
J. Austral. Math. Soc. Ser. B 40(1999), 484-496

THE INVERSE FRACTIONAL MATCHING PROBLEM

JIANZHONG ZHANG1, ZHENHONG LIU2 and ZHONGFAN MA2

(Received 1 August 1997; revised 12 January 1998)

Abstract

This paper presents a method for the inverse fractional matching problem. We show that
the dual of this inverse problem can be transformed into the circulation flow problem on a
directed bipartite graph which can be solved easily. We also give an algorithm to obtain the
primal optimum solution of the inverse problem from its dual optimum solution by solving
a shortest path problem. Furthermore, we generalize this method to solve the inverse
symmetric transportation problem.

1. Introduction

The first inverse network optimization problem was proposed by D. Burton and L. Toint
[2]. Since then a number of papers discussing inverse combinatorial optimization
problems have appeared [4], [6-13], which investigate inverse minimum spanning
trees, inverse minimum matching in bipartite graphs, inverse minimum cost flows,
inverse minimum cuts and inverse maximum flow problems. Furthermore, some
inverse network problems have been generalized to abstract algebraic systems, such
as the inverse maximum weighted intersection of two matroids and inverse submodular
function problems, see [3].

In this paper we discuss the inverse fractional matching problem, which includes
the inverse matching in bipartite graphs. The paper is organized as follows: in Section
1 we introduce the model of fractional matching. In Section 2 we investigate the
model of inverse fractional matching and propose a method to solve the problem. In
Section 3 we show how to get the solution of the inverse fractional matching from
its dual optimal solution. Finally Section 4 generalizes the fractional matching to
the symmetric transportation problem and points out that its inverse problem can be
solved by the same method. Throughout the paper we denote by [ij ] the edge between
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[2] The inverse fractional matching problem 485

nodes / andy in an undirected graph, and by (i,j) the arc from / to j in a directed
graph.

Let G = (V, E; c) be an undirected graph in which each edge e is associated with
a positive number ce, called the weight of edge e. A subset T of E is called an odd
monocycle graph of G if T is a connected subgraph of G and contains exactly one
cycle which has an odd number of edges.

The fractional matching problem (PFM) can be formulated as the following:
(PFM)

. Cexe
eeE

s.t. J2X* = !• Wi

xe > 0, Ve € £,

where £,• = {e € E \ e is incident to node /}.

THEOREM 1 ([1,5]). Let x be a basic feasible solution o/(PFM), and

Fx = [e e E\xe is a basic variable ofx),

then we have:

(i) each component of Fx is an odd monocycle graph;
(ii) xe € {0, 1/2, 1};

(iii) F° = [e e E | xe = 1/2} is the union of some node-disjoint odd cycles.

The dual of problem (PFM) is:
(DFM)

Max Y^ M,

s.t. u, + My < Cy, for e = [ij] € E.

The minimum fractional matching problem can be formulated as a minimum perfect
matching of a bipartite graph [5], which can be easily solved. Now we consider its
inverse problem.

2. Inverse minimum fractional matching

The inverse problem of minimum fractional matching (PFM) can be stated as
follows: let x', x2,... , xr be basic feasible solutions of (PFM). The problem is then
to find a weight vector c* such that
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(i) xl,x2,... , xr are the minimum fractional matchings under the weight vector
c*;

(ii) |c* — ce\ < ee for each eeE, where ee is the 'permissible change' of the
weight for edge e (e, < ce);

(iii) c* minimizes £ , € £ \ce — ce\ over all c which meet conditions (i) and (ii).

