ∈ R

n−1. Consider
the semi-ellipsoids E+

r (x0) = Er(x0)∩D
n+1
+ . Let f ∈ L1(Dn+1

+ ), let a ∈ BMO(Dn+1
+ ), and

let T̃ and T̃a be sublinear operators such that

|T̃ f(x)| � C

∫
D

n+1
+

|f(y)|
ρ(x̃ − y)n+2 dy, (4.1)

|T̃af(x)| � C

∫
D

n+1
+

|a(x) − a(y)| |f(y)|
ρ(x̃ − y)n+2 dy. (4.2)

Suppose, in addition, that both the operators are bounded in Lp(Dn+1
+ ), satisfying the

estimates

‖T̃ f‖p;Dn+1
+

� C‖f‖p;Dn+1
+

, ‖T̃af‖p;Dn+1
+

� C‖a‖∗‖f‖p;Dn+1
+

(4.3)

with constants independent of a and f . The following assertions can be proved in the
same manner as in § 3.

Lemma 4.1. Let f ∈ Lloc
p (Dn+1

+ ), p ∈ (1,∞), and, for all (x0, r) ∈ R
n−1 × R+,∫ ∞

r

s−(n+2+p)/p‖f‖p;E+
s (x0) ds < ∞. (4.4)

If T̃ is bounded on Lp(Dn+1
+ ), then

‖T̃ f‖p;E+
r (x0) � Cr(n+2)/p

∫ ∞

2r

s−(n+2+p)/p‖f‖p;E+
s (x0) ds, (4.5)

where the constant C is independent of r, x0 and f .
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Theorem 4.2. Let ϕ be a weight function satisfying (3.13), and let T̃ be a sublinear
operator satisfying (4.1) and (4.3). Then T̃ is bounded in Mp,ϕ(Dn+1

+ ), p ∈ (1,∞), and

‖T̃ f‖p,ϕ;Dn+1
+

� C‖f‖p,ϕ;Dn+1
+

(4.6)

with a constant C independent of f .

Lemma 4.3. Let p ∈ (1,∞), let a ∈ BMO(Dn+1
+ ), and let T̃a satisfy (4.2) and (4.3).

Suppose that, for all f ∈ Lloc
p (Dn+1

+ ),

∫ ∞

r

(
1 + ln

s

r

)
s−(n+2+p)/p‖f‖p;E+

s (x0) ds < ∞ ∀(x0, r) ∈ R
n−1 × R+. (4.7)

Then,

‖T̃af‖p;E+
r (x0) � C‖a‖∗r

(n+2)/p

∫ ∞

2r

(
1 + ln

s

r

)
‖f‖p;E+

s (x0)
ds

s(n+2+p)/p

with a constant C independent of a, f , x0 and r.

Theorem 4.4. Let p ∈ (1,∞), a ∈ BMO(Dn+1
+ ), let ϕ(x0, r) be a weight function

satisfying (3.20) and T̃a be a sublinear operator satisfying (3.2) and (3.3). Then T̃a is
bounded in Mp,ϕ(Dn+1

+ ), and

‖T̃af‖p,ϕ;Dn+1
+

� C‖a‖∗‖f‖p,ϕ;Dn+1
+

(4.8)

with a constant C independent of a and f .

5. Singular and non-singular integrals in generalized Morrey spaces

In the present section we apply the above results to Calderón–Zygmund-type operators
with parabolic kernel. Since these operators are sublinear and bounded in Lp(Rn+1),
their continuity in Mp,ϕ follows immediately.

Definition 5.1. A measurable function K(x, ξ) : R
n+1 × R

n+1 \ {0} → R is called a
variable parabolic Calderón–Zygmund kernel if the following hold.

(i) K(x, ·) is a parabolic Calderón–Zygmund kernel for a.a. x ∈ R
n+1:

(a) K(x, ·) ∈ C∞(Rn+1 \ {0}),

(b) K(x, μξ) = μ−(n+2)K(x, ξ) for all μ > 0,

(c) ∫
Sn

K(x, ξ) dσξ = 0,

∫
Sn

|K(x, ξ)| dσξ < +∞.

