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SUMMARY

The kernel of modelling transmission dynamics of infectious diseases lies in constructing the force

of infection (FOI). Traditionally, it was based on mass-action law. In this paper, we show, based

on survey data of Escherichia coli O157 infection on Scottish cattle farms, that the actual form of

FOI deviates greatly from mass-action law. Further, control effectiveness deviates qualitatively:

the epidemic of mass-action FOI can be controlled with a control effort larger than the so-called

herd immunity, while the epidemic inferred from the survey data of E. coli O157 infection was

shown to be difficult to control. This indicates that, at least for E. coli O157 infection on cattle

farms, it is risky to rely on models of transmission dynamics that were based on mass-action law

to design the optimal intervention programme for infectious diseases. This suggests the

importance of collecting epidemic data and model selection from data-driven models to infer the

most likely model of transmission dynamics.

Key words : Control effectiveness, E. coli O157, force of infection, infection control, transmission

dynamics.

INTRODUCTION

Transmission among individuals of host species is a

key process for infectious diseases, and the formu-

lation of the force of infection (FOI) employed to

model the transmission is vital for our understanding

of disease spread and control [1–3]. Conventional

wisdom assumes that the contact between individuals

within a host population is through mixing, and each

individual has identical susceptibility and infectious-

ness so that the FOI of the infectious agent follows

the so-called mass-action law [4]. The simple math-

ematical expression of the law is : the transmission

rate is proportional to the product of the numbers

(or densities) of infected and number of susceptible

individuals. The mass-action law, which has been

widely used in modelling infectious diseases, is chosen

because of its mathematical tractability and con-

venience [4, 5], and also because of the scarcity of ac-

tual data for epidemics. However, there is increasingly

accumulating evidence that transmission processes

are much more complicated because of obviously

complex contact patterns among individuals of host

populations [6–13] and variation in susceptibility and

infectiousness among individuals [14, 15]. Contact

patterns vary in accordance with age, sex, distances

between localities and other personal/social/demo-

graphic characteristic [16]. The complicated patterns

involved could be due to the host becoming limited

(i.e. saturation) or due to heterogeneities among the

host populations. For example, superspreaders are

more likely to transmit the disease than others due to
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their highly disproportionate contacts [17, 18]. This

could also be due to: e.g. the different mixture of

spatially local and global movement interactions, the

dynamic response in behaviour to the disease as in the

case of influenza [19], or to the aggregation of vectors

for infectious diseases vectored by insects [8].

Susceptibility varies among individuals in respect of

age, genotype, and other biological characters so that

some individuals are more likely to be infected than

others [20]. The infectiousness of infected individuals

depends on the duration of the infectious period and

the load of viral shedding, e.g. the infected with high

viral shedding have high infectiousness and spread

infection much more than others [14]. In order to

understand and model the spread and control of

infectious diseases, one challenge is how to choose a

parsimonious model that can best take into account

all these possible factors while at the same time being

simple enough to be explored with analytical deri-

vation and the current power of computation.

The purpose of infectious disease modelling lies in

understanding the underlying transmission process

and obtaining useful information for designing the

optimal intervention strategies. Theoretical studies

[3, 14, 21–23] suggest that the dynamic behaviours

of infectious diseases are greatly affected by the for-

mulation of FOI, implying that the effectiveness

and efficiency of intervention programmes rely on

the concrete form of transmission rate. This reveals

the importance of obtaining the true mechanism of

transmission and the factors that impact it from the

actual data of epidemics. By integrating modern stat-

istical inference and information theory [24], and ex-

perimental and survey data of epidemics, it is now

feasible to select the most parsimonious form of FOI

[6, 11–13, 16, 23].

In a previous study, we applied model selection

to various choices for the FOI for Escherichia coli

O157 on Scottish cattle farms, and found that the best

transmission dynamics was a nonlinear FOI. It de-

pends on the number of infected cattle farms with

the power coefficient b significantly <1 [13]. Further

investigations showed that E. coli O157 infection on

Scottish cattle farms cannot be eradicated unless

100% of the farms are under protection, although

intervention can surely reduce the prevalence of in-

fection [25]. However, according to classical epidemic

theory [4] there is herd immunity. That is, the infec-

tious diseases with a mass-action transmission rate

can be controlled if the >1–1/R0 proportion of the

host population is under protection. Here R0 is the

basic reproductive number defined as the mean num-

ber of infections caused by an infected individual in a

susceptible population. This comparison indicates

that the optimal intervention programmes based on

mass-action law or any other non-data-driven models

could be misleading.

In this follow-up study, we investigated how the

effectiveness of intervention programme differs among

different formulations of FOI based on the survey

data of E. coliO157 infection on Scottish cattle farms.

