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Abstract

This article introduces a novel methodology to model the hierarchical dependence structure of manifest
variables (MVs). This is done by reconstructing their correlation matrix considering a hierarchy of latent
factors which forms an ultrametric correlation matrix. The proposed ultrametric factor analysis model will
be shown to obtain reliable, unidimensional, and unique hierarchical factors. This approach addresses
the limitations of traditional factor analysis methods that often oversimplify the multidimensional and
complex relationships among MVs. The article provides an in-depth mathematical description of the
proposed model, as well as an algorithm for parameter estimation. An extensive simulation study with
3,000 generated samples validates the proposal across twelve different scenarios. Finally, we demonstrate
the potential of the proposed model using a real data set that is a benchmark in psychological research.
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1. Introduction

Latent concepts represent aspects of reality that cannot be directly observed, such as quality of life,
sustainable development, poverty, happiness, and personality traits. These concepts can be inferred
through observable Manifest Variables (MVs) and are essentially measurable by means of a Latent
Variable (LV) that is statistically related with two or more MVs. In general, latent concepts need
statistical models to comprehensively and synthetically represent them through a mathematical for-
malization of the observed data and their relationships, i.e., the measurement model (Bollen & Bauldry,
2011, among others). However, the representation of a multidimensional latent concept through a
single LV might result in a simplistic portrayal, by inadequately capturing the intricate nature of the
complex phenomenon at hand. Exploratory Factor Analysis (EFA), pioneered by Spearman (1904), is
one of the widely used statistical methods to identify LVs, often called factors, which are assumed to
generate MVs and reflect into their linear relationships. EFA has been extensively applied to identify
complex constructs like personality traits, intelligence, attitudes, and mental health in psychology; social
stratification, cultural values, and interpersonal relationships in sociology; consumer preferences, brand
perceptions, and product attributes in marketing; and quality of life, health behaviors, and disease risk
factors in health sciences. Additionally, if a theoretical factorial structure can be hypothesized a priori,
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Confirmatory Factor Analysis (CFA), and more generally Structural Equation Model (SEM), can be used
to test its fit to the observed data (Brown, 2015). Nonetheless, it may sometimes happen that a reduced
set of factors, which are uncorrelated in EFA, is insufficient to analyze and reproduce the complexity of
the phenomenon under study, since hierarchical relationships among its multiple factors exist.

Advanced approaches for exploring hierarchies of LVs underlying the data include hierarchical
models, which organize various facets of a construct into hierarchical structures, extending from the
original MVs to the ultimate General Factor (GF) through a refined group of Specific Factors (SFs). The
GF represents the highest abstraction of the phenomenon under study, while the SFs denote dimensions
that, in turn, measure specific concepts describing the primary components of the phenomenon
under study. SFs are LVs less abstract than GFs and are more correlated with MVs, allowing a better
understanding of the phenomenon. This hierarchical approach is necessary to provide a more precise
and comprehensive understanding, steering away from the pitfalls of oversimplification associated with
a single factor or with a group of uncorrelated factors. Higher-order factor analysis (HOFA; Gorsuch,
1983), second-order disjoint factor analysis (DFA; (Cavicchia & Vichi, 2022)), both based on EFA, and
hierarchical disjoint principal component analysis (Cavicchia et al., 2023), a hierarchical extension of
the model introduced by Ferrara et al. (2016), are examples of hierarchical models. Specifically, HOFA
involves a sequential application of EFA followed by non-orthogonal rotation to detect higher-level
factors representing broader constructs, while the other two models use a simultaneous approach,
either limited to two orders or related to principal component analysis instead of EFA, respectively. In
psychometric studies, hierarchical concepts are ubiquitous. For example, as described by Cattell (1971)
and Carroll (1993) in the context of intelligence studies, a hierarchical model might include multiple
levels of abstraction, with lower levels representing specific abilities or tasks (e.g., memory, verbal
comprehension, spatial reasoning) and higher levels representing broader factors (e.g., fluid intelligence,
crystallized intelligence, general intelligence or g factor). Another example is the Five-Factor Model of
personality (Costa & McCrae, 1992; Cronbach, 1990), which organizes personality traits into five factors,
namely openness to experience, conscientiousness, extraversion, agreeableness, and neuroticism, each
represented by specific aspects. The aggregation of neuroticism, agreeableness, and conscientiousness
on the one hand, and extraversion and openness to experience on the other, give rise to two higher-
order dimensions, called alpha and beta (or stability and plasticity), respectively (DeYoung et al., 2002).
Hierarchical models are also employed in organizational psychology to understand the structure of job
performance (Campbell, 1990).

Unlike the aforementioned models, the methodology introduced in this article addresses the model-
ing of the unexplained correlation between higher-order factors through a simultaneous approach that
goes beyond two levels and identifies higher-order LVs from the hierarchical structure of MVs. The
proposal is called Ultrametric Factor Analysis (UFA), as it extends the EFA model to the case of factors
with a hierarchical structure, which mathematically corresponds to an ultrametric correlation matrix.
However, if UFA is applied to data without a true hierarchical structure, first-order factor correlations
will be close to zero, resulting in near-zero loadings for higher-order factors. This indicates the absence
of a hierarchical structure. The model requires that the identified factors possess certain relevant
properties to define a sound methodology that adheres to the principles of high-quality statistics, as
clearly described in the European Code of Practice (European Commission, 2017). Good properties for
a hierarchy of factors include internal consistency, reliability, unidimensionality, and content validity
of the factors. The article proposes an adequate measurement model for constructing a hierarchy
of LVs with these desirable properties starting from a group of MVs. The results of the simulation
study underscore the superiority of the UFA method compared to well-established factor analysis
techniques, particularly in scenarios where the data exhibit a nested or hierarchical structure within
factors. Traditional methods often struggle to accurately capture the complexity of such hierarchical
data, leading to sub-optimal factor solutions. In contrast, UFA demonstrated a remarkable ability to
identify and model the nested relationships, providing more precise and interpretable factor structures.
We also apply UFA to the Cattell’s dataset, which focuses on the factorial study of intelligence. Given
the inherent hierarchical nature of this construct, where specific cognitive abilities feed into broader
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dimensions like crystallized and fluid intelligence, UFA is perfectly suited to model this type of data.
Indeed, by capturing both the unidimensional and hierarchical relationships by means of an ultrametric
correlation structure, UFA provides deep insights into how different cognitive abilities interrelate,
offering a more nuanced understanding of intelligence that traditional factor analysis methods may
fail to capture.

The rest of the article is organized as follows. In Section 2, we present the notation used across all
sections, along with fundamental concepts regarding ultrametric matrices, EFA and its constrained
version based upon a sparse structure of the loading matrix. A comprehensive illustration of the
proposed methodology is presented in Section 3. Section 4 describes the algorithm built to implement
the proposed procedure. Different measures for model selection and for the choice of the number of
factors are examined in Section 5. An extended simulation study designed to evaluate the model is
illustrated in Section 6, while a practical application is the core of Section 7. Conclusions and key
findings are reported in Section 8.

