Bull. Aust. Math. Soc. **87** (2013), 152–157 doi:10.1017/S0004972712000457

FINITELY GENERATED SOLUBLE GROUPS WITH A CONDITION ON INFINITE SUBSETS

ASADOLLAH FARAMARZI SALLES

(Received 2 March 2012; accepted 8 May 2012)

Abstract

Let *G* be a group. We say that $G \in \mathcal{T}(\infty)$ provided that every infinite set of elements of *G* contains three distinct elements *x*, *y*, *z* such that $x \neq y$, [x, y, z] = 1 = [y, z, x] = [z, x, y]. We use this to show that for a finitely generated soluble group *G*, $G/Z_2(G)$ is finite if and only if $G \in \mathcal{T}(\infty)$.

2010 *Mathematics subject classification*: primary 20F19. *Keywords and phrases*: finitely generated groups, nilpotent groups, soluble groups.

1. Introduction

Paul Erdős [10] posed the following question. Suppose that every infinite set of elements of a group G contains a pair of elements which commute. Does there exist an upper bound for the order of (finite) subsets of G consisting of pairwise noncommuting elements?

An affirmative answer to this question was given by Neumann [10] who proved that an infinite group G is centre-by-finite if and only if every infinite subset of G contains two distinct commuting elements. Since this paper, problems of a similar nature have been the object of several articles (for example, [1–10]).

Let *G* be a group and χ a class of groups. We say that *G* satisfies the condition (χ, ∞) if every infinite subset of *G* contains a pair of elements which generate a subgroup in the class χ . We also say that *G* satisfies condition $\mathcal{T}(\infty)$ (or *G* is in $\mathcal{T}(\infty)$) if every infinite set of elements of *G* contains three elements *x*, *y*, *z* such that

$$x \neq y$$
, $[x, y, z] = 1 = [y, z, x] = [z, x, y]$.

Our terminology and notation are standard and follow [4]. In this paper $Z_n(G)$ denotes the (n + 1)th term of the upper central series of G, and $\Gamma_n(G)$ denotes the *n*th term of the lower central series of G. Let N_2 and \mathcal{E}_2 be the classes of nilpotent groups of class at most 2 and 2-Engel, respectively. Obviously

$$(\mathcal{N}_2, \infty) \subseteq (\mathcal{E}_2, \infty) \subseteq \mathcal{T}(\infty).$$

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

153

In [3], Delizia proved that a finitely generated soluble group *G* is in (N_2, ∞) if and only if $G/Z_2(G)$ is finite. In [2], Abdollahi proved that a finitely generated soluble group *G* is in (\mathcal{E}_2, ∞) if and only if $G/Z_2(G)$ is finite.

In this paper, we prove the following theorem.

MAIN THEOREM. Let G be a finitely generated soluble group. Then $G \in \mathcal{T}(\infty)$ if and only if $G/Z_2(G)$ is finite.

The main theorem implies that, for a finitely generated soluble group G, the following conditions are equivalent:

$$G \in (\mathcal{N}_2, \infty), \quad G \in (\mathcal{E}_2, \infty), \quad G \in \mathcal{T}(\infty), \quad G/\mathbb{Z}_2(G) \text{ is finite.}$$

2. Results

In the first result we prove the sufficiency.

LEMMA 2.1. Let G be a group and suppose that $G/Z_2(G)$ is finite. Then $G \in \mathcal{T}(\infty)$.

PROOF. Let *X* be an infinite subset of *G*. There exists an infinite subset X_0 of *X* such that $xZ_2(G) = yZ_2(G) = zZ_2(G)$, for $x, y, z \in X_0$. So [x, y, z] = [y, z, x] = [z, x, y] = 1. \Box

Recall that a group G is called a restrained group if $\langle x \rangle^{\langle y \rangle}$ is finitely generated for all $x, y \in G$.

PROPOSITION 2.2. Every group in $\mathcal{T}(\infty)$ is a restrained group.

PROOF. Let *G* be a group in $\mathcal{T}(\infty)$ and $x, y \in G$ such that *y* has infinite order. Since $X = \{xy^i \mid i > 1\}$ is an infinite subset of *G*, there exist three integers $i < j \le k$ such that

$$[xy^{i}, xy^{j}, xy^{k}] = [xy^{j}, xy^{k}, xy^{i}] = [xy^{k}, xy^{i}, xy^{j}] = 1.$$
 (2.1)