The forms of FOI that are usually used for modelling

transmission dynamics are employed to fit to the

survey data. With maximum-likelihood estimates

(MLEs) of model parameters, the realization of an

epidemic under different transmission dynamics is

built-up through Monte-Carlo simulations and the

intervention programmes is performed to investigate

their effectiveness. Using the case of E. coli O157

infection on Scottish cattle farms, we attempt to show

how the effectiveness of interventions is influenced by

the formulation of transmission rate and to illustrate

the necessity and importance of model selection that

strives to search for the most parsimonious model of

transmission dynamics in accordance with the actual

data of an epidemic.

METHODS AND MODELS

The enterohaemorrhagic strain of the bacterium

E. coli O157, which causes foodborne illness, emerged

over two decades ago and is now widespread globally.

In Scotland, about 200 cases of infection in humans

are reported annually, which is the highest global

annual incidence rate during the past 20 years [26].

Cattle are the main reservoir host for E. coli O157 [27]

and play a significant role in the epidemiology of

human infections [28]. Thus, to control the infection

in humans, it is crucial to understand how E. coli

O157 is spread among cattle farms and how it persists

in the cattle population. During the past decade,

two large surveys were conducted to estimate the

prevalence of E. coli O157 on Scottish cattle farms:

one from 1998 to 2000 (SEERAD [29]), the other

during 2002–2004 (IPRAVE [30]). Both concluded

that y19% of Scottish cattle farms harbour E. coli

O157 infection, indicating that the infection on

Scottish cattle farms is likely to be at an approximate

steady state [31] following its first appearance in the

1980s.

Because the infection of cattle with E. coli O157

is usually harmless to cattle and infected cattle
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can become susceptible again, susceptible-infected-

susceptible (SIS) compartmental models have been

employed to study the transmission of E. coli O157

infection in cattle [32]. Individual farms are regarded

as either susceptible (S) or infected (I) (i.e. E. coli

O157 positive for at least one animal). We developed

individual-based stochastic SIS meta-population

models to investigate different forms of transmission

rate for the spread of infection among cattle farms

[13]. Although we examined explicitly at the farm

level, we also implicitly include the contribution of

animals within farms by considering the farm size and

the fraction of cattle infected on farms. We searched

for the best transmission dynamics of E. coli O157

infection on Scottish cattle farms by performing

model selection [24]. In the following sections, we in-

troduce first the best model (i.e. the base model) and

then the formulations of FOI that were commonly

employed in infectious disease modelling.

Basic model

Transmission of E. coli O157 infection on Scottish

cattle farms is assumed to occur through two routes :

cattle movements among farms and other environ-

mental sources including acquisition of infection from

other host species and a contaminated environment

[13]. Based on Akaike’s Information Criterion (AIC)

[33], the most parsimonious transmission dynamics of

E. coli O157 infection on Scottish cattle farms is given

as: The overall probability at which farm i becomes

infected on day t is given by:

Pi(t)=1x exp [xbI(t)bNa
i ]

Y
j2I(t)

(1xxj)
Mij(t)

 !
, (1)

and the probability that an infected farm recovers to

become susceptible again each day is a constant :

Qj(t)=c: (2)

Here Ni is the number of cattle on farm i with the

power coefficient a, I(t) is the number of infected

farms at day twith the power coefficient b. Mij(t) is the

number of cattle moved from farm j to farm i on day t.

The quantities Mij(t) and Ni were obtained from

the Defra Cattle Tracing System (British Cattle

Movement Service, 2005) and the June 2003 Agri-

cultural census data of the Scottish Government

(Defra, 2005), respectively. xj is the fraction of cattle

infected on farm j which was sampled at each time-

step from the on-farm prevalence distribution re-

ported for the IPRAVE survey data [34]. After

matching IPRAVE survey farms [30] with the 2003

census data and cattle tracing system data, our system

comprised 13 704 cattle farms [13].

Themodel requires four parameters to be estimated:

the transmission coefficient b, the power coefficients

a and b, and the recovery rate c. The time-step used in

all simulations is 1 day. The power coefficient a with

respect to herd size measures the dependence of cattle

farm susceptibility on the herd size. In the extreme

situation of a=0, farm susceptibility is invariant

among farms of different size. The contact between

farms is in the sense of the transmission accomplished

by the bacterium via routes other than cattle move-

ment, such as vehicles and movement of other animals

and birds. The power coefficient b with respect to the

number of infected farms I reflects the patterns of

mixing between individual farms: b>1 implies that,

on average, each infected individual farm during the

length of its infectious period contacts more suscep-

tible individual farms than the mass-action assump-

tion (i.e. the well-mixing pattern) while b<1 infected

individual farms contact less than the mass-action

assumption.

Model variants

Although the spread of E. coli O157 infection among

Scottish cattle farms occurs via two routes, cattle

movements only play a medium role in maintaining

prevalence [13, 34]. To illustrate how different forms

of transmission rate affect the effectiveness of inter-

vention programmes, we focused on various choices

of transmission rate due to sources other than cattle

movements, in which the susceptibility of the cattle

farm (i.e. Ni
a) and the recovery remain the same

[i.e. equation (2)] as in the above basic model. The

following variants of transmission dynamics are con-

sidered and compared with the basic model. Their

corresponding deterministic versions are discussed in

the Appendix.