(ii) ‖Dβ
ξ K‖L∞(Rn+1×Sn) � M(β) < ∞ for every multi-index β.
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Moreover,

|K(x, x − y)| � ρ(x − y)−(n+2)
∣∣∣∣K

(
x,

x − y

ρ(x − y)

)∣∣∣∣ � M

ρ(x − y)n+2 ,

which means that the singular integrals

Kf(x) = PV
∫

Rn+1
K(x, x − y)f(y) dy,

C[a, f ](x) = PV
∫

Rn+1
K(x, x − y)[a(y) − a(x)]f(y) dy

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

are sublinear and bounded in Lp(Rn+1) according to the results in [3,7]. We note that
any weight function ϕ satisfying (3.20) also satisfies (3.13) and, hence, the following holds
as a simple application of the estimates proved in § 3.

Theorem 5.2. For any f ∈ Mp,ϕ(Rn+1) with (p, ϕ) as in Theorem 3.7 and a ∈ BMO,
there exist constants depending on n, p and the kernel such that

‖Kf‖p,ϕ;Rn+1 � C‖f‖p,ϕ;Rn+1 , ‖C[a, f ]‖p,ϕ;Rn+1 � C‖a‖∗‖f‖p,ϕ;Rn+1 . (5.2)

Corollary 5.3. Let Q be a cylinder in R
n+1
+ , f ∈ Mp,ϕ(Q), a ∈ BMO(Q) and

K(x, ξ) : Q × R
n+1
+ \ {0} → R. Then the operators (5.1) are bounded in Mp,ϕ(Q) and

‖Kf‖p,ϕ;Q � C‖f‖p,ϕ;Q, ‖C[a, f ]‖p,ϕ;Q � C‖a‖∗‖f‖p,ϕ;Q (5.3)

with C independent of a and f .

Proof. Define the extensions

K̄(x, ξ) =

{
K(x, ξ), (x, ξ) ∈ Q × R

n+1
+ \ {0},

0 elsewhere,
f̄(x) =

{
f(x), x ∈ Q,

0, x �∈ Q.

Denote by K̄f the singular integral with a kernel K̄ and potential f̄ . Then

|Kf | � |K̄f | � C

∫
Rn+1

|f̄(y)|
ρ(x − y)n+2 dy

and
‖Kf‖p,ϕ;Q � ‖K̄f‖p,ϕ;Rn+1 � C‖f̄‖p,ϕ;Rn+1 = C‖f‖p,ϕ;Q.

The estimate for the commutator follows in a similar way. �

Corollary 5.4. Let a ∈ VMO and (p, ϕ) be as in Theorem 3.7. Then for any ε > 0
there exists a positive number r0 = r0(ε, ηa) such that for any Er(x0) with a radius
r ∈ (0, r0) and all f ∈ Mp,ϕ(Er(x0))

‖C[a, f ]‖p,ϕ;Er(x0) � Cε‖f‖p,ϕ;Er(x0) (5.4)

where C is independent of ε, f , r and x0.
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Proof. Since any VMO function can be approximated by BUC functions (see [6,22])
for each ε > 0 there exists r0(ε, ηa) and g ∈ BUC with modulus of continuity ωg(r0) < ε/2
such that ‖a − g‖∗ < ε/2. Fixing Er(x0) with r ∈ (0, r0) define the function

h(x) =

⎧⎪⎨
⎪⎩

g(x), x ∈ Er(x0),

g

(
x0 + r

x′ − x′
0

ρ(x − x0)
, t0 + r2 t − t0

ρ2(x − x0)

)
, x ∈ Ec

r (x0),

such that h ∈ BUC(Rn+1) and ωh(r0) � ωg(r0) < ε/2. Hence,

‖C[a, f ]‖p,ϕ;Er(x0) � ‖C[a − g, f ]‖p,ϕ;Er(x0) + ‖C[g, f ]‖p,ϕ;Er(x0)

� C‖a − g‖∗‖f‖p,ϕ;Er(x0) + ‖C[h, f ]‖p,ϕ;Er(x0) < Cε‖f‖p,ϕ;Er(x0).