2. Notation and background

For the convenience of the reader, the notation and terminology common to all sections is listed here.

n,J,Q Number of units, MVs, and primary factors, respectively;
nq Number of MVs associated with the qth factor;
X (n× J) data matrix of n multivariate units;
1a, 0a (a×1) a-dimensional vector of ones or zeros elements, respectively;
Ia (a×a) generic identity matrix of order a;
J (n×n) centering matrix, J = In − 1

n 1n1′n;
Y (n×Q) factor score matrix of n multivariate units;
A (J ×Q) factor loading matrix;
E (n× J) error matrix;
B (J × J) matrix of the weights of the MVs;
VQ (J ×Q) membership matrix defining a partition of the J MVs in Q groups;
CQ (Q×Q) diagonal matrix fixing a unique non-null loading for a group of MVs;
RX (J × J) correlation matrix;
R (J × J) observed correlation matrix;
ER (J × J) error matrix related to R;
RW (Q×Q) within-concept consistency diagonal matrix, the diagonal elements represent the

consistency within the qth group of MVs;
RB (Q × Q) between-concept correlation matrix, with zero diagonal and the off-diagonal

elements denote the correlation between two factors;
QRX (J × J) correlation structure of the MVs partitioned into Q groups;
Ψ (J × J) correlation matrix of the errors;
M+ (m× r) Moore-Penrose inverse of an (r×m) matrix M, M+ = (M′M)−1 M′.

2.1. Ultrametric correlation matrix
To introduce our new factorial methodology, we first need to recall the definition of an ultrametric
correlation matrix.

Definition 1. A matrix RX is an ultrametric correlation matrix if all its elements rjl ∈R, for j,l = 1, . . . ,J,
satisfy the following conditions:

(i) symmetry: rjl = rlj for j,l = 1, . . . ,J;
(ii) non-negativity and unitary of the diagonal: rjl ≥ 0 for all j,l = 1, . . . ,J, rjj = 1 for all j = 1, . . . ,J;
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Figure 1. Example of a (2Q−1)-ultrametric correlation matrix, with Q=4, and its corresponding hierarchical tree. First-order groups

in (b) are G1 = {V1,V2,V3}, G2 = {V4,V5,V6}, G3 = {V7,V8,V9}, G4 = {V10,V11}. Higher-order groups are obtained as G5 = G1 ∪G2,G6 =

G3 ∪G4,G7 = G5 ∪G6.

(iii) positive semi-definiteness (psd): xRXx ≥ 0 for all x ∈RJ ;
(iv) ultrametricity: rjl ≥ min{rjh,rlh}, for j,l,h = 1, . . . ,J or, equivalently, for each triplet j,l,h = 1, . . . ,J,

there exists a reordering {j,l,h} of the elements s.t. rjl ≥ rjh = rlh.

In detail, RX is a (2Q − 1)-ultrametric correlation matrix of order J if MVs are partitioned into
Q groups and then they are agglomerated into Q − 1,Q − 2, . . . ,1 broader groups (Cavicchia et al.,
2020). An example is provided in Figure 1a. Each group q = 1, . . . ,Q in the initial partition of the
MVs is characterized by a strong correlation among the MVs within the group. This correlation
level, denoted by Wrqq, can be stored as the qth element of a diagonal matrix RW . The groups are
also correlated with each other, though to a lesser extent. These correlations, denoted byBrqh, can be
stored as off-diagonal elements of a hollow matrix RB. To arrange the MVs into groups, and those
groups into larger groups (property (iii) for the whole matrix), the correlations within each group
must be greater than the correlations between different groups, i.e., Wrqq ≥ Brqh,q,h = 1, . . . ,Q,h ≠ q.
Additionally, the ultrametric property must hold for the correlations between groups. Hence, a (2Q−1)-
ultrametric correlation matrix has a reduced number of parameters than a (J × J) correlation matrix
since its off-diagonal elements assume one of the (2Q− 1) different values, i.e., Wrqq q = 1, . . . ,Q, and
Brqh (q,h = 1, . . . ,Q,h ≠ q). It is easy to show that a (2Q− 1)-ultrametric correlation matrix is one-to-
one associated with a hierarchy of Q groups of MVs (Cavicchia et al., 2020, Lemma 1). In fact, as
shown in Figure 1b, the first Q values Wrqq q,q = 1, . . . ,Q, define the first-order aggregation levels of
the hierarchy and represent the expected correlation within the first Q groups. The other Q−1 values
Brqh q,h = 1, . . . ,Q,h ≠ q, identify the remaining Q − 1 levels and represent the expected correlation
between groups of MVs.

2.2. Exploratory sactor and disjoint factor analysis
Let x be a J−dimensional random vector with mean vector μ and variance–covariance matrix ΣX.
We assume that MVs are standardized; therefore, μ = 0 and the variance–covariance matrix ΣX is the
correlation of x. The EFA assumes that the observed units are explained (reconstructed, generated) by
the following model

x = Ay+e, (1)
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where y is a vector of non-observable Q random variables called factors, while A is a (J ×Q) matrix
of unknown parameters called factor loadings that identifies the statistical relations between MVs and
factors, and finally e is a J−dimensional vector of non-observable random errors, whose elements are
called the specific or unique factors. We shall assume that LVs and errors are centered, i.e., E(y) =
0Q; E(e) = 0J ; factors are standardized, and uncorrelated for EFA, i.e., Cor(y) = IQ (we assume the
orthogonal EFA hereinafter); and, finally, errors and factors are uncorrelated, i.e., Cor(y,e) = 0Q×J . For
the Maximum Likelihood (ML) estimation, it is also assumed that y ∼ NQ(0Q,IQ) and e ∼ NJ(0J,Ψ),
where Ψ is a diagonal positive definite matrix. Given these assumptions, it can be found that x ∼
NJ(μ,ΣX), where

ΣX = AA′+Ψ. (2)

The EFA model clearly has a problem of identification of A from AA′, since if Ã = AT is an arbitrary
orthogonal transformation of A, then ÃÃ′ = AA′. This indeterminacy is usually solved by rotating the
factor loadings to create maximum contrast between columns of A, e.g., by using varimax rotation
method (Kaiser, 1958). This frequently simplifies the loading matrix and facilitates interpretation. In
this spirit, Vichi (2017) introduced the DFA, in which the solution is constrained to have the simplest
loading matrix A that allows each MV to be uniquely correlated with one of the Q LVs. Thus, A is
parametrized by considering the product

ADFA = BVQ, (3)

where B = diag(b1, . . . ,bJ) is a (J × J) diagonal matrix and VQ is a (J ×Q) binary and row stochastic
matrix. The elements of B identify the levels of correlation between MVs and LVs, while VQ is a
membership matrix indicating each MV to which LV is assigned. This parameterization induces a
partition of MVs into Q disjoint groups and the definition of a LV for each subgroup of MVs. Therefore,
the model in Eq. (2) can be written as

ΣX = BVQV′QB+Ψ. (4)

The ML estimation is obtained supposing that a random sample of n > J multivariate units xi =
[xi1, . . . ,xiJ]′, i = 1, . . . ,n, so that X = [x′1, . . . ,x′n]′ is observed; thus, the reduced log-likelihood is

L(B,VQ,Ψ;X) = −nJ
2

ln(2π)− n
2

ln ∣BVQV′QB+Ψ∣+ n
2

tr((BVQV′QB+Ψ)−1R), (5)

where R is the sample correlation matrix (equal to the sample variance–covariance matrix S since
the observed sample is standardized). It is worth noting that the maximization of L(B,VQ,Ψ;X) is
equivalent to the minimization of the following discrepancy function with respect to B,VQ and Ψ

D(B,VQ,Ψ) = ln ∣BVQV′QB+Ψ∣+ tr((BVQV′QB+Ψ)−1R) (6)

such that

VQ = [vjq ∶ ∀vjq ∈ {0,1}] (binary), (7)

VQ1Q = 1J i.e.,
Q
∑
q=1

vjq = 1 j = 1, . . . ,J (row stochastic), (8)

B = diag(b1, . . . ,bJ) with b2
j > 0 (diagonal, non-null), (9)

V′QBBVQ = diag(b2
⋅1, . . . ,b2

⋅Q) with b2
⋅q = ∑

j∈Gq

b2
j (orthogonal, non-empty), (10)

where Gq indicates the group of MVs related to the qth factor. DFA involves a mixed binary (in VQ)
and continuous (in B and Ψ) optimization problem, thus, a quasi-Newton method cannot be properly
applied. Two coordinate descent algorithms (Zangwill, 1969) have been developed to solve it in Vichi
(2017).
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EFA and DFA models are scale invariant under linear transformation of the data matrix X, useful for
data normalization or standardization. However, DFA, differently from EFA, has the additional property
to be identified (unless for a label switching), thus, no rotation is needed.