It follows from the equations $[xy^t, xy^s] = x^{-y^t} x^{y^s}$ and (2.1) that

$$\begin{aligned} xy^{k-j}x^{-1}y^{j-i}xy^{i-k}xx^{-y^{i}}x^{y^{j}} &= 1, \\ xy^{i-k}x^{-1}y^{k-j}xy^{j-i}xx^{-y^{j}}x^{y^{k}} &= 1, \\ xy^{j-i}x^{-1}y^{i-k}xy^{k-j}xx^{-y^{k}}x^{y^{i}} &= 1, \end{aligned}$$

and so $x^{y^k} = x^{y^i} x^{-1} x^{-y^{j-i}} x^{y^{k-i}} x^{-1}$. In this case we conclude that

$$\langle x^{y^{n}} : i \ge 0 \rangle \le \langle x^{y^{n}} : |n| < k \rangle.$$

Now starting from the infinite set $X = \{xy^i \mid i < 1\}$ and repeating the previous argument, we can prove that

$$\langle x^{y^{n}} : i \leq 0 \rangle \leq \langle x^{y^{n}} : |n| < k' \rangle,$$

for a suitable integer k' > 1. Therefore there exists a positive integer *m* such that $\langle x \rangle^{\langle y \rangle} = \langle x^{y^n} : |n| < m \rangle$.

LEMMA 2.3. Let G be a finitely generated group in $\mathcal{T}(\infty)$. If $G/Z_3(G)$ is finite, then so is $Z_2(Z_3(G))/Z_2(G)$.

PROOF. It is clear that $Z_2(G) \le Z_2(Z_3(G))$. Let $x \in Z_2(Z_3(G)) \le Z_3(G)$. Then, for any $y, z, t \in G$,

$$[x, y, z, t] = 1, \quad [x, y, z]^{t} = [x, y, z^{t}] = [x, y, z].$$
(2.2)

Let $|G/Z_3(G)| = n$. It follows that, for any $y, z \in G$, $[x, y^n, z^n] = 1$ and so, by (2.2), $[x, y, z]^{n^2} = 1 = [x^{n^2}, y, z]$. Thus $x^{n^2} \in Z_2(G)$ and $Z_2(Z_3(G))/Z_2(G)$ has finite exponent dividing n^2 . Now $Z_2(Z_3(G))/Z_2(G)$ is a finitely generated nilpotent torsion group and thus finite as required.

LEMMA 2.4. Let G be a finitely generated nilpotent group of class at most 3 which satisfies $\mathcal{T}(\infty)$. Then $G/Z_2(G)$ is finite.

PROOF. We consider the following cases.

Case I. Let *G* be a torsion group. Then *G* is a finitely generated nilpotent torsion group and thus finite.

Case II. Let *G* be a torsion-free group. We claim that $G = Z_2(G)$. Since *G* is nilpotent of class at most 3,

$$[x^{n}, y^{m}, z^{k}] = [x, y, z]^{nmk}, \quad [x, y, z]^{g} = [x, y, z],$$
(2.3)

for all g, x, y, z in G and all integers m, n, k. Now consider the infinite subset $X = \{xy^1, xy^2, xy^3, \ldots\}$ of G. Since G is in $\mathcal{T}(\infty)$, there exist three positive integers $i \neq j, k$ such that

$$[xy^{i}, xy^{j}, xy^{k}] = 1 = [xy^{j}, xy^{k}, xy^{i}] = [xy^{k}, xy^{i}, xy^{j}].$$

Repeated application of (2.3) yields

$$1 = [xy^{i}, xy^{j}, xy^{k}] = ([y, x, x][x, y, y]^{-k})^{i-j}.$$

Since *G* is torsion-free, $[x, y, y]^k = [y, x, x]$ and also $[x, y, y]^j = [y, x, x]$. Therefore $[x, y, y]^{k-j} = 1$, and hence [x, y, y] = 1. Thus *G* is a 2-Engel group. Now since *G* is metabelian [11, Theorem 7.36] implies that $\Gamma_3(G) = 1$, and so $G = Z_2(G)$.

Case III. Let *G* be neither a torsion nor a torsion-free group. Then G/G_t is a torsion-free group, where G_t is a torsion subgroup of the nilpotent group *G*. Since $\mathcal{T}(\infty)$ is closed under taking subgroups and homomorphic images, we have by Case II that G/G_t is nilpotent of class 2 and thus $\Gamma_3(G) \leq G_t$ is finite. Therefore $G/Z_2(G)$ is finite.

PROPOSITION 2.5. Let G be a finitely generated nilpotent group of class c in $\mathcal{T}(\infty)$. Then $G/Z_2(G)$ is finite.

PROOF. We argue by induction on *c*. Since G/Z(G) is nilpotent of class c - 1, we have that $G/Z_3(G)$ is finite. Now $Z_3(G)/Z_2(Z_3(G))$ is also finite by Lemma 2.4. The result follows from Lemma 2.3.

The following result is analogous to [4, Lemma 1].