�

For any x′ ∈ R
n
+ and any fixed t > 0, define the generalized reflection

T (x) = (T ′(x), t), T ′(x) = x′ − 2xn
an(x′, t)
ann(x′, t)

, (5.5)

where an(x) is the last row of the coefficients matrix a(x) of (2.1). The function T ′(x)
maps R

n
+ into R

n
−, and the kernel K(x, T (x)− y) = K(x, T ′(x)− y′, t− τ) is non-singular

for any x, y ∈ D
n+1
+ . Taking x̃ ∈ D

n+1
− , there exist positive constants κ1 and κ2 such that

κ1ρ(x̃ − y) � ρ(T (x) − y) � κ2ρ(x̃ − y). (5.6)

For any f ∈ Mp,ϕ(Dn+1
+ ) and a ∈ BMO(Dn+1

+ ) define the non-singular integral operators

K̃f(x) =
∫

D
n+1
+

K(x, T (x) − y)f(y) dy,

C̃[a, f ](x) =
∫

D
n+1
+

K(x, T (x) − y)[a(y) − a(x)]f(y) dy.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.7)

Since K(x, T (x) − y) is still homogeneous and satisfies Definition 5.1 (b), we have

|K(x, T (x) − y)| � M

ρ(T (x) − y)n+2 � C

ρ(x̃ − y)n+2 .

Hence, the operators (5.7) are sublinear and bounded in Lp(Dn+1
+ ), p ∈ (1,∞) (see [3]).

The following estimates are simple consequences of the results in § 4.

Theorem 5.5. Let a ∈ BMO(Dn+1
+ ) and f ∈ Mp,ϕ(Dn+1

+ ) with (p, ϕ) as in Theo-
rem 3.7. Then the operators K̃f and C̃[a, f ] are continuous in Mp,ϕ(Dn+1

+ ) and

‖K̃f‖p,ϕ;Dn+1
+

� C‖f‖p,ϕ;Dn+1
+

, ‖C̃[a, f ]‖p,ϕ;Dn+1
+

� C‖a‖∗‖f‖p,ϕ;Dn+1
+

(5.8)

with a constant independent of a and f .
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Corollary 5.6. Let a ∈ VMO and (p, ϕ) be as above. Then for any ε > 0 there exists
a positive number r0 = r0(ε, ηa) such that for any E+

r (x0) with a radius r ∈ (0, r0) and
all f ∈ Mp,ϕ(E+

r (x0))

‖C[a, f ]‖p,ϕ;E+
r (x0) � Cε‖f‖p,ϕ;E+

r (x0), (5.9)

where C is independent of ε, f , r and x0.

6. Proof of the main result

Consider (2.1) with f ∈ Mp,ϕ(Q), (p, ϕ) as in Theorem 3.7. Since Mp,ϕ(Q) is a proper
subset of Lp(Q), (2.1) is uniquely solvable and the solution u belongs at least to

◦
W 2,1

p (Q).
Our aim is to show that this solution also belongs to

◦
W 2,1

p,ϕ(Q). For this we need an a priori
estimate of u, which we prove in two steps.

Interior estimate. For any x0 ∈ R
n+1
+ define the parabolic semi-cylinders Cr(x0) =

Br(x′
0) × (t0 − r2, t0). Let v ∈ C∞

0 (Cr) and suppose that v(x, t) = 0 for t � 0. Accord-
ing to [3, Theorem 1.4], for any x ∈ suppv the following representation formula for the
second derivatives of v holds true:

Dijv(x) = PV
∫

Rn+1
Γij(x, x − y)[ahk(y) − ahk(x)]Dhkv(y) dy

+ PV
∫

Rn+1
Γij(x, x − y)Pv(y) dy + Pv(x)