3. The UFA model

The UFA models hierarchical structures by providing a SF loading matrix capable of identifying the
ultrametric correlation matrix describing the set of the supposed nested latent concepts. Therefore,
let us formulate the mathematical form of the ultrametric correlation matrix that UFA can derive.
First suppose that Q factors are identified according to the DFA model in Eq. (4) with the following
parsimonious formulation of the loading matrix (Parsimonious DFA, PDFA)

APDFA = VQCQ, (11)

where CQ = diag(c1, . . . ,cQ) is a diagonal matrix of order Q. The elements of CQ represent equal levels
of correlation between each LV and the corresponding MVs. Therefore, the correlation structure of
PDFA is

QRX = VQC2
QV′Q +Ψ, (12)

where the loadings of the MVs belonging to the same group, i.e., associated with the same LV, are equal.
After a proper permutation of the rows of VQ so as to have all the ones in each column of VQ contiguous,
the correlation structure in Eq. (12) has the following block diagonal form

QRX = blkdiag(WR1, . . . ,WRq, . . . ,W RQ) =
⎡⎢⎢⎢⎢⎢⎣

WR1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ WRQ

⎤⎥⎥⎥⎥⎥⎦
. (13)

In (13), blocks represent the correlation matrices WRq of the qth group of MVs related to the qth factor,
for q = 1, . . . ,Q, that is

WRq = (1nq 1′nq)c2
q +Ψq, (14)

where c2
q is the correlation between the qth factor and the nq associated MVs, and Ψq is a diagonal matrix

such that diag(Ψq) = [ψ1q, . . . ,ψnqq]′ = 1nq(1−c2
q). It is worth noting that QRX, due to its block diagonal

form, automatically satisfies the ultrametric conditions of Definition 1. However, for the non-orthogonal
EFA, correlation between factors is hypothesized to be different from zero, i.e., Cor(y) = Ry. To model
the latter, an higher-order correlation structure is required, corresponding to additional “layers” that
account for it. For the second-order correlation structure, we have

Q+1RX = vQ+1c2
Q+1v′Q+1, (15)

where vQ+1—hereinafter, we denote vq as the qth column of VQ—identifies a group of variables which is
obtained as the sum of two columns h and q of VQ, i.e., vQ+1 = vh +vq, with h, q ∈ {1, . . . ,Q}, h ≠ q, while
cQ+1 is the loading of the (Q+1)th factor corresponding to the square root of the correlation between
factors h and q. The matrix formulation of Eq. (15) is

Q+1RX =
⎡⎢⎢⎢⎢⎢⎣

0 BRhq 0
BRhq ⋱ ⋮

0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
, (16)

where BRhq = (1nh 1′nq)c2
Q+1. Note that the matrix obtained as QRX +Q+1RX =

⎡⎢⎢⎢⎢⎢⎣

WRh BRhq 0
BRhq WRq ⋮

0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
is ultramet-

ric, since if the hth and qth groups are aggregated it must hold that Wrhh,Wrqq ≥ Brhq (see Section 2.1).
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For the additional orders of correlation structures from Q+2 to 2Q−1, it is supposed that the correlation
not explained by the previous levels is partially explained by the successive one. Formally, the additional
layers are

Q+2RX = vQ+2c2
Q+2v′Q+2, . . . , 2Q−1RX = v2Q−1c2

2Q−1v′2Q−1, (17)

where vectors vQ+q, q = 1, . . . ,Q−1, represent the broader groups obtained by the aggregation in pairs
of those from the previous levels.

The UFA model parameterizes a correlation matrix of order J as the sum of 2Q−1 different layers as
follows:

RX =
Q−1
∑
q=0

Q+qRX +Ψ = VQC2
QV′Q +

Q−1
∑
q=1

vQ+qc2
Q+qv′Q+q +Ψ =

2Q−1
∑
q=1

vqc2
qv′q +Ψ, (18)

where the values cq, q = 1, . . . ,Q, in the diagonal of CQ = diag(c1, . . . ,cQ) represent the loadings between
the qth factor and the MVs in the qth group of the initial partition in Q groups, while the values cQ+q,
q = 1, . . . ,Q−1, are the loadings of the higher-order factors. It is easy to see that the right-hand side of
Eq. (18), i.e., the second and third term, is, by construction, a (2Q−1)-ultrametric correlation matrix
with values

rjl =
⎧⎪⎪⎨⎪⎪⎩

∑2Q−1
q=1 vjqc2

qvlq if j ≠ l
1 if j = l

, (19)

such that ∑2Q−1
q=1 vjqc2

qvlq ≤ 1 and 0 < c2
q ≤ 1. Additionally, RX in Eq. (18) can be rewritten in a compact

matrix form as follows:

RX = V̈C̈2V̈′+Ψ, (20)

where

V̈ = [v1,v2, . . . ,vQ,vQ+1, . . . ,v2Q−2,1J] = [VQ,vQ+1, . . . ,v2Q−2,1J] (21)

is the (J × 2Q − 1) binary matrix, with the first Q columns of V̈ reported in VQ which identify the
partition of the J MVs in Q groups, while the following Q − 1 columns identify the aggregations of
groups of MVs into partitions formed by Q−1, . . . ,1, nested groups. The last column of V̈ corresponds
to the total aggregation of the MVs into a single class. The UFA loadings in each of the 2Q−1 layers are
stored into the matrix C̈, which is given by

C̈ = diag([c1, . . . ,cQ,cQ+1, . . . ,c2Q−1]) = [CQ,diag(cQ+1, . . . ,c2Q−2,c2Q−1)]. (22)

It is worth noting that the loadings cQ+1, . . . ,c2Q−1 produce cross-loadings w.r.t. VQCQ, i.e., MVs that
load on two or more higher-order LVs and that induce their correlation. However, while the number of
parameters in a generic non-negative correlation matrix increases in the order of O(J2), for RX in Eq.
(18), the number of parameters increases linearly in the matrix as we will see in Section 5.

Remark 1. The elements rjl of the correlation matrix RX in Eq. (18) can be decomposed in two parts as
follows

rjl =
Q
∑
q=1

vjqc2
qvlq +

2Q−1
∑

q=Q+1
vjqc2

qvlq. (23)

In (23), the first sum is equal to zero if MVs j and l belong to two different groups of VQ. It is worth
noting that, in the first sum, at most one of the Q terms is non-zero (i.e., the term corresponding to the
case where j and l belong to the same group), while in the second sum, which has Q− 1 terms, more
than one term may be non-zero.

Remark 2. When RX in Eq. (18) has a block diagonal form as in Eq. (13), that is, the Q LVs are
uncorrelated, all the correlation between MVs is due to the correlation among MVs within the Q groups,
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i.e., Brqh = 0,q,h = 1, . . . ,Q,h ≠ q. In this case, PDFA best explains the correlation in RX, and therefore it
can be considered a special case of UFA where only c1, . . . ,cQ are different from zero.