If we express each c* as ce + ae — fle, where cte and fl. are respectively the increment
and decrement of ce, and introduce sets

S={eeE\lie[l,2,...,r),x'r>0)

and S = E\S, then the inverse minimum fractional matching problem can be written
from the model of inverse linear programming [10] as follows:
(IFM)

Min Yl a'> + Y, h

s.t. Ui + uj = cn + a/j - fa, We = [ij ] e 5, (1)

«,• + uj < Cij + Uij, Ve = [ij]eS, (2)

0 < a , y < £ , y , Ve = [ij]eE, (3)

0< fly <£,;,, Ve = [ij]eS. (4)

Note that it is unnecessary to introduce fly for [y ] e 5 as they must be zero to reach
the minimum value. The dual of (IFM) is the following:
(DIFM)

Min
eeE eeE e€S

s.t.

~ye - He < 1 - W 6 5,

.y, > 0, Ve e S,

K > 0, Vg € £,

M, > 0, V^ e 5.

Since ee > 0 and the objective function is to be minimized, we know that the optimal
solution must satisfy the following conditions:
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(i) For e e S, •

487

|0, if ye < 1,

\ye- 1, ifye > 1,
and

(ii) For e e S,

\-\-ye, if^ < — 1.

0, i f O < y e <

In order to solve the inverse problem more effectively, or to be more specific, to find
a polynomial algorithm, we first transform problem (DIFM) into a circulation flow
problem in an undirected network as follows. Let G = (V, E;c, I, u) be a graph
obtained from G by the following manner:

(a) Let each edge e e 5 be replaced by three parallel edges el,e2, e3, whose weights,
lower bounds and upper bounds for flows are defined respectively as follows:

L =

Uei =

ce, ifi = l,

ce + ee, if i = 2,

ce — ee, if i = 3,

- 1 , if/ = l,

0, if i = 2,

- co , if i = 3,

co, if i = 2,

0, if i = 3.

and

On each edge e' let the flow be ye>, and we can define ye = y^ + ye% + y<j, ke =
and ixe = —y^- It is easy to see that

ceye + eeke + seiie = ce(ye> = cei.ye,
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(b) Let each edge e e S b e replaced by two parallel edges ei and e2, and define

\ce, if/ = l,

[Ce + £e, if I = 2 ,

/^=0, for/ = 1,2, and

j l , if / = l ,
Uei = {

|oo , if 1 = 2 .

On each edge e' let the flow be yei, and define ye = yei + y^ and Xc = yf2. Therefore,

ceye + eeke = ce(yei + 3vO + eeke = ceye* + (ce + ee)yei = ceiye>If e € S, the set E is formed from edges el, e2 and e3. It is not difficult to see from
the construction of G that problem (DIFM) is equivalent to the following circulation
flow problem:
(P)

Min ^ ceye

eeE

s.t. Yl y* = 0- v/ € v-

4 < ye < ue, We € E,

where £, consists of all edges of E which are incident to node /.
To solve the inverse problem more easily, we can further transform the circu-

lation flow problem (P) in an undirected graph into a circulation flow in a di-
rected bipartite graph. To this purpose, we construct a directed bipartite network
N = (V1 U V2, A; c, I, u) from G by splitting each node i in V into two nodes i' and
/" such that

(1) i € V if and only if /' € V and i" € V2;
(2) each edge e = [ij ] e E if and only if arcs [i',j ") and (j'•', i") are both in A;
(3) lj>j» = lj>i» = le and iiyy = uy,» = ue for each e = [ij] e E;
(4) ciT = cyi- = ce for each e = [ij] e E.

Then we can formulate problem
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(Q)

Min

S.t. ^2 fij = 0 > f 0 r i e V1'
jeN+W

J2 fji=O, forie V2,
jeN-(i)

hj < fu < uy, for (/, j) e A,

where N+(i) and N~(i) are respectively the arcs leaving node i' and entering node i".

THEOREM 2. Problem (P) is equivalent to the circulation flow problem (Q) in N.

PROOF. Let [ye] be a feasible solution of (P) with objective value v. Put

/,'," = fj'<" = ye> f o r e a c h e = W ] € E.