(a) The density-dependent transmission rate. The

‘well-mixing’ is assumed among cattle farms which

occurs via different means such vehicles, movement

of other animals, and birds, so that the probability of

infection is linearly proportional to the number of

infected farms,

Pi(t)=1x exp [xbI(t)Na
i ]

Y
j2I(t)

(1xxj)
Mij(t)

 !
: (3)

This is a special situation of the basic model with b=1

and is equivalent to the classical mass-action law.

Force of infection and control effectiveness 1217

https://doi.org/10.1017/S0950268811001774 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811001774


(b) The density-independent transmission rate. The

probability for a susceptible cattle farm to become

infected due to sources other than cattle movements is

independent of the number of infected farms in

Scotland.

Pi(t)=1x exp [xbNa
i ]

Y
j2I(t)

(1xxj)
Mij(t)

 !
: (4)

This is another extreme situation of the basic model

with b=0. This variant can be understood as there is a

constant source of infectious agent from the sur-

rounding environment, which is independent of the

number of infected farms in the Scottish cattle farm

system.

(c) The mixture transmission rate. Combining both

density-dependent and density-independent forms, the

probability for farm i to become infected at day t is,

Pi(t)=1x exp [x(L+bI(t))Na
i (t)]

Y
j2I(t)

(1xxj)
Mij(t)

 !
:

(5)

The source of infection arises both directly from in-

fected cattle farms and indirectly from the surround-

ing environment.

(d) The Holling response transmission rate. The

transmission rate takes Holling functional response so

that it saturates into the density-independent trans-

mission rate when the number of infected farms be-

come much larger than the saturation parameter K,

while it reduces to a density-dependent transmission

rate if only a few farms are infected.

Pi(t)=1x exp xbNa
i (t)

I(t)

I(t)+K

� � Y
j2I(t)

(1xxj)
Mij(t)

 !
:

(6)

(e) The negative binomial form of transmission

rate. The transmission rate considers the degree of

‘heterogeneity ’ of infected farms and takes the fol-

lowing form,

Pi(t)=1x exp [xNa
i (t) ln (1+bI(t)=k)k]

r
Y
j2I(t)

(1xxj)
Mij(t)

 !
:

(7)

Here k is a parameter describing the heterogeneous

infectiveness of infected cattle farms: the smaller k the

greater the degree of heterogeneity so that the infected

are more likely to aggregate [35]. When k>>1 (hom-

ogeneity, i.e. well mixing), it reduces to the density-

dependent form (i.e. the mass-action law).

(f) The Reed–Frost formula of transmission rate

[36]. If the per capita transmission rate due to sources

other than cattle movements is bNi
a(t), the overall

probability for farm i to become infected at day t is,

Pi(t)=1x(1xbNa
i (t))

I(t)
Y
j2I(t)

(1xxj)
Mij(t)

 !
: (8)

Model fitting

These model variants of transmission dynamics were

fitted to IPRAVE survey data [30] to estimate the

values of model parameters. Simulations of an epi-

demic were compared with IPRAVE data (as presence

or absence of infection) for 461 IPRAVE farms by

calculating the natural logarithm of the likelihood

l=
X461
i=1

loge [(1x�rri)
(1xri)�rrrii ], (9)

where ri=1 if farm i is recorded as positive, ri=0

otherwise. �rri is the predicted probability that farm i

is infected on a particular day (for details see [13]).

Although there is large variation in the estimates of

model parameters, the MLEs are in agreement with

the modes of Markov chain Monte Carlo-generated

distribution of model parameters, as shown for the

transmission dynamics given by equations (1) and (2)

[25]. Further, despite the considerable uncertainty in

individual parameter estimates, there was much less

uncertainty in the expected impacts of interventions

[25]. As we were only interested in the impact of dif-

ferent forms of transmission rate on the effectiveness

of intervention programmes, effort was only made to

obtain the MLEs of model parameters for the above

variants of transmission dynamics using the downhill

simplex method.

Effectiveness of control programmes

Based on the MLEs of model parameters, the effec-

tiveness and efficiency of different intervention

programmes were investigated using Monte Carlo

simulations. For each model variant of transmission,

the simulation starts with five randomly chosen in-

fected farms and reaches a steady state after a burn-in

period of 9 years [13, 34]. Control programmes are
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introduced after the system has been at the steady

state for 6 years, and the simulation is allowed to run

a further 9 years to monitor the impact of interven-

tions on the prevalence of infection. As cattle move-

ments only have a modest impact on the steady-state

prevalence of E. coli O157 [25], we merely considered

intervention strategies that were involved with the

second route of transmission and infectious period.