3.1. Model properties
In this section, we illustrate the fundamental properties of the UFA model, which consist of uniqueness,
internal consistency, and unidimensionality. It is thus worth recalling that a group of MVs is internally
consistent when the corresponding factor explains them coherently, where coherence means that given
any triplet j,l,p of MVs, if j is positively correlated (concordant) with l and p, then also the correlation
between l and p is positive. Moreover, a group of (at least two) MVs is unidimensional if the first largest
eigenvalue of their correlation matrix is greater than 1, and all the others are < 1. This means that there
exists a unique factor that explains most of their total variance.

Property 1 (Uniqueness). The loading matrix C̈ is unique, up to a permutation of columns of VQ.

Proof. This is a direct consequence of DFA, which has a unique solution for the loading matrix (Vichi,
2017, Property 2). Given VQ, RW , and RB are unique and therefore also the loading matrix V̈C̈. Any
transformation of C̈ with an arbitrary orthogonal matrix T, i.e., C̈∗ = C̈T, produces a non-admissible
loading matrix for UFA. ◻

Property 2 (Reliability). The matrices WRq in Eq. (14) define each one a factor which is generally
reliable.

Proof. The Cronbach’s alpha of WRq is α
W Rq = nqc2

q
1+(nq−1)c2

q
, where for c2

q → 1,α
W Rq → 1 (Brown, 1910;

Spearman, 1910). It easily follows that if c2
q = 1, then α

W Rq = 1. ◻

An example of this property is as follows. Supposing that WRq has size nq = 5 and the loading is
cq = 0.7, α

W Rq = 0.83, which corresponds to a good internal consistency (reliability, coherence). For nq = 5,
but this time cq = 0.6, α

W Rq = 0.73, which is still an acceptable reliability.

Property 3 (Unidimensionality). The Q first-order factors identified by UFA are unidimensional.
Indeed, the matrices WRq = (1nq 1′nq)c2

q + Ψq have the first largest eigenvalue equal to (nq − 1)c2
q > 1,

while all the remaining (nq −1) eigenvalues have value 1− c2
q, which is smaller than 1, since 0 < c2

q ≤ 1.

Proof. Denote with M the (nq ×nq) matrix of unitary elements (1nq 1′nq). We have that M is such that
MM = nqM, hence M = MM

nq
. Let λ be an eigenvalue of M and v the corresponding eigenvector, then we

have that

λv = Mv = MM
nq

v = Mλv
nq

= λ2v
nq

. (24)

Considering that v ≠ 0, λ− λ2

nq
= λ(1− λ

nq
) = 0. Therefore, either λ = 0 or (1− λ

nq
) = 0, i.e., λ = nq. Since,

by definition, the trace of a square matrix is the sum of its diagonal elements, we have that tr(M) =
nq = ∑nq

i=1 λi, hence it must hold that only one λ = nq and all the other nq −1 eigenvalues must be equal
to 0. Similarly, consider Ψq = diag(1nq(1 − c2

q)) = (1 − c2
q)Inq , then ΨqΨq = (1 − c2

q)Ψq and therefore

Ψq = ΨqΨq
(1−c2

q)
. Since λv = Ψqv = ΨqΨq

(1−c2
q)

v = Ψqλv
(1−c2

q)
= λ2v
(1−c2

q)
, we have that either λ = 0 or (1− λ

(1−c2
q)
) = 0, i.e.,

λ = 1− c2
q. Given that tr(Ψq) = nq(1− c2

q) = ∑nq
i=1 λi, it must hold that λi = 1− c2

q for all i = 1, . . . ,nq. As a
consequence, the matrices WRq, q = 1, . . . ,Q, are each one associated with a unidimensional factor, as
they have only the largest eigenvalue greater than 1. ◻

It is worth stressing that UFA’s structural constraints serve to limit the solution space and substan-
tially reduce the likelihood of encountering improper solutions, such as negative variances or non-
convergent estimates. Unlike traditional EFA, UFA imposes strict structural constraints on the factor
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loading matrix, ensuring a well-defined hierarchical and nested factor structure. These constraints
effectively limit the solution space, preventing issues like Heywood cases or inflated factor loadings.
As a result, UFA is less prone to the common estimation problems associated with unconstrained factor
models, offering a more stable and reliable solution for analyzing data with hierarchical structures.

4. UFA algorithm and ML estimation

The ML estimation of UFA is performed by minimizing the following discrepancy function with respect
to C̈,V̈, and Ψ

D(C̈,V̈,Ψ) = ln ∣
2Q−1
∑
q=1

vqc2
qv′q +Ψ∣− ln ∣R∣+Tr((

2Q−1
∑
q=1

vqc2
qv′q +Ψ)−1R)− J

= ln ∣V̈C̈2V̈′+Ψ∣− ln ∣R∣+Tr((V̈C̈2V̈′+Ψ)−1R)− J, (25)

such that

V̈ = {vjq ∶ ∀ vjq ∈ {0,1}} (binary) (26)
VQ1Q = 1J (row stochastic) (27)
vQ+q = vs +vt,s,t ∈ {1, . . . ,Q+q−1},s ≠ t,q = 1, . . . ,Q−1 (nestedness) (28)
C̈ = diag([c1, . . . ,cQ,cQ+1, . . . ,c2Q−1]),cq > 0, q = 1, . . . ,2Q−1 (diagonal, non-null) (29)
rjl ≥ min{rjh,rlh},j,l,h = 1, . . . ,J, where Eq. (23) holds (ultrametric). (30)

Given Q, the estimation of the UFA parameters is performed via a cycling block coordinate descent
algorithm composed of the following four steps, which are sequentially repeated until a stopping rule is
satisfied.

Step 0 [Initialization] The matrix V̂Q = [v̂1, . . . ,v̂Q] is randomly generated from a multinomial
distribution with equal probabilities 1/Q and under the constraint that the Q groups are not
empty. The initial values for ĈQ are obtained taking the square root of R̂W = [(V̂′QV̂Q)2 −
V̂′QV̂Q]+diag(V̂′Q(R − IJ)V̂Q), as in Cavicchia et al. (2020). Thus, matrices ˆ̈V and ˆ̈C are
initialized as

ˆ̈V = [V̂Q,v̂Q+1, . . . ,v̂2Q−2,1J], where v̂Q+1, . . . ,v̂2Q−2 are (J ×1) vectors of zeros,
ˆ̈C = [ĈQ,diag(ĉQ+1, . . . , ĉ2Q−2, ĉ2Q−1)], where ĉQ+1, . . . , ĉ2Q−1 are set equal to zero.

The initial (J ×2Q−1) UFA loading matrix ˆ̈A is computed as ˆ̈V ˆ̈C. Matrix Ψ̂ is obtained as:

Ψ̂ = IJ −diag( ˆ̈A ˆ̈A′). (31)

Step 1 [Update V̈]
Step 1.1 [Update VQ] Matrix VQ = [v1⋅, . . . ,vj⋅, . . . ,vJ.]′, where vj⋅ denotes the generic row

j of VQ, is updated row-by-row by assigning each MV j to the group q that most decreases
the discrepancy in Eq. (25). Formally,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v̂jq = 1 if q = argmin
m=1,...,Q

D( ˆ̈C,[v1⋅, . . . ,im⋅, . . . ,vJ⋅]′,[v̂Q+1, . . . ,v̂2Q−2,1J]′,Ψ̂)

v̂jq = 0 otherwise
, (32)

where im. is the mth row of the identity matrix of order Q.
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Then, correlations are updated as in Cavicchia et al. (2020), i.e.,

R̂B = (V̂+QRV̂′+Q )⊙(1Q1′Q − IQ) (33)

R̂W = [(V̂′QV̂Q)2 − V̂′QV̂Q]+diag(V̂′Q(R− IJ)V̂Q) (34)

Step 1.2 [Update last Q − 2 columns of V̈] Given R̂B, we update the (Q + q)th vector
vQ+q, q = 1, . . . ,Q−2, by aggregating the two vectors vq and vh corresponding to the two fac-
tors with maximum between correlation Brqh, q,h = 1, . . . ,Q,h ≠ q. This is the agglomerative
part of the algorithm that considers the correlations between groups. Note that, if after the
qth iteration columns q and h are aggregated, the labels of R̂B in positions q and h will be both
replaced by Q+q. Thus, after each iteration, we move from Q groups of MVs to Q−1, . . . ,1.