Then we have a feasible solution of (P) with objective value 2v.
Conversely let {/,7»,/,-.,•»} be a feasible solution of (Q) with objective value u. Then

fri/ = ifer +frr)/l> for each e = [ij] e E)

is a feasible solution of (P) with objective value v/2. Such 1-1 correspondence shows
that problems (P) and (Q) are equivalent.

3. Obtaining the solution of problem (IFM)

In this section we will show how to get an optimal solution of the inverse problem
(IFM) from the optimal solution of problem (Q). Note that as our purpose in this
paper is to find a strongly polynomial algorithm, we do not solve the dual problem
(Q) by the simplex method, and thus obtaining the primal optimal solution from its
dual optimal solution is not a trivial problem. The problem (IFM) can be solved very
efficiently only if we are able to give an easy way to obtain the primal solution in
strongly polynomial time.

The dual of (Q) is the following:
(DQ)

Max

s.t. nj + ni + ty - ry = cy, for (/, j) eA,

ty >0, ry >0, for(i.y) e A,
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in which the objective function does not contain any term with /,y = —oo or /},-,- = oo.
By the Kuhn-Tucker optimality condition we have the following.

LEMMA 1. Let {/y } be a feasible solution of (Q), then {/,y} is an optimal solution
of (Q) if and only if there exist potentials {;r,} such that

(a) ixj + Ti; < Cij, iff0 < iijj;

(b) Jlj + 7T, > Cjj, iffij > Ij.

We now discuss how to obtain the corresponding potentials once we have the
optimal solution of (Q). Let {/<, } be a feasible solution of (Q). The residual network
N = ( V U V2,A;w) with respect to {/<,} can be obtained from N by setting
A = Ax U A2, where

Ax = {(ij)\fij < uu,(ij) e A] and A2 = {(/, i)\fu > ij, (ij) 6 A};

The following result is known (see [ 1, Theorem 9.1]).

LEMMA 2. A feasible solution {/,y) of (Q) is optimal if and only if the residual
network with respect to {/,-,•} does not contain a negative weight directed cycle.

Now, suppose [fjj} is the optimal solution of (Q) and A? is the residual network
with respect to {/<,}. We construct a network JV°=(V"UV 2 U {s}, A US; w°), where
s is the new node, S = {(s,j)\j has no entering arc in A?}, 10°. = 0 for (s,j) e S and
io9. = Wij for (/, j) € A. It is known from Lemma 2 and the definition u;" that A/°
has no negative weight cycle. There therefore exist shortest paths from A- to each node
in N. Let p, be the length of the shortest path from s to node / in A/°, then we have
the following.

LEMMA 3. Let {/<,} be the optimal solution of problem (Q), and set

-Pi, ifi e V ,

Pi, ifi 6 V2.

Then {7T,| and {/„•} satisfy conditions (a) a/id (b) z'/i Lemma 1, f/ja/ w, n is the
corresponding potential vector.

https://doi.org/10.1017/S0334270000010572 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010572


[8] The inverse fractional matching problem 491

PROOF. We know that the lengths of shortest paths have the property that p, <
Pi + w<ji- Now for any arc (i,j) e A, if/y > /<,-, then (/, /) e A2 so that u;;, = -ci ; / ,
and

- T i = P. < P, + Wyi = ny - Cij ,

that is, condition (b) holds. We can prove that (a) is also true similarly.

From the optimal solution of (Q) and its associated potential vector, it is easy to
obtain the optimal solution and potentials for problem (P).

LEMMA 4. Let {/y} be the optimal solution of(Q) and let {7r,} be the corresponding
potentials satisfying conditions (a) and (b) in Lemma 1. If for every e = [ij] € E and
every i € V, we define

Ty»)/2, (5)

Vi = (nr + nr)/2, (6)

then ye must be an optimal solution of problem (P) and v is the associated potential
vector.

PROOF. The dual of (P) is the following problem:

Max /](/ ,? u« — uete)
eeE

s.t. v, + vj + ve - te = ce, for all [ij ] = e e E,

ve > 0, te > 0, for all e € E.