LEMMA 2.6. Let G be an infinite residually finite group satisfying the condition $\mathcal{T}(\infty)$. Then the centraliser $C_G(x)$ is infinite, for all x in G.

PROOF. Suppose, for a contradiction, that *G* has an element *x* with finite centraliser $C_G(x)$. Since *G* is residually finite, there exists a normal subgroup *N* of *G* such that $N \cap C_G(x) = 1$ and G/N is finite. In particular, *N* is infinite. Consider the infinite set $\{x^n : n \in N\}$. Then, by the property $\mathcal{T}(\infty)$, there exist three elements *r*, *s*, *t* $\in N$ such that $r \neq s$, $[x^r, x^s, x^t] = [x^t, x^r, x^s] = [x^s, x^t, x^r] = 1$. Now the equation $[x^r, x^s, x^t] = 1$ implies that $[x^p, x^q, x] = 1$ with $p = rt^{-1} \in N$ and $q = st^{-1} \in N$. It follows that $[x^p, x^q] \in N \cap C_G(x) = 1$, since $[x^{pq^{-1}}, x] = [qp^{-1}, x]^{xpq^{-1}}[pq^{-1}, x] \in N$. Hence $[x^p, x^q] = 1$ and $x^{pq^{-1}} \in C_G(x)$. Since $x^{pq^{-1}} = [pq^{-1}, x^{-1}]x$, we get $[pq^{-1}, x^{-1}] \in N \cap C_G(x) = 1$ and $pq^{-1} \in N \cap C_G(x) = 1$, so p = q. We thus obtain the contradiction that r = s.

COROLLARY 2.7. Let G be an infinite residually finite group satisfying the condition $\mathcal{T}(\infty)$. Then every element x of G is contained in an infinite abelian subgroup of G.

LEMMA 2.8. Let G be an infinite residually finite group satisfying the condition $\mathcal{T}(\infty)$. Then the centraliser $C_G(X)$ is infinite, for any finite subset X of G.

PROOF. The proof is by induction on m = |X|. If m = 1, the result is true by Lemma 2.6. Suppose that m > 1, $X = \{x_1, \ldots, x_m\}$ and $C_G(x_1, \ldots, x_{m-1})$ is infinite. Then, by Corollary 2.7, there exists an infinite abelian subgroup A of G such that $A \le C_G(x_1, \ldots, x_{m-1})$. Put $x_m = x$. Since G is residually finite, there exists an infinite descending sequence $(N_i)_{i \in I}$ of normal subgroups of G with G/N_i finite for any $i \in I$ and $\cap N_i = 1$. Therefore, $A \cap N_i$ is infinite for any $i \in I$.

Now, as in the proof of [4, Lemma 3], we can prove that there exist a sequence $(a_n)_{n\in\mathbb{N}}$ of elements of A that are pairwise distinct and a subsequence $(M_n)_{n\in\mathbb{N}}$ of $(N_i)_{i \in I}$ such that for every $n \in \mathbb{N}$ we get $a_{n+1} \in M_n$ and either $[a_n, x, x] = 1$ or $[a_n, x, x] \notin M_n$. Moreover, if $[a_n, x, x] = 1$ and $[a_n, x, x_s] \neq 1$ for some $s \in \{1, \ldots, n\}$ m-1} then $[a_n, x, x_s]^x \notin M_n$. Now we consider the infinite set $\{a_1x, \ldots, a_nx, \ldots\}$. Since G satisfies the condition $\mathcal{T}(\infty)$, there exist $i, j, k \in \mathbb{N}$ with $i < j \le k$ such that $[a_i x, a_j x, a_k x] = 1$ and $[a_i x, a_j x, x][a_i x, a_j x, a_k]^x = 1$; then $[a_i x, a_j x, x] \in \langle a_k \rangle^G \leq$ $M_{k-1} \leq M_i$. Since $[a_i x, a_j, x] \in \langle a_i \rangle^G \leq M_{j-1} \leq M_i$, we have $[a_i x, x, x] \in M_i$ and then $[a_i, x, x] \in M_i$ which implies that $[a_i, x, x] = 1$. So $B = \{a \in (a_n)_{n \in \mathbb{N}} : [a, x, x] = 1\}$ Suppose that $B = \{b_1, ..., b_n, ...\}$. Let $x_l \in \{x_1, ..., x_{m-1}\}$, is an infinite set. and consider the infinite set $\{b_i x_i x : b_i \in B\}$. Then there exist $r, s, t \in \mathbb{N}$ with $r < \infty$ $s \le t$ such that $[b_r x_l x, b_s x_l x, b_t x_l x] = 1$. Since $[b_r x_l x, b_s x_l x, b_t] \in \langle b_t \rangle^G \le M_{t-1} \le M_r$, we have $[b_r x_l x, b_s x_l x, x_l x] \in M_s \leq M_r$. Since $[b_r x_l x, b_s, x_l x] \in \langle b_s \rangle^G \leq M_{s-1} \leq M_r$, we have $[b_r, x_l x, x_l x] \in M_r$. It follows that $[b_r, x, x_l] \in M_r$ and then $[b_r, x, x_l] = 1$, as $b_r \in C_G(x_1, \ldots, x_{m-1})$. Thus there exists an infinite subset B^* of B such that $[b, x, x_l] = 1$ for any $b \in B^*$. We can now easily prove that there exists an infinite subset V of B such that $[c, x] \in C_G(x_1, \ldots, x_{m-1})$ for every $c \in V$. If the set $\{[c, x] : c \in V\}$ is infinite the result follows. Otherwise, there exist $c \in B$ and an infinite subset $\{d_j : j \in J\} \subseteq B$ such that $[c, x] = [d_j, x]$ for any $j \in J$. Then the infinite set $\{cd_j^{-1} : j \in J\}$ is contained in $C_G(x_1, \ldots, x_{m-1})$, and the result follows. \Box