Step 2 [Update C̈]
Step 2.1 [Update CQ] Given ˆ̈V and R̂W , the first Q values of matrix C̈ are updated as

ĉq =
√

Wr̂qq −∑Q−1
s=1

1
nq

∑J
j,l=1

j,l∈Gq

v̂jsĉ2
Q+sv̂ls,q = 1, . . . ,Q.

Step 2.2 [Update the last Q−1 columns of C̈] Given ˆ̈V and R̂B, the Q−1 higher order levels

are updated as ĉQ+q =
#
$$$%Br̂qh −∑Q−1

s=1
1

(nq+nh)∑
J
j,l=1
j∈Gq
l∈Gh

v̂jsĉ2
Q+sv̂ls, q,h = 1, . . . ,Q,h ≠ q.

Step 3 [Update Ψ] Given ˆ̈A = ˆ̈V ˆ̈C, the discrepancy function D(Ä,Ψ) in Eq. (25) is minimized with
respect to Ψ by Ψ̂ = IJ −diag( ˆ̈A ˆ̈A′).

The last three steps are alternated repeatedly, and with each iteration, the discrepancy function
decreases, or at least does not increase. If the decrease of the discrepancy is larger than an arbitrarily
small positive constant, the algorithm continues to iterate; otherwise, it stops and it is considered to
have converged to a solution which is at least a local minimum. To avoid the well-known sensitivity
of the coordinate descent algorithms to the starting values and to increase the chance of finding the
global minimum, the algorithm should be run several times starting from different initial estimates of
VQ, retaining the best solution. The algorithm generally stops after a few iterations. In our simulation
study reported in Section 6, this number is always less than 15, and it can be observed that the algorithm
accurately identifies the hierarchical structure in factors of MVs generated according to the UFA model.

Remark 3. V̈ defines a set of subgroups of MVs, described by their binary vectors, such that vl is the
binary vector identifying the non-empty lth subgroup of V = {1,2, . . . ,J}, and if vj,vl ∈ V̈ ⇒(vj ∩vl) ∈
{vj,vl,∅}. This structure is a J-tree formed by J leaves corresponding the MVs {j}, with j ∈ V . Then, the
first Q groups of MVs, corresponding to the first Q internal nodes of the tree, define a partition of V in
Q disjoint groups. The successive Q−1 steps specify the agglomeration of the Q groups in Q−1 steps of
group-fusions up to the root of the tree.

Remark 4. In general, there is no reason why the optimal estimation of UFA should include the PDFA
solution at the Qth level. However, if one wants to improve the algorithm’s computational efficiency,
the estimates in Steps 1.1 and 2.1 can be replaced by the PDFA solution at convergence. This avoids
computing Eqs. (32), (33), and (34) at every iteration. Therefore, we define a new constrained algorithm
for UFA that is forced to include the optimal solution of PDFA for the given Q.

The following example is provided to help the reader better follow the UFA modeling.

Example. We apply UFA to the set of eleven MVs in the example of Figure 1. In the correlation
matrix in Figure 1a, Q = 4 groups of highly correlated variables are clearly visible: G1 = {V1,V2,V3},
G2 ={V4,V5,V6}, G3 ={V7,V8,V9}, G4 ={V10,V11}. The specific Q first-order factors are characterized
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Figure 2. Path diagram for the given example.

by loadings ĉ1 = 0.45, ĉ2 = 0.40, ĉ3 = 0.39, and ĉ4 = 0.30, as reported in Fig 2. The loadings are computed
considering the within correlations in Figure 1a as reported in Step 2.1 of the algorithm and detailed in
Remark1. The membership matrix for this partition is identified by the first four columns v̂1,v̂2,v̂3, and
v̂4 of matrix ˆ̈V. The within and between correlations of groups/factors are given by

R̂W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.98 0 0 0
0 0.94 0 0
0 0 0.89 0
0 0 0 0.83

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R̂B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0.78 0.67 0.67
0.78 0 0.67 0.67
0.67 0.67 0 0.74
0.67 0.67 0.74 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us now consider the hierarchical structure of factors—from the most specific ones (first-order)
to the most general, through second- and third-order SFs—as shown in the higher layers of the path
diagram in Figure 2. The second-order SF (2nd layer) agglomerates the first two groups of MVs since
their correlation is the highest in R̂B (equal to 0.78). Therefore, G1 ∪G2 = G5 = {V1,V2,V3,V4,V5,V6},
where this aggregation is identified by the vector v̂′5 = v̂′1 + v̂′2 = [1,1,1,1,1,1,0,0,0,0,0] representing the
fifth column of matrix ˆ̈V. The corresponding loading is ĉ5 = 0.33. Having merged these two groups, the
third-order SF (3-rd layer) lumps together groups G3 and G4 (the correlation equals 0.74), i.e., G3 ∪G4 =
G6 = {V7,V8,V9,V10,V11}, obtaining the additional vector v̂′6 = v̂′3 + v̂′4 = [0,0,0,0,0,0,1,1,1,1,1] and
ĉ6 = 0.26. The last aggregation corresponds to G5 ∪G6 = G7 = {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11},
where v̂7 is the unitary vector of dimension eleven and ĉ7 = 0.82. All higher-order loadings can be found
by considering the between correlations in R̂B, as reported in Step 2.2. As a result, the UFA membership
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matrix and the corresponding loading matrix are given by

ˆ̈V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 1
1 0 0 0 1 0 1
1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 1 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 1 0 0 1 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ˆ̈A = ˆ̈V ˆ̈C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.45 0 0 0 0.33 0 0.82
0.45 0 0 0 0.33 0 0.82
0.45 0 0 0 0.33 0 0.82

0 0.40 0 0 0.33 0 0.82
0 0.40 0 0 0.33 0 0.82
0 0.40 0 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0 0.30 0 0.26 0.82
0 0 0 0.30 0 0.26 0.82

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the first Q columns of ˆ̈V correspond to V̂Q. Finally, Ψ̂=diag([0.02,0.02,0.02,0.06,0.06,0.06,0.11,
0.11,0.11,0.17,0.17]).