∫
Sn

Γj(x, y)νi dσy, (6.1)

where ν(ν1, . . . , νn+1) is the outward normal to S
n. Here, Γ (x, ξ) is the fundamental

solution of the operator P, and Γij(x, ξ) = ∂2Γ (x, ξ)/∂ξi∂ξj . Since any function v ∈ W 2,1
p

can be approximated by C∞
0 functions, the representation formula (6.1) still holds for

any v ∈ W 2,1
p (Cr(x0)). The properties of the fundamental solution (see [3,15,24]) imply

that Γij are variable Calderón–Zygmund kernels in the sense of Definition 5.1. Using the
notation of (5.1), we can write

Dijv(x) = Cij [ahk, Dhkv](x)

+ Kij(Pv)(x) + Pv(x)
∫

Sn

Γj(x, y)νi dσy, i, j = 1, . . . , n. (6.2)

The operators Kij and Cij are defined by (5.1) with K(x, x − y) = Γij(x, x − y). Due to
Corollaries 5.3 and 5.4 and the equivalence of the metrics, we get that

‖D2v‖p,ϕ;Cr(x0) � C(ε‖D2v‖p,ϕ;Cr(x0) + ‖Pu‖p,ϕ;Cr(x0)) (6.3)

for some r small enough. Moving the norm of D2v on the left-hand side, we get that

‖D2v‖p,ϕ;Cr(x0) � C(n, p, ηa, ‖DΓ‖∞,Q)‖Pv‖p,ϕ;Cr(x0).

Define a cut-off function φ(x) = φ1(x′)φ2(t), with φ1 ∈ C∞
0 (Br(x′

0)), φ2 ∈ C∞
0 (R) such

that

φ1(x′) =

{
1, x′ ∈ Bθr(x′

0),

0, x′ �∈ Bθ′r(x′
0),

φ2(t) =

{
1, t ∈ (t0 − (θr)2, t0],

0, t < t0 − (θ′r)2,
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with θ ∈ (0, 1), θ′ = θ(3 − θ)/2 > θ and |Dsφ| � C[θ(1 − θ)r]−s, s = 0, 1, 2, |φt| ∼ |D2φ|.
For any solution u ∈ W 2,1

p (Q) of (2.1) define v(x) = φ(x)u(x) ∈ W 2,1
p (Cr). Hence,

‖D2u‖p,ϕ;Cθr(x0) � ‖D2v‖p,ϕ;Cθ′r(x0) � C‖Pv‖p,ϕ;Cθ′r(x0)

� C

(
‖f‖p,ϕ;Cθ′r(x0) +

‖Du‖p,ϕ;Cθ′r(x0)

θ(1 − θ)r
+

‖u‖p,ϕ;Cθ′r(x0)

[θ(1 − θ)r]2

)
.

Hence,

[θ(1 − θ)r]2‖D2u‖p,ϕ;Cθr(x0)

� ([θ(1 − θ)r]2‖f‖p,ϕ;Cθ′r(x0) + θ(1 − θ)r‖Du‖p,ϕ;Cθ′r(x0) + ‖u‖p,ϕ;Cθ′r(x0))

(by the choice of θ′ it follows that θ(1 − θ) � 2θ′(1 − θ′))

� C(r2‖f‖p,ϕ;Q + θ′(1 − θ′)r‖Du‖p,ϕ;Cθ′r(x0) + ‖u‖p,ϕ;Cθ′r(x0)).

Introducing the semi-norms

Θs = sup
0<θ<1

[θ(1 − θ)r]s‖Dsu‖p,ϕ;Cθr(x0), s = 0, 1, 2,

the above inequality becomes

[θ(1 − θ)r]2‖D2u‖p,ϕ;Cθr(x0) � Θ2 � C(r2‖f‖p,ϕ;Q + Θ1 + Θ0). (6.4)

The interpolation inequality [25, Lemma 4.2] gives that there exists a positive constant C

independent of r such that

Θ1 � εΘ2 +
C

ε
Θ0 for any ε ∈ (0, 2).

Thus, (6.4) becomes

[θ(1 − θ)r]2‖D2u‖p,ϕ;Cθr(x0) � Θ2 � C(r2‖f‖p,ϕ;Q + Θ0) ∀θ ∈ (0, 1).