The acquisition of infection from contaminated en-

vironment and other species (i.e. the second route of

transmission) is characterized by the transmission

coefficient b. Its value is simply determined by farm

environmental conditions, including food, water and

bedding, and other species [32]. Maintaining a high

hygiene level of farm conditions and vaccination can

reduce the value of b and therefore reduce the chance

of becoming infected. Decreasing the duration of

infectious period (i.e. 1/c), such as by applying some

treatments, e.g. vaccination and competitive exclusion

[37], can also reduce the prevalence of infection.

We considered both population-wide and individ-

ual-specific control measures. For the population-

wide control, the infectiousness (i.e. either the

transmission coefficient or the duration of infectious

period) of all cattle farms is reduced by a factor c. For

individual-specific control (i.e. targeted intervention),

a proportion c of farms were selected based on risk

factors (e.g. herd size [13]) and their infectiousness

was reduced to zero. In contrast to pure theoretical

investigations [21, 22], in the current study we used

stochastic models to investigate the consequence of

different transmission dynamics and to illustrate the

importance of procuring a correct transmission rate

of infectious diseases (their simplified deterministic

versions are given in the Appendix).

RESULTS

MLEs of model parameters

The results of model fitting are listed in Table 1.

Among different model variants of transmission rate,

theMLEs of b vary widely, while that of both recovery

rate c and power coefficient a locate at relatively small

ranges : cy0.023–0.056 per day and ay0.17–0.36.

This reflects the fact that the role and meaning of

b depend highly on the model structure, while that of

c and a remains the same among different variants

of transmission dynamics. The density-independent

model (i.e. b=0) is roughly indistinguishable from the

basic model in view of the value of AIC [13]. However,

the density-dependent model (i.e. b=1) is significantly

less favourable. The fitting of themixturemodel [equa-

tion (5)] suggests that the transmission rate is domi-

nated by the density-independent transmission. This

can be seen from the following simple illustration. If

about 19% of farms were infected, so I=13704r
19%%2600, the density-dependent term in the FOI

is bI%5.2r10x4 which is less than the density-

independent term L=2.5r10x3. These collectively

imply a stronger impact of indirect source of con-

taminated surroundings than the direct source of

infected farms.

For the negative binomial model [equation (7)], the

‘degree of heterogeneity ’ of cattle farms, indicated by

k=4.22, is not very large, suggesting some kind of

heterogeneity in the farms’ infectiousness. That is, the

infected farms were aggregated rather than randomly

distributed. For theHolling functional responsemodel

[equation (6)], the MLE of saturation parameter K

is 3204, which is of the same order of the total

number of infected farms (i.e. 13 704r19%%2600).

Table 1. The maximum likelihood estimates of model parameters and model comparison

Model variants b c a b
Additional
parameter l AIC

Basic model 3.38r10x4 3.50r10x2 0.270 0.230 — x213.0 434.0

Density-independent 2.40r10x3 3.54r10x2 0.249 0.0 — x214.2 434.4
b=0.5 4.36r10x5 5.63r10x2 0.363 0.5 — x215.5 437.0
Reed–Frost 1.32r10x6 5.28r10x2 0.287 — — x215.8 437.6

Density-dependent 1.48r10x6 5.14r10x2 0.248 1.0 — x215.9 437.8
Mixture 2.01r10x7 3.37r10x2 0.167 — L=2.53r10x3 x215.0 438.0
Holling response 6.23r10x3 4.91r10x2 0.291 — K=3204 x215.0 438.0
Negative binomial 5.39r10x7 2.29r10x2 0.272 — k=4.22 x215.3 438.6

The model variants are listed in ascending order of values of Akaike’s Information Criterion (AIC): AIC=x2l+2n where l

is the natural log of likelihood calculated from equation (9) and n the number of model parameters. The most parsimonious
model is the one with the lowest AIC value [24].
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Therefore this model is quantitatively different from

both the density-dependent model [equation (3)] and

the density-independent model [equation (4)]. The

Reed–Frost model [equation (8)] is similar to the

density-dependent model [equation (3)], which reflects

the fact that the per capita transmission rate bNa

is very small, just about 4r10x6 even for farms

of >600. However, in view of the value of AIC the

model [equations (1) and (2)] is the most parsimoni-

ous model, as found in [13].

Control measures and effectiveness

The fraction of infected farms under both population-

wide and targeted interventions is shown in Figure 1.

Comparatively, the population-wide intervention

programme (Fig. 1a) is less effective than the targeted

intervention (Fig. 1b), as shown in [25]. For any FOI

model, the difference in their effectiveness among two

intervention strategies is only quantitative in view of

whether there is a threshold level for the control of

infection. We only show the results of interventions

based on the reduction of transmission coefficient.

The results of interventions based on the reduction of

infection period were similar and are therefore not

shown here. With increasing control effort, the frac-

tion of infected farms decreased, but the rates of the

reduction differ greatly among model variants of FOI.