Following the argument used in Lemma 1, we know that if [ye] is a feasible solution
of (P), then it is an optimal solution if and only if there exist {v,} such that for all
e = [//]€ E,

(a') v, + vj < ce, if ye < ue;
(b') Vj + Vj > ce, ifye > le.

Now it is very easy to verify that if {/y} is the optimal solution of (Q), which
together with {7r,} satisfies (a) and (b) in Lemma 1, then the ye defined by (5) must
be a feasible solution of (P), and ye and v, defined by (6), must satisfy conditions (a')
and (b'). So, ye is the optimal solution of (P) and v is the associated potential vector.

Now we are ready to get the solutions of (DIFM) and (IFM) from [ye) and {v,}. Let
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Xe = yei, for all e e E, and

[xe = —ye>, for all e e S.

It is easy to verify that [ye, Xe, fie], defined above, is a feasible solution of (DIFM).
We further define that

ae = max{v, + v, — c,, 0}, We = [ij] € E, (7)

fie = max{ce - v, - vj , 0}, Ve = [ij] e S. (8)

LEMMA 5. {(i>,, ae, Be)}, defined by (6)—(8), is a feasible solution ofproblem (IFM).

PROOF. Obviously ae, Be > 0 and for each e e S, only one of them is nonzero. It
is easy to see that {v,, ae, Be] satisfies constraints (1) and (2) of (IFM). Now we only
need to prove that ae < se and fie < ee as required by constraints (3) and (4).

For any e = [ij] e E, if ae > 0, then ae = v, + Vj — ce. Since yei < u^ = +oo,
from condition (a') in Lemma 4, v, + Vj < ce2 — ce + ee which ensures that a,, < ee.

Similarly, if fie > 0 for some e = [ij] e S, then fie — ce — v, — Vj. Since
yei > ley — —oo, from Lemma 4, we know that vt + Vj > cey = ce — ee. So fie < ee.

Furthermore, we can prove the following.

THEOREM 3. The sets [ye, Xe, fie} and {v,, ae, fie} defined above are the optimal
solutions o/(DIFM) and (IFM) respectively.

PROOF. AS sets [ye,\e,iie] and [Vj,ae,fie] are feasible solutions to problems
(DIFM) and (IFM) respectively, in order to prove their optimality, it will suffice
to be able to show that the complementary slackness conditions hold. That is, we only
need to prove that

(1) ae > 0 =$• ye — Xe = 1, andft. > 0 = > —ye — fxe — 1;
(2) Xe > 0 = > ae = ee, and fie > 0 = > • fie = se\
(3) for e = [ij ]e S,ye> 0 = » u, + vj = ce + ae.

To prove (1), a,. > 0 implies v, + \>j > ce — cl
e. Thus for any e e E, from Lemma

4 we know that yei = ue> = 1. If e e S, we also have i>, + Vj > c, — se = c^, and
hence j v = «f = 0. Now by the definition of ye and Xe,

ye - Xe = j v + y,j + 5v - >!t2 = _y«,. + ^ = 1, for e e S,

y,. — X, = j v + y^ — ye2 = 1, for e 6 5,

which proves the first half of (1). Similarly, for any e e 5, Be > 0 implies M, + uj <
ce = c,i < c,, + ef = c.,2, and thus ye< = le = — 1, and ye2 = le2 = 0. So for any e e S,

-ye - ne = -(j;,i + y,.2
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which proves the second part of (1).
To prove (2), y^ = Xe > 0 = /^ implies that u, + Vj > c^ = ce + se and hence by

the definition of ae, ae > ee which means that ae = se. The second assertion of (2)
can be proved similarly.

To prove (3), if ye > 0 for e e S, then at least one of

ye> > le> o r ye2 > lei

must be true, for otherwise we would have ye = ye< + ye2 = le> + le2 = — 1, which
contradicts the assumption. So from (b') of Lemma 4 we have either

V, + Vj > Ce. = Ce,

or

Vj + Vj >cei — ce + ee,

which means that ae = v, + Vj — ce.