5. Model selection and choice of Q
In this section, we discuss the choice of the optimal UFA model, among a set of candidates that
consider different values of Q. The optimal model is the one that strikes the best balance between
complexity and ability to accurately fit the observed data. Through this careful selection, we determine
the appropriate number of factors Q to retain, ensuring both efficiency and effectiveness in our analysis.
To assess the complexity of the model, we start from noticing that the population correlation matrix has
J(J−1)

2 parameters to be estimated (the correlations on the diagonal are always equal to 1) in terms of
J(2Q−1)+J unknown parameters in Ä and Ψ. However, note that the first Q columns of Ä have only one
loading different from 0 for each row. Thus, we have J(Q−1) constraints in Ä. Moreover, we have other Q
constraints on Ä to ensure that each of the first Q columns of Ä is not empty. Finally, we suppose that all
MVs loading on the same factor have the same coefficient (Ä= V̈C̈), therefore we do not have to estimate
J coefficients but only Q; this corresponds to have J−Q additional constraints on Ä. This latter condition
also holds for the last Q−1 columns of Ä: we do not have to estimate J(Q−1) coefficients but only Q−1
and thus we have additional J(Q−1)−(Q−1) constraints on Ä. Since we have the same coefficient for all
MVs loading onto the same factor, also for the diagonal of Ψ we do not have to estimate J parameters but
Q, and therefore there are J −Q constraints on Ψ. Hence, the effective number of unknown parameters
in UFA is pUFA = J(2Q−1)+ J − J(Q−1)−(J −Q)−Q−[J(Q−1)−(Q−1)]−(J −Q) = 2Q−1. Note
that, due to the factorization of Ä, pUFA does not depend on J. The degrees of freedom of the model are
therefore df = J(J−1)

2 −2Q+1.
Two popular model selection criteria are the Akaike Information Criterion (AIC, Akaike, 1998)

and the Bayesian Information Criterion (BIC, Schwarz, 1978), which can be easily estimated for the
UFA model, given Eq. (25) and pUFA. Among a set of candidate models (i.e., different values of Q), the
preferred is the one for which AIC and BIC are minima. Alternatively, a goodness of fit index frequently
used to address this task is the Adjusted Goodness of Fit Index (AGFI, Mulaik et al., 1989), which is
computed as follows:

AGFI = 1− J(J −1)
2df

(1−GFI), (35)

where GFI is the Goodness of Fit Index (GFI, Jöreskog, 1981) obtained as GFI = 1− tr[(R−1
X R−IJ)2]

tr[(R−1
X R)2] . This

selection criterion chooses Q such that AGFI is maximized.
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It is worth stressing that even if these criteria are well-recognized and commonly used, AIC
and BIC can be more helpful for model comparison (i.e., selecting the optimal Q), while AGFI is
more appropriate for evaluating model fit once the number of first-order factors Q has been chosen.
Furthermore, in practice, combining multiple methods—both statistical and conceptual—typically
leads to the most robust factor solution.

Remark 5. Note that when performing non-parsimonious DFA, the number of parameters to be
estimated is pDFA = 2J −Q (Vichi, 2017), whereas for PDFA, this number is pPDFA = 2Q−Q = Q. It can
be immediately seen that pPDFA corresponds to UFA without considering the Q− 1 parameters of the
factorial hierarchy. In fact, pPDFA = pUFA −(Q−1) = 2Q−1−(Q−1) = Q.

6. Simulation study

The proposed model is evaluated through an extended simulation study that considers twelve different
scenarios and involves 3,000 data samples, generated according to the following procedure. First, the
matrix VQ is randomly generated. Then, a random binary J-tree is generated starting from VQ and
including Q − 1 random agglomerations of subsets (couples). The matrix V̈ is identified by this J-
tree. As a second step, a diagonal matrix C̈ with non-increasing values in [0,1] is generated, and the
loading matrix Ä is obtained as Ä = V̈C̈. The matrix Ψ is then computed accordingly using Eq. (31).
The correlation matrix is obtained as RX = ÄÄ′ + Ψ, and it is (2Q − 1)-ultrametric by construction.
Finally, the observed correlation matrix R is obtained adding to RX a uniform error ER in [0,σe], which
is symmetrized. The psd of R has been verified: if this property is not satisfied, we add the absolute value
of the smallest eigenvalue of R to its main diagonal, so that the resulting matrix is positive semi-definite
(Cailliez, 1983).

Twelve different scenarios have been taken into account to test the proposed model. We considered
J = 30,70 MVs, Q = 4,7 factors and three error levels σe = 0.01, σe = 0.5, and σe = 1. In Figure 3, examples
of simulated correlation matrices for each scenario are illustrated. The groups and their hierarchical
structure are clearly visible in the first row of Figure 3. In the four plots of the second row, corresponding
to the medium error level, the hierarchical structure of the Q first-order factors is still quite visible while
the one for higher-order aggregations tends to disappear. Finally, for the high error case (third row of
Figure 3), the whole hierarchical structure among both MVs and LVs almost disappears.

6.1. Random starts assessment
UFA does not guarantee the identification of the global optimal solution, which is expected since the
partitioning problem is known to be NP-hard (Křivánek & Morávek, 1986). To increase the chance of
find the global optimum, the multistart technique is used and, in this subsection, it is discussed how
the number of random starts is chosen. To address this, the UFA algorithm is run 250 times with a high
error level and J = 70,Q = 7, using different numbers of randstarts values: [1,5,10,20,30,50,100]. For
each case, the percentage of local minima is recorded.

From the results in Table 1, the number of random starts for the simulation study is set equal to 50.

6.2. Model performance and comparison with competing procedures
The proposed model is evaluated according to the Adjusted Rand Index (ARI, Hubert & Arabie, 1985),
which compares the generated J-tree with the estimated one. First, the ARI between the true and
estimated matrices VQ for the first Q aggregations is computed. Then, an ARI is computed for each of
the remaining Q−1 aggregations levels. For each q = 1, . . . ,Q−1, the ARI is computed between the two
factors aggregated by the algorithm at level Q+q and the two generated ones. As a result, the generated
J-tree is optimally recovered if the overall ARI equals to Q, since it is obtained as the sum of one ARI for
the first Q levels and Q−1 ARIs for the factors’ hierarchy. Finally, this value is rescaled, dividing it by
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Figure 3. Examples of simulated correlation matrices with different levels of error, J and Q.

Table 1. Local minima occurrences (%)

randstarts 1 5 10 20 30 50 100

% Local minima 80.40 36.80 16.80 3.60 1.60 0.00 0.00

Q, to range in [0,1]. We will denote with ARIQ the ARI referring to the first Q levels and with ARIJ the
overall ARI for the J-tree. Furthermore, the fit of the (2Q−1)-ultrametric correlation matrix resulting
from UFA to the generated R is evaluated through the AGFI. The discrepancy between the generated
loading matrix, denoted with A∗ = V̈∗C̈∗ and the estimated one Â = ˆ̈V ˆ̈C is evaluated considering the
Root Mean Squared Error (RMSE) defined as ∥ÂÂ′−A∗A∗′∥2

JQ since the loading matrix is not unique.
UFA performance is compared with the ones of several well-established factor rotation methods,

such as geomin (geo), promax (pro), and quartimax (qua), as well as with the prenet penalization method
for factor analysis proposed by Hirose & Terada (2023). Geomin, introduced by Yates (1987), minimizes
the complexity of factor loadings by reducing the number of near-zero values. Promax, a widely used
oblique rotation method proposed by Hendrickson & White (1964), allows factors to correlate, thereby
enhancing the interpretability of the factor solution. Quartimax, introduced by Neuhaus & Wrigley
(1954), seeks to simplify the rows of the factor loading matrix by maximizing the variance of squared
loadings across variables. The Sparse and Simple Structure (SSS) estimation method developed by
Hirose & Terada (2023) employs the prenet penalization to achieve a factor solution that is both sparse
and interpretable. This estimation requires tuning two parameters, denoted by ρ and γ, and has been
carried out to maximize AGFI. By comparing these techniques with UFA, which offers an innovative
approach to factor analysis, we aim to highlight its strengths and potential advantages in achieving more
interpretable and accurate factor solutions when data exhibit a hierarchical structure.
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Table 2. Simulation study results