In the case of mass-action law (i.e. b=1), making

higher-risk farms completely immune to infection

(i.e. reducing the value of b to zero) (targeted control),

or reducing the transmission coefficient over the

whole farm system (population-wide control), is

very effective for controlling and eliminating the

infection (Fig. 1). From equation (3) in the absence

of cattle movements, the FOI is approximated as

[1x exp (xbNa
i I)] � bINa

i for farm i. Taking the

average cattle farm size N=140 [13], the basic repro-

ductive number is approximated as R0 � bN
a
M=c,

where M is the number of cattle farms (i.e. 13 704).

Using the MLEs of model parameters listed in

Table 1, the basic reproductive number is R0 y1.3.

Without cattle movement between farms, it is thus

expected, in accordance with traditional epidemiolo-

gical theory [4], that the infection will be eradicated

if the transmission coefficient can be reduced more

than (1–1/R0)=23%. This is the so-called herd

immunity [4, 5]. The simulation result shown in

Figure 1a is only slightly larger than this approxi-

mation, indicating the fact that cattle movements

increase the reproductive number [13].

However, when the power coefficient b is less than

unity, the intervention programme becomes much less

effective and infection would not be eradicated unless

all farms are made immune to infection (see also

Appendix). A similar thing happens to transmission

dynamics of the FOI mixture model because even in

such a mixture of FOI, the density-independent term

dominates the FOI. In those two models, herd im-

munity disappears because infection can also be ac-

quired from the contaminated environment, which is

out of the control target.

Under three other model variants of FOI

(Reed–Frost, negative binomial, Holling functional

response), the infection can be eliminated with control

effort much less than 100%. Under the Reed–Frost

model of FOI, the E. coli O157 infection can be

brought under control if effort is >25%, which is

close to what was required for transmission dynamics

of density-dependent FOI. While under negative bi-

nomial and Holling functional response FOI models,

the threshold control level increases to 35% and

55%, respectively. Thus under these three model

variants, herd immunity comes into effect.

DISCUSSION

Although the simple theory based on mass-action law

suggests that infectious diseases can certainly be con-

trolled and the only question is how much control

effort should be used to achieve it, our investigations

based on E. coli O157 infection on Scottish cattle

farms indicate this might not always be the case. The

spread and control of infectious diseases depend

on the underlying transmission process. As far as

mathematical modelling is concerned, the exact for-

mulation of transmission rate is the centre of trans-

mission dynamics. The genuine form of FOI can

only be accessed and inferred through the survey data

of an epidemic and it may display quite different epi-

demic processes from those derived from mass-action

law. This thus highlights the risk in designing optimal

intervention programmes from the conclusions of

simple and intuitive models, and also demonstrates

the crucial importance of model selection from data-

driven models to infer the realistic formulation

of FOI.

The underlying mechanism of transmission process

affects the spread of infectious diseases and hence im-

pacts the design of control strategies. The FOI consists

of three components : susceptibility, infectiousness and

the contact between individuals [2]. The sophisticated
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Fig. 1. Infectiveness of interventions under various FOIs. (a) The population-wide intervention : the programme is for

reducing the transmission coefficient b to (1xc)b for all farms, where c is the control effort. (b) Individual-specific inter-
vention: the programme is for reducing the transmission coefficient b to zero for farms of large size. The control effort is equal
to the proportion of cattle farms that have been made completely immune to infection. The control efforts are 2.3%, 6%,

12%, 14.5%, 23.6%, 30.7%, 39.1%, 56.8%, 73.4%, 85.9%, and 100% if the farms selected have herd sizeo550, 410, 310,
280, 210, 170, 130, 70, 30, 10, and 0, respectively. The simulations used to generate the effectiveness of the control pro-
grammes are based on the maximum likelihood estimate of model parameters listed in Table 1. Eight different model variants

of FOI were compared: density-independent (b=0), mixture of density-independent and density-dependent (mixture), the
basic model (best, b=0.23), nonlinear FOI with power coefficient b=0.5, Holling functional response (Holling), negative
binomial (Neg-Bin), Reed–Frost and density-dependent (b=1). The points represent the averages among results from five

independent runs over 9 years.
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risk factors, such as heterogeneous population

structure, complicated mixing pattern, variable sus-

ceptibility and infectiousness, specific manner of

transmission for a particular infectious disease, and

possible multiple sources of infection, influence how

transmission rate changes with different types of

interaction. This complexity suggests the vigilance

required in constructing the form of FOI and thus the

entire transmission dynamics [19]. The simple theory

does supply us with some information about the

spread of infection; however, its precise and full

understanding requires and depends on the correct

formulation of the FOI. For a particular infectious

agent, its aetiology and the way it spreads in popu-

lations are specific. Although the qualitative and

quantitative knowledge from other well-studied in-

fectious agents through analogous comparison might

provide us some temporary information, the pivotal

and accurate information about the underlying mech-

anism of the transmission processes can only come

from actual survey data and data-driven modelling.