Taking θ = 1
2 we get the Caccioppoli-type estimate

‖D2u‖p,ϕ;Cr/2(x0) � C

(
‖f‖p,ϕ;Q +

1
r2 ‖u‖p,ϕ;Cr(x0)

)
.

To estimate ut we exploit the parabolic structure of the equation and the boundedness
of the coefficients

‖ut‖p,ϕ;Cr/2(x0) � ‖a‖∞;Q‖D2u‖p,ϕ;Cr/2(x0) + ‖f‖p,ϕ;Cr/2(x0)

� C

(
‖f‖p,ϕ;Q +

1
r2 ‖u‖p,ϕ;Cr(x0)

)
.

Consider the cylinders Q′ = Ω′ × (0, T ) and Q′′ = Ω′′ × (0, T ) with Ω′ � Ω′′ � Ω; by
the standard covering procedure and partition of the unity we get that

‖u‖W 2,1
p,ϕ(Q′) � C(‖f‖p,ϕ;Q + ‖u‖p,ϕ;Q′′) (6.5)

where C depends on n, p, Λ, T , ‖DΓ‖∞;Q, ηa, ‖a‖∞,Q and dist(Ω′, ∂Ω′′).
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Boundary estimates. For any fixed (x0, r) ∈ R
n−1 × R+ define the semi-cylinders

C+
r (x0) = B+

r (x0′
) × (0, r2) = {|x0 − x′| < r, xn > 0, 0 < t < r2}

with S+
r = {(x′′, 0, t) : |x0 − x′′| < r, 0 < t < r2}. For any solution u ∈ W 2,1

p (C+
r (x0))

with suppu ∈ C+
r (x0), the following boundary representation formula holds (see [3]):

Diju(x) = Cij [ahk, Dhku](x) + Kij(Pu)(x)

+ Pu(x)
∫

Sn

Γj(x, y)νi dσy − Iij(x),

where

Iij(x) = K̃ij(Pu)(x) + C̃ij [ahk, Dhku](x), i, j = 1, . . . , n − 1,

Iin(x) = Ini(x) =
n∑

l=1

(
∂T (x)
∂xn

)l

[C̃il[ahk, Dhku](x) + K̃il(Pu)(x)], i = 1, . . . , n − 1,

Inn(x) =
n∑

r,l=1

(
∂T (x)
∂xn

)r(
∂T (x)
∂xn

)l

[C̃rl[ahk, Dhku](x) + K̃rl(Pu)(x)],

∂T (x)
∂xn

=
(

−2
an1(x)
ann(x)

, . . . ,−2
ann−1(x)
ann(x)

,−1, 0
)

.

Here, K̃ij and C̃ij are non-singular operators defined by (5.7) with a kernel K(x, T (x) −
y) = Γij(x, T (x) − y). Applying the estimates (5.8) and (5.9) and having in mind that
the components of the vector ∂T (x)/∂xn are bounded, we get that

‖D2u‖p,ϕ;C+
r (x0) � C(‖Pu‖p,ϕ;C+

r (x0) + ‖u‖p,ϕ;C+
r (x0)).

The Jensen inequality applied to u(x) =
∫ t

0us(x′, s) ds and the parabolic structure of the
equation give that

‖u‖p,ϕ;C+
r (x0) � Cr2‖ut‖p,ϕ;C+

r (x0) � C(‖f‖p,ϕ;Q + r2‖u‖p,ϕ;C+
r (x0)).

Taking r small enough we can move the norm of u on the left-hand side, obtaining that

‖u‖p,ϕ;C+
r

� C‖f‖p,ϕ;Q

with a constant C depending on n, p, Λ, T , ηa, ‖a‖∞,Q. By covering the boundary
with small cylinders, partitioning of the unit subordinated by that covering and local
flattening of ∂Ω we get that

‖u‖W 2,1
p,ϕ(Q\Q′) � C‖f‖p,ϕ;Q. (6.6)

Unifying (6.5) and (6.6), we get (2.4).
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