The following is an immediate corollary of Lemma 2.8.

COROLLARY 2.9. Let G be a finitely generated infinite residually finite group in $\mathcal{T}(\infty)$. Then Z(G) is infinite.

Denote by hl(G) the Hirsch length of G.

LEMMA 2.10. Let G be a finitely generated infinite polycyclic group in $\mathcal{T}(\infty)$. Then $G/Z_2(G)$ is finite.

PROOF. If hl(G) = 1 then, by Corollary 2.9, G/Z(G) is finite. Suppose then that hl(G) > 1. It follows that hl(G) > hl(G/Z(G)). Now, by the induction hypothesis,

$$\frac{G/Z(G)}{Z_2(G/Z(G))} \cong \frac{G}{Z_3(G)}$$

is finite. Therefore, the result follows from Lemma 2.3 and Proposition 2.5. \Box

PROOF OF THE MAIN THEOREM. To show that a finitely generated soluble group G in $\mathcal{T}(\infty)$ has $G/Z_2(G)$ finite, it is enough to show that G is polycyclic by Lemma 2.10. It follows from Proposition 2.2 that G' is finitely generated. Since a finitely generated abelian group is polycyclic and the class of a polycyclic group is closed under extensions, induction on the derived length then gives us G polycyclic. The other direction follows immediately from Lemma 2.1.

COROLLARY 2.11. Let G be a finitely generated soluble group. Then the following conditions are equivalent.

- (i) $G \in (\mathcal{N}_2, \infty)$.
- (ii) $G \in (\mathcal{E}_2, \infty)$.
- (iii) $G \in \mathcal{T}(\infty)$.
- (iv) $G/Z_2(G)$.

PROOF. This follows using also the main theorems of [2, 3].

Acknowledgement

The author would like to thank Professor G. Traustason and the referee for useful suggestions.

References

- A. Abdollahi, 'Some Engel conditions on infinite subsets of certain groups', *Bull. Aust. Math. Soc.* 62 (2000), 141–148.
- [2] A. Abdollahi, 'Finitely generated soluble groups with an Engel condition on infinite subsets', *Rend. Semin. Mat. Univ. Padova* 103 (2000), 47–49.
- [3] C. Delizia, 'Finitely generated soluble groups with a condition on infinite subsets', *Ist. Lombardo Accad. Sci. Lett. Rend. A* **128** (1994), 201–208.
- [4] C. Delizia, 'On certain residually finite groups', Comm. Algebra 24 (1996), 3531–3535.
- [5] G. Endimioni, 'Groups covered by finitely many nilpotent subgroups', *Bull. Aust. Math. Soc.* **50** (1994), 459–464.
- [6] G. Endimioni, 'Groupes finis satisfaisant la condition (N, n)', C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1245–1247.
- [7] J. C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdős on groups', J. Aust. Math. Soc. Ser. A 31 (1981), 459–463.
- [8] P. Longobardi, 'On locally graded groups with an Engel condition on infinite subsets', *Arch. Math.* (*Basel*) **76** (2001), 88–90.
- [9] P. Longobardi and M. Maj, 'Finitely generated soluble groups with an Engel condition on infinite subsets', *Rend. Semin. Mat. Univ. Padova* **89** (1993), 97–102.
- [10] B. H. Neumann, 'A problem of Paul Erdős on groups', J. Aust. Math. Soc. Ser. A 21 (1976), 467–472.
- [11] D. J. Robinson, Finiteness Condition and Generalized Soluble Groups, Part 1, 2 (Springer, Berlin, 1972).

ASADOLLAH FARAMARZI SALLES, Department of Mathematics, Damghan University, Damghan, Iran e-mail: faramarzi@du.ac.ir