The importance of this procedure has been re-

cognized, and many projects have been conducted

for this (e.g. 2001 UK foot-and-mouth disease

[38, 39] ; 2003 outbreaks of SAR in Hong Kong [18]

and Singapore [40] ; 2009 pandemic influenza [16, 20]).

With high-speed computer and information-based

statistical methods, it is possible and now becoming

common to perform model selection to infer the most

likely model from the survey data. The so-chosen

model would provide reliable information for de-

signing the optimal programme of infection control.

Because of scarcity of appropriate epidemiological

data and huge uncertainties in risk factors on trans-

mission, one basic issue in applying model selection to

distinguish different dynamic processes is : what kind

data and how many are sufficient? In principle, more

quality data is better. In practice, this kind of high-

quality data may be difficult (if possible) and very

expensive to obtain, and data that we can obtain,

albeit not perfect, might be good enough for us to

extract useful information about the underlying

dynamic process. In our studies [13, 25] we used

prevalence data of 461 IPRAVE farms, which are

quasi-longitudinal. It is the variation in data vs. time

(see figure 2 in [13]) that allows the dynamic process to

be identified. To test whether the IPRAVE prevalence

data are sufficient for us to distinguish different

models, we analysed risk factors for the presence of

E. coli O157 on a farm by both empirical Generalized

Linear Mixed Models and the fitting of dynamic

models [13]. After selection from different model

variants, both methods concluded that farm size

and recent cattle movement are the most important

risk factors. The agreement between the two methods

provides support that the IPRAVE prevalence data

are sufficient to distinguish different dynamic pro-

cesses. Therefore, it is generally possible to construct a

model from obtainable but limited survey data that

would describe more accurately the infectious disease

dynamics than one using mass-action law.

In our study of E. coli O157 infection on Scottish

cattle farms, the epidemic could be eradicated with

a control effort level less than 100% if it was caused

by one of the following FOIs: density-dependent,

Holling functional response, negative binomial, or

Reed–Frost form. This indicates that herd immunity

exists against the infection although the actual level

of herd immunity differs among these model variants.

These conclusions are in agreement with the tra-

ditional theory [4]. However, those model variants of

FOI were rejected in accordance with the AIC values

(Table 1). The model supported by the survey data of

E. coliO157 infection on Scottish cattle farms [30] was

the basic model of FOI, approximately bIbNa with the

power coefficient b=0.23 <1. The epidemic caused

by it cannot be brought under control unless 100%

control effort is performed. In general, the controll-

ability of an infectious disease depends critically on

the value of power coefficient b (see Appendix). For

transmission dynamics of FOI bIbNa with bo1, in-

fection can be eliminated by a control effort less than

100% (i.e. herd immunity holds) ; however, for

transmission dynamics of FOI bIbNa with b<1, in-

fection would not be eradicated unless an intervention

programme of 100% effort is performed (Fig. 1).

This kind of transmission dynamics suggests a weak

direct dependency of transmission on the number

of infected farms as well as the possibility of other

indirect sources of infection. Therefore the vanishing

of threshold under this situation might come as a

consequence of heterogeneity in the mixing patterns

[21, 22, 41] and multiple sources of infection.

Although our study was based on E. coli O157

infection on Scottish cattle farms, the insight derived

from it should be of general value to other infections

as far as the relationship between control effectiveness

and the form of FOI is concerned. Despite desperate

efforts made to eradicate as many fatal infectious

diseases as possible, only two infectious diseases have

been successfully eradicated so far : one specifically

affecting humans (smallpox) [42] and one affecting a
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wide range of ruminants (rinderpest) [43]. This fact

indicates the complexity of transmission dynamics of

infectious diseases as well as the limitation of simpli-

fied models of transmission dynamics. Nevertheless,

this encourages and necessitates the need to perform

model selection by taking the advantage of statistical

inference methods and actual data of epidemics. Only

through painstaking effort can the genuine form of

FOI and reliable and accurate information for design

of optimal intervention be obtained.
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7. Finkenstädt BF, Grenfell BT. Time series modelling of
childhood diseases : a dynamical systems approach.
Journal of Applied Statistics 2000; 49 : 187–205.

8. Zhang X-S, Holt J, Colvin J. A general model of plant-
virus disease infection to incorporate vector aggre-
gation. Plant Pathology 2000; 49 : 435–444.

9. Fenton A, et al. Parasite transmission : reconciling
theory and reality. Journal of Animal Ecology 2002; 71 :
893–905.

10. Regoes RR, et al. The infection rate of Daphnia magna
by Pasteuria ramosa conforms with the mass-action

principle. Epidemiology and Infection 2003; 131 :
957–966.

11. Xia Y, Gog JR, Grenfell BT. Semiparametric estimation

of the duration of immunity from infectious diseases
time series : influenza as a case-study. Journal of Applied
Statistics 2005; 54 : 659–672.