Low error Medium error High error

J 30 70 30 70 30 70

Q 4 7 4 7 4 7 4 7 4 7 4 7

UFA 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.97 0.72 1.00 0.93

SSS 0.66 0.78 0.65 0.77 0.63 0.68 0.65 0.72 0.41 0.19 0.65 0.72

Mean ARIQ pro 0.66 0.78 0.65 0.77 0.66 0.78 0.65 0.77 0.66 0.77 0.66 0.77

geo 0.66 0.78 0.65 0.77 0.66 0.77 0.65 0.77 0.65 0.76 0.66 0.76

qua 0.66 0.78 0.65 0.77 0.66 0.78 0.65 0.77 0.65 0.77 0.66 0.76

UFA 100.00 100.00 100.00 100.00 99.60 86.80 100.00 100.00 79.60 3.20 99.60 34.00

SSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

% ARIQ = 1 pro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

geo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qua 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mean ARIJ UFA 1.00 0.98 1.00 0.98 1.00 0.85 1.00 0.93 0.96 0.70 1.00 0.83

% ARIJ = 1 UFA 100.00 86.00 100.00 86.40 97.20 4.80 100.00 38.40 62.40 0.00 98.80 3.60

UFA 1.00 1.00 0.99 1.00 0.78 0.78 0.79 0.79 0.77 0.77 0.78 0.79

SSS 0.86 0.91 0.83 0.89 0.51 0.54 0.69 0.69 0.43 0.46 0.67 0.62

AGFI pro 0.98 0.97 0.99 0.98 0.64 0.45 0.74 0.71 0.63 0.44 0.74 0.70

geo 0.98 0.97 0.99 0.98 0.65 0.51 0.75 0.72 0.65 0.52 0.74 0.73

qua 0.98 0.97 0.99 0.98 0.65 0.52 0.75 0.72 0.65 0.53 0.74 0.73

UFA 0.00 0.00 0.00 0.00 0.16 0.08 0.60 0.19 0.28 0.14 0.88 0.30

SSS 1.22 0.44 2.72 0.97 1.08 0.39 2.31 0.81 1.48 0.40 7.86 0.82

RMSE AA
′ pro 1.26 0.44 2.95 1.03 1.03 0.40 2.23 0.79 1.03 0.37 2.24 0.79

geo 1.25 0.44 2.93 1.02 0.98 0.36 2.18 0.77 0.98 0.34 2.16 0.77

qua 1.26 0.44 2.95 1.03 0.98 0.36 2.20 0.77 0.98 0.33 2.17 0.77

Simulation results, obtained considering 50 random starts for all cases, are shown in Table 2. For
each scenario, nsim = 250 data matrices have been generated and the reported performance measures
correspond to the average over the 250 samples.

Under the low error condition, our method demonstrates best performance across all evaluated
metrics. Specifically, the generated J-tree is always perfectly identified for Q = 4, while the percentage
of times this happens is around 86% for Q = 7 (see Table 2). Moreover, the AGFI is always greater than
or equal to 0.99 and the RMSE for the loadings reaches 0. In contrast, the competing procedures poorly
perform in recovering the variables structure in Q groups: the ARIQ always ranges between 0.65 and
0.78 and it is never equal to 1. Additionally, the high values for the RMSE of the loading matrix indicate
a sub-optimal recovery of the generated loadings across all scenarios. This first part of the simulation
study indicates that the proposed methodology and the given algorithm do not fail to identify the correct
generated ultrametric correlation matrix when its ultrametricity is clearly visible, as shown in the first
row plots of Figure 3. In comparison, the competing procedures fail to achieve an accurate identification
under the same conditions.

For the medium error level scenarios, the UFA algorithm achieves best performance in terms of
ARIQ, while the recovery of the higher-order hierarchies starts worsening. Indeed, in the plots of
Figure 3 corresponding to the medium error level, the structure in Q factors is still visible while the
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Figure 4. RMSE of factor loadings for UFA and the competing procedures.

higher-order correlations start deviating from ultrametricity. For instance, for J = 70 and Q = 7, the %
ARIQ = 1 and the % ARIJ = 1 are 100.00 and 38.40, respectively. Also the model-data fit in terms of
RMSE and AGFI worsens, but the fit is still better than the competing procedures.

Under the high error condition, as expected, the UFA performance also in terms of ARIJ worsens
because the ultrametricity tends to be masked by the error, as can be seen in the last row of Figure 3.
The true J-tree is never identified for J = 30 and Q = 7 (under the same scenario, the % ARIQ = 1 is 3.20).
However, also under these scenarios, UFA outperforms the competing procedures, especially in terms
of ARIQ and RMSE.

As illustrated in Figure 4, UFA shows the lowest RMSE across all scenarios, with its interquartile
range being very tight, indicating both a low error and consistent performance across simulations. In
contrast, the competing methods exhibit higher median RMSE values and wider interquartile ranges,
indicating poorer performance and higher variability. These results underscore the efficacy and accuracy
of UFA in capturing hierarchical relationships in data, making it a reliable choice for this kind of
scenarios, compared to traditional methods.

To summarize, simulation results collectively suggest that the proposed algorithm not only achieves
high accuracy in identifying the hierarchical structure of the generated data and finds its best ultrametric
reconstruction, but also exhibits stability and reliability in its performance. The effectiveness of the
algorithm against the benchmark criteria and competing procedures suggests its potential utility in
applications in which phenomena that can be modeled by a hierarchical latent structures are studied.

7. Application

The proposed model is applied to the data employed by Cattell (1971) for its factorial study on
intelligence, in which the author investigates his theory of crystallized and fluid intelligence factors.
Crystallized intelligence involves the ability to use learned knowledge and experience. It involves
understanding facts, solving problems based on past experiences, and possessing a rich vocabulary,
and it tends to improve with age. On the other hand, fluid intelligence represents the ability to solve
novel problems, independent of any knowledge from the past. It includes skills like pattern recognition,
abstract reasoning, and problem-solving in new situations. Fluid intelligence is thought to peak in early
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Figure 5. Observed and estimated correlation matrices of Cattell’s data.

adulthood and then gradually decline. Cattell’s study used data from 277 8th grade children, focusing
on their abilities across different dimensions. These dimensions were measured through various tests:

• Thurstone Primaries: four areas (Verbal, Spatial, Reasoning, Number) were each measured by two
different tests, resulting in eight measures (V1, V2, S1, S2, R1, R2, N1, N2). These areas represent
different cognitive abilities as identified by Thurstone (1938), another key figure in the study of
human intelligence.

• Culture Fair Intelligence Tests: developed by the Institute of Personality and Ability Testing (IPAT),
these tests aim to measure intelligence in a way that minimizes cultural and educational biases. The
tests include Series, Classification, Matrices, and Topology, each providing a score (IS, IC, IM, IT).

The non-negative correlations among the 12 considered MVs are shown in Figure 5a. These high cor-
relations suggest the need to explore how the various aspects of intelligence interrelate and potentially
validate or refine Cattell’s theory of crystallized and fluid intelligence.

The UFA algorithm has been run considering 50 random starts and it has found the expected
partition in five first-order factors (Verbal, Spatial, Reasoning, Number, and IPAT). It is worth noting
that Q = 5 is the best choice for the number of parameters also according to the AGFI, AIC, and BIC.
The unidimensionality of the identified latent dimensions is ensured by the variance of the second factor
equal to 0.14, 0.21, 0.23, 0.22, and 0.64, respectively. The Cronbach’s alpha values computed for each
factor align with Cattell’s hypothesis: they are greater than 0.95 for F1, F2, F3, F4, while equal to 0.46 for
F5. As it is possible to observe comparing the two matrices in Figure 5, the proposed model is able to well
reconstruct the correlation matrix of the MVs, simultaneously identifying its hierarchical structure. The
latter is depicted in Figure 6a: it can be noticed that the second last aggregation (F5–F8) characterizes
the fluid ability and crystallized ability factors hypothesized by Cattell.