To summarize, our method for solving the IFM problems consists of the following
four main steps:

Stepl. Solve the circulation flow problem (Q) in network N to obtain {/,y}.
Step 2. Solve the shortest path problems in network JV°, from s to other nodes, to
obtain potential vector n.
Step 3. Use formula (6) to obtain the potential vector v for problem (P).
Step 4. Use formulae (7)-(8) to obtain a and /3.

Then (v, a, fi) provides the optimal solution to the inverse problem (IFM).
As there are strongly polynomial algorithms for solving minimum cost circulation

flow problems and shortest path problems, (see, for example, [ 1 ]) the proposed method
is a strongly polynomial method.

4. Symmetric transportation problem

In this section we will generalize the results of fractional matching. In transportation
problems it is often the case that the number of vehicles travelling from city i to city
j is equal to the number of vehicles returning from city j to city i. Such a problem
is called a symmetric transportation problem. In this case, we can describe the model
by an undirected network and use variable xe to represent the total flow on the edge
e, regardless of direction. Mathematically, this can be formulated as the following
problem:
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(ST)

Min Y_, Cexe
eeE

s.t. ^xe = di, Vz € V,
ee£,

xe > 0, We € E,

where V is a node set, E is an edge set, £, is the set of edges incident to node /, a, is
the amount of commodities (requirement or supply) flowing into or out of node i and
ce is the unit cost for passing through edge e. The corresponding network is denoted
by G = (V,E;c,a).

Problem (ST) can be solved in a manner similar to that used for the fractional
matching problem, using a minimum cost flow algorithm in a directed bipartite net-
work. The directed bipartite network N = (V U V", A\c', a') is constructed from G
as follows: V = {/' | i G V] U [s], V" = {/" | i e V} U {/}, A = Ax U A2 U A3,
where A, = {(5, /') | V e V \ {*}}, A2 = {(i',j»), (/', i") I i', j ' 6 V; i",y" € V"
a n d [ij] € E}, A 3 = { ( / " , t) \j"e V" \ {t}, a n d

d \cih i f ( i ' , y " ) 6 A 2 ,

a;,, = a, for /' e V \ {s}, a),,, = a} for; " e V" \ {/}, and dxj = 00 for all ( i , ;) e A2.
Let u = 5Zie v a ' a nd consider the following minimum cost flow problem:

(MCF)

s.t. - £ / ( , • + £ /«/ = 0, for i e (V U V") \ {5, /},

u + 5 1 A = u - for «• = '•
0 < / , ; < 4 , forall(i,7)eA.

We can prove the equivalence of the two problems.

THEOREM 4. Let {/,y} be an optimal solution of (MCF) with flow value v =

)/2, V [ i / ] e E (9)
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is an optimal solution of problem (ST). Conversely, if [xy} is an optimal solution of
problem (ST), then

fa" = frr = Xij, fsr = ah fr, = aj (10)

is an optimal solution of problem (MCF) with flow value £ j e v a,.

PROOF. Let [fy} be a feasible solution of (MCF) with flow value Yliev a " then the
[xy} defined by (9) is a feasible solution of (ST) because for each i e V,

E*< = ( E f<T + E fr'") I1 = V«- +/'"<) /2 = («,' + «;•) /2 = «,-
ee£,- \j"eA+u') j'eA-(i") /

Conversely, a feasible solution [fy} of (MCF) can be constructed from a feasible
solution [xe] of (ST) by (10).

Since the objective values corresponding to such a pair {xe} and [fy] have the
following relation:

= ( E <yf>'r + E ^ A '2

/
J"eA+U')

we know that {xe} is an optimal solution of (ST) if and only if {/<,} is an optimal
solution of (MCF).

It is easy to see that the inverse problem of (ST) is still (IFM), that is, it is the same
as the inverse minimum fractional matching problem, and thus can be solved by the
method given in Sections 2 and 3.
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