12. Rachowicz LJ, Briggs CJ. Quantifying the disease

transmission function : effects of density on
Batrachochytrium dendrobatidis transmission in the
mountain yellow-legged frog Rana muscosa. Journal of

Animal Ecology 2007; 76 : 711–721.
13. Zhang X-S, et al. Spread of E. coli O157 infection

among Scottish cattle farms: Stochastic models and

model selection. Epidemics 2010; 2 : 11–20.
14. Matthews L, et al. Heterogeneous shedding of

Escherichia coli O157 in cattle and its implications

for control. Proceedings of the National Academy of
Sciences USA 2006; 103 : 547–552.

15. Carrat F, et al. Time lines of infection and disease in
human influenza: A review of volunteer challenging

studies. American Journal of Epidemiology 2008; 167 :
775–785.

16. Cauchemez S, et al. Role of social networks in shaping

disease transmission during a community outbreak of
2009 H1N1 pandemic influenza. Proceedings of the
National Academy of Sciences USA 2011; 108 : 2825–

2830.
17. Galvani AP, May RM. Dimensions of superspreading.

Nature 2005; 438 : 293–295.

18. Riley S, et al. Transmission dynamics of the etio-
logical agent of SARS in Hong Kong: impact of
public health interventions. Science 2003; 300 : 1961–
1966.

19. Kao RR. Networks and models with heterogeneous
population structure in epidemiology. In Network
Science, 2010, pp. 51–84. London: Springer.

20. Fraser C, et al. Pandemic potential of a strain of influ-
enza A(H1N1) : early findings. Science 2009; 324 :
1557–1561.

21. Liu WM, Hethcote HW, Levin SA. Dynamical behav-
iour of epidemiological models with nonlinear incidence
rates. Journal of Mathematical Biology 1987; 25 :
359–380.

22. Hochberg ME. Non-linear transmission rates and the
dynamics of infectious disease. Journal of theoretical
biology 1991; 153 : 301–321.

23. Lloyd-Smith JO, et al. Superspreading and the effect of
individual variation on disease emergence.Nature 2005;
438 : 355–359.

24. Burnham KP, Anderson DR. Model Selection and Multi-
model Inference: A Practical Information-Theoretic
Approach, 2nd edn. New York: Springer-Verlag, 2002.

25. Zhang X-S, Woolhouse MEJ. E. coli O157 infection
on Scottish cattle farms: dynamics and control. Journal
of the Royal Society Interface. Published online :
17 November 2010. doi:10.1098/rsif.2010.0470.

26. Chase-Topping ME, et al. Super-shedding and the
link between human infection and livestock carriage

Force of infection and control effectiveness 1223

https://doi.org/10.1017/S0950268811001774 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811001774


of Esherichia coli O157. Nature Reviews Microbiology
2008; 6 : 904–912.

27. Armstrong GL, Hollingsworth J, Morris JG. Emerging
food pathogens : Escherichia coli O157:H7 as a model
entry of a new pathogen into the food supply of the

developed world. Epidemiologic Reviews 1996; 18 :
29–51.

28. Griffin PM, Tauxe RV. The epidemiology of infections
caused by Escherichia coli O157, other entero-

hemorrhagic E. coli and the associated haemolytic
uremic syndrome. Epidemiologic Reviews 1991; 30 :
60–98.

29. Gunn GJ, et al. An investigation of factors associated
with the prevalence of verocytoxin producing
Escherichia coli O157 shedding in Scottish beef cattle.

Veterinary Journal 2007; 174 : 554–564.
30. Chase-Topping ME, et al. Risk factors for the Presence

of high-level shedders of Escherichia coli O157 on

Scottish Farms. Journal of Clinical Microbiology 2007;
45 : 1594–1603.

31. Pearce MC, et al. Temporal and spatial patterns of
bovine Escherichia coli O157 prevalence and compari-

son of temporal changes in the patterns of phage types
associated with bovine shedding and human E. coli
O157 cases in Scotland between 1998–2000 and

2002–2004. BMC Microbiology 2009; 9 : 276.
32. Turner J, et al. A semi-stochastic model of the trans-

mission of Escherichia coli O157 in a typical UK dairy

herd : dynamics, sensitivity analysis and intervention/
prevention strategies. Journal of Theoretical Biology
2006; 241 : 806–822.

33. Akaike H. Information theory and an extension of the
maximum likelihood principle. In : Petran BN, Csaki F,
eds. International Symposium on Information Theory.
Akademiai Kiadi, Budapest, 1973, pp. 267–281.

34. Liu WC, et al. Metapopulation dynamics of
Escherichia coli O157 in cattle : an exploratory
model. Journal of the Royal Society Interface 2007; 4 :

917–924.
35. Briggs CJ, Godfray HCJ. The dynamics of insect-

pathogen interactions in stage-structured environments.

American Naturalist 1995; 145 : 855–887.
36. Vynnycky E, White RG. An Introduction to Infectious

Disease Modelling. Oxford University Press, 2010.
37. Russell JB, Jarvis GN. Practical mechanisms for inter-

rupting the oral-faecal lifecycle of Escherichia coli.
Journal of Molecular Microbiology and Biotechnology
2001; 3 : 265–272.