Moreover, the last factor aggregated to build F8 is the one related to the Spatial ability, the one for
which Cattell hypothesized the strongest relationship with the IPAT MVs (F5). This is confirmed by
the lowest Cronbach’s alpha value for F8 (0.37) compared to the values for F6 and F7 (0.77 and 0.75,
respectively); indeed, Cattell hypothesized an high correlation between Verbal, Reason, and Number.
A general concept defining Mental Abilities is also defined (F9), its reliability is ensured by a Cronbach’s
alpha value equal to 0.85. The estimated loadings are graphically shown in Figure 6b.

Note that the estimated matrix represented in Figure 5b is ultrametric even if the within deviance
of the IPAT group (0.353) is higher than, for instance, the between deviance of the Verbal and Spatial
groups (0.415). In fact, the ultrametric condition defined in Section 2.1 imposes that the within deviance
of the IPAT group must be greater than or equal to the deviance between IPAT and the other four groups
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Figure 6. Hierarchical tree and loading structure estimated by UFA on Cattell’s data.

Table 3. AIC and BIC values for UFA model and for the two

CFAs applied to Cattell data

Models AIC BIC

First-order CFA 7,890.62 8,013.84

Second-order CFA 7,887.01 7,995.73

Ultrametric factor analysis 2,289.31 2,340.04

(i.e., 0.353 ≥ 0.275) and not greater than or equal to any of the between deviances in the correlation
matrix.

UFA results on Cattell data represent a great contribution to the state of the art in Cattell’s factorial
study on intelligence. UFA does a step forward with respect to both first-order and second-order
CFA that Rindskopf & Rose (1988) fitted to these data. It recognizes the five factors despite the
fully exploratory approach and it also accounts for intercorrelations among them, going beyond the
construction of just two second-order factors (with a correlation of 0.78). UFA model addresses
the unexplained correlation among factors building a hierarchy of Specific LVs. UFA model has been
compared with the two CFAs in terms of AIC and BIC (Table 3). As it is possible to observe, the lowest
values correspond to UFA, reflecting the better modeling of the underlying factors’ correlation that
characterize Cattell’s data. The goodness of the fit of the estimated UFA model is further confirmed by
an AGFI equal to 0.95.

The results obtained in this application suggest that an UFA can be the proper choice in all
psychometric applications in which the researcher is interested in evaluating an hypothesized hierarchy
of latent concepts and seeks to define and characterize broader dimensions of the phenomenon under
study.

8. Conclusions

In the realm of psychometric studies, hierarchical concepts are pivotal for uncovering and compre-
hending fundamental phenomena, such as intelligence. In the literature, hierarchical models based on
sequential procedures of EFA followed by oblique rotations have been proposed to arrange various facets
or subcomponents of a construct into a hierarchical structure, showcasing their interconnectedness
and offering an in-depth comprehension of complex phenomena. Additional models widely employed
in psychometric studies to assess the compatibility of theoretical hierarchical factorial structures with
observed data are CFA and SEM. These statistical tools help confirm that the used models accurately
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reflect underlying constructs, offering a reliable framework for analyzing intricate data. These models are
widely used across various psychometric domains, with the Five-Factor Model of personality serving as
just one example. This model categorizes personality traits into five overarching factors, each subdivided
into lower-level facets that depict specific aspects of these traits.

In this article, we introduce a novel methodology called UFA. This approach expands upon the
traditional EFA model with the aim of identifying hierarchical structures within factors that represent
latent concepts through an exploratory and simultaneous approach, as opposed to confirmatory
or sequential procedures based on EFA and oblique rotations. UFA proves particularly valuable in
studying complex phenomena that exhibit multiple levels of abstraction and interconnected dimensions.
The proposal can be fully exploratory, meaning that no prior assumptions are made regarding the
relationships among MVs, first-order factors, and higher-order factors. However, it also offers the
flexibility to fix some or all of these relationships in a partially or fully confirmatory approach.
UFA involves a mathematical formalization of the hierarchical relationships among variables, which
enables a synthesized representation of latent concepts associated with complex and multidimensional
phenomena. By extending EFA to hierarchical structures, this methodology empowers researchers to
delve into the underlying structure of complex phenomena with several facets by uncovering factors
and their hierarchical relationships in a simultaneous approach.

Furthermore, the new methodology addresses several crucial properties essential for constructing
a hierarchy of factors. These properties include internal consistency, reliability, unidimensionality,
uniqueness, and content validity. Ensuring that these properties are met guarantees that the constructed
hierarchical model accurately represents the underlying constructs and provide a comprehensive
framework for analyzing complex data. Simulation study results showcased the superiority of the
UFA method over traditional factor analysis techniques, especially when dealing with data that have
a nested or hierarchical factor structure. While conventional methods often fail to effectively capture
the complexity of such data, leading to sub-optimal factor solutions, UFA excels in identifying and
modeling these intricate relationships, resulting in more accurate and interpretable factor structures.
In summary, the UFA methodology presents a novel approach to investigate hierarchical concepts in
psychometric studies and other disciplines where latent factors need to be constructed. This methodol-
ogy offers insights into the multidimensional nature of latent constructs and facilitates a comprehensive
understanding of complex phenomena. It enhances our ability to analyze data and extract meaningful
information from hierarchical structures, contributing to advancements in various research fields.

Further developments of UFA include relaxing the non-negativity assumption on the correlation
matrix, which, while realistic in many applications—especially in psychometric studies—could be too
restrictive in other fields. Additionally, when the phenomenon under study does not show a hierarchical
structure, the ultrametricity assumption could also be restrictive, and an hypothesis test to determine
how far the data are from this condition could be useful for discriminating the applicability of the
proposal.

Data availability statement. The MATLAB source code of UFA is openly available at https://github.com/Authors
Submission/UFA.
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Křivánek, M., & Morávek, J. (1986). NP-hard problems in hierarchical-tree clustering. Acta Informatica, 23(3), 311–323.
Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices

for structural equation models. Psychological Bulletin, 105(3), 430–445.
Neuhaus, J. O., & Wrigley, C. (1954). The quartimax method: An analytic approach to orthogonal simple structure. British

Journal of Statistical Psychology, 7(2), 81–91.
Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-order factor analysis. Multivariate

Behavioral Research, 23, 51–67.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Spearman, C. (1904). “General intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2),

201–292.
Spearman, C. E. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3(3), 271–295.
Thurstone, L. L. (1938). Primary mental abilities. University of Chicago Press.
Vichi, M. (2017). Disjoint factor analysis with cross-loadings. Advances in Data Analysis and Classification, 11, 563–591.
Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. SUNY Press.
Zangwill, W. I. (1969). Nonlinear programming; a unified approach. Prentice-Hall.

Cite this article: Bottazzi Schenone, M., Cavicchia, C., Vichi, M. and Zaccaria, G., (2025). Ultrametric
Factor Analysis for Building Hierarchies of Reliable and Unidimensional Latent Concepts. Psychometrika, 1–20.
https://doi.org/10.1017/psy.2025.6

https://doi.org/10.1017/psy.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.6
https://doi.org/10.1017/psy.2025.6

	1 Introduction
	2 Notation and background
	2.1 Ultrametric correlation matrix
	2.2 Exploratory sactor and disjoint factor analysis

	3 The UFA model
	3.1 Model properties

	4 UFA algorithm and ML estimation
	5 Model selection and choice of Q
	6 Simulation study
	6.1 Random starts assessment
	6.2 Model performance and comparison with competing procedures

	7 Application
	8 Conclusions