38. Keeling MJ, et al. Dynamics of the 2001 UK foot and
mouth epidemic : stochastic dispersal in a hetero-
geneous landscape. Science 2001; 294 : 813–817.

39. Ferguson NM, Donnelly CD, Anderson RM. The
foot and mouth epidemic in Great Britain : pattern of
spread and impact of interventions. Science 2001; 292 :

1155–1160.
40. Lipsitch M, et al. Transmission dynamics and control of

severe acute respiratory syndrome. Science 2003; 300 :
1966–1970.

41. May RM, Lloyd AL. Infection dynamics on scale free
networks. Physical Review E 2001; 64 : 066112.

42. WHO. Smallpox 2000 (http://www.who.int/
mediacentre/factsheets/smallpox/en/). World Health

Organization. Accessed November 2007.
43. BBC. UN ‘confident ’ disease has been wiped out. BBC,

14 October 2010 (http://www.bbc.co.uk/news/science-

environment-11542653), Accessed 14 October 2010.

APPENDIX. SIS deterministic models with

different forms of FOI

In the case of constant susceptibility for each farm,

the stochastic model considered in this paper is

equivalent to the following deterministic SIS epidemic

model with the FOI f(S, I) :

dS=dt � _SS=xf S, Ið Þ+cI, (A1)

dI=dt � _II=f S, Ið ÞxcI, (A2)

with a constant total population size M=S+I. There

are two equilibria : one is disease-free (I*=0, S*=M)

and the other is endemic (I*>0, S*=MxI*), which is

determined by the equation:

f S*, I*
� �

=cI*: (A3)

The stability of equilibria can be investigated by ex-

amining the eigenvalues of the Jacobian matrix. For

the dynamic system [equations (A1)x(A2)], it is

d _SS=dSxl d _SS=dI

d _II=dS d _II=dIxl

�����
�����=

xdf(S, I)=dSxl xdf(S, I)=dI+c

df(S, I)=dS df(S, I)=dIxcxl

����
����

=xl[df(S, I)=dIxdf(S, I)=dSxcxl]=0:

(A4)

For the equilibrium (S*, I*), its stability condition is

determined by the following inequality

l=
df(S, I)

dI

����
I=I*,S=S*

x
df(S, I)

dS

����
I=I*,S=S*

xc<0:

(A5)

The stability conditions and the prevalence of endemic

are given in Table A1 for the seven different model

variants of FOI. The dependence of prevalence of

epidemic on the relevant parameters are illustrated in

Figure A1 , indicating the possibility of whether the

epidemic can be controlled or not. Figure A2 shows

the results of the corresponding deterministic version

of the SIS models ; most are similar to that of stoch-

astic models except for the negative binomial model.

Ignoring variation in transmissibility makes the be-

haviour of the negative binomial model close to that

of the density-dependent model.
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Table A1. The stability conditions for disease-free and endemic solutions of the SIS model [equations (A1)x(A2)]

with different model variant of FOI

Model variants
of FOI: f(S,I)

Condition for disease
free equilibrium

Endemic

Prevalence Stability condition

bSIb

b=0 Impossible I*=bM/(b+c) Always

b=0.5 Impossible I*=Mx c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2+4b2M

p
xc2

2b2 Always
b=1 R0wbM/c<1 I*=Mxc/b R0wbM/c>1.

b=1.5 bM/c<d [27/(4M)] I*=(4M/3)cos2(a/3) with cos(a) bM/cod[27/(4M)]
=x[3c/(2bM)]d(3/M)

Holling
bSI/(I+K) bM/(cK)<1 I*=(bMxcK)/(b+c) bM/(cK) >1

Negative binomial

S ln(1+bI/k)k bM/c<1 (MxI*)ln(1+bI*/k)k=cI* bk(MxI*)(k+bI*)x1

– cxcI*/(MxI*) <0

Reed–Frost
S[1x(1xb)I] M(1xb)ln(1xb)/c<1 (MxI*)[1x(1xb)I*]=cI* (MxI*)(1xb)ln(1xb)

+c+cI*/(MxI*) >0

0·01

0·1

1

10

100

0·01 0·1 1 10 100
R0 = βM/γ

P
re

ve
la

nc
e 

(%
)

b = 1·5

b = 1

b = 0·5

Fig. A1. Impact of the power coefficient b on the transmission dynamics of FOI f(S,I)=bSIb. The example shown is for a

population of size M=13 704. The threshold value of bM/c is d(27/(4M))%0.02 and 1.0 for b=1.5 and 1.0, respectively,
while there is no threshold for b=0.5.
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Fig. A2. The infectiveness of intervention under various formulations of FOI. The model parameters were taken from Table 1,
and the new transmission coefficient is recalculated as bNb where the herd size takes the average value of N=140 [13]. The

intervention is the population-wide reduction in the transmission coefficient as in Figure 1a.
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