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Abstract

The existence of an inertial manifold for a reaction-diffusion equation model of
the chemostat is established.

1. Introduction

The purpose of this paper is to show that inertial manifolds exist for a system
of reaction diffusion equations which was used to model competition in a
chemostat (c.f. So and Waltman [8]). The equations are:

St = Sxx-f{S)u-g{S)v
ut = uxx + f(S)u (1.1)
vt = vxx + S(S)v

where S{t, x) (respectively u(t, x), v(t, x)) denotes the concentration of
the limiting substrate (respectively the competing micro-organisms) at time
t > 0 and position 0 < x < L. Here

(f(S):=mS/(a + S)
\g(S):=nS/(b + S)
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for S > 0, where m, a, n and b > 0. The boundary conditions are

Sx(t,O) = -S{0)

u(t,0) =vx(t,0) = 0

S(t, L) + yS{t, L) = ux(t,L) + yu(t, L) = vx(t, L) + yv(t, L) = 0
(1.3)

where 5(0) and y > 0 .
Let z = S + u + v . Then z satisfies

zt = zxx (1.4)

with boundary conditions

\zx(t,L) + yz(t,L) = 0.

We need the following form of the Poincare inequality.

PROPOSITION 1.1. (c.f. Theorem 11.11 of Smoller [7]). Let weWx'2[Q, L].
Then

\\w'\\2
2 + yw(L)2>c\\w\\2

2, (1.6)

where c > 0 is the smallest eigenvalue of the boundary-value problem

-w" = Xw, u/(0) = w'{L) + yw(L) = 0. (1.7)

PROPOSITION 1.2. Let z(t,x) be a solution of'(1.4) and (1.5). Then z(t,x)
converges to the steady state solution z{x) := 5(0)(L+ \/y-x) of{\A), (1.5)
in the L2 norm.

PROOF. Let w = z - z. Then w satisfies wt = wxx and wx(t, 0) =
tu^f, L) + yw(t, L) = 0 . Now

I d ( [L i , \ fL dw, fL .
^ - p / w dx)= w^-dx = / wwYYdx2dt\J0 J Jo dt Jo

 xx

= [WWX]Q - / w2
xdx = -yw(t, L)2 - I w2

xdx.

By Proposition (1.1),

\%-t\Mt, .)\\\<-c\\w{t, .)\\\

which in turn implies
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Since we are only interested in asymptotic behavior, we replace z(x) in
(1.1) and (1.3) to obtain

(ut = uxx + f(z(x)-\u\-\v\)u

with boundary conditions:

ux{t, 0) = vx(t, 0) = ux(t, L) + yu{t, L) = vx(t, L) + yv(t, L) = 0, (1.9)

where
(mS/(a + \S\) forS>-l

J[ '' \ -m/(a+l) for5<-l

f o r 5 > - l

f o r S < - l

Note that this re-definition of f(S) and g{S) will not affect solutions
(S(t,x),u{t,x),v(t,x)) o f ( l . l ) , ( 1 . 3 ) s a t i s f y i n g S ( t , x ) , u(t, x ) , v(t, x)
> 0 and S(t, x) + u(t, x) + v(t, x) = z(x). It is (1.8), (1.9) for which we
shall show that inertial manifolds exist.

We shall need the following simple estimates on / and g.

PROPOSITION 1.3. For all S, S{ and S2, we have

| /(5)| < m , \g(S)\<n,
|/(5,) - /(52)| < (m/a)|5, - S2\, |g(5,) - g{S2)\ < (n/b)^ - S2\.

2. Inertial manifolds: general theory

There are a number of existence theories for inertial manifolds (e.g. Ka-
maev [4], Mora [6], Foias, Sell and Teman [2], Mallet-Paret and Sell [5],
Chow and Lu [1] and Teman [9]). In this section we recall one that is imme-
diately applicable to (1.8) and (1.9).

Consider an abstract evolution equation of the form

^ + Aw = R(w) (2.1)
at

on a Hilbert space H. A is a linear, unbounded, self-adjoint operator on H
with dense domain, D{A), in H. Moreover, A is assumed to be positive
and that A~x is compact. Under these assumptions on A , there exists an
orthonormal basis {Wj} of H consisting of eigenvectors of A,
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where the eigenvalues satisfy 0 < A, < k2< ... , X. -• oo as j -* oo. The
nonlinear term R: H -* H is assumed to be locally Lipschitz continuous.
DEFINITION 2.1. A subset M of H is said to be an inertial manifold for
(2.1) if it satisfies the following properties:

(i) M is a finite dimensional Lipschitz manifold,
(ii) M is positively invariant, and

(iii) M attracts exponentially all solutions of (2.1).

Assume that (2.1) is dissipative, i.e., there is a p0 > 0 such that

limsup||u>(0||2</>0. (2.2)
t-KX>

for all solutions w(t) of (2.1). In this case, one can modify (2.1) to the
so-called prepared equation

^ - + Aw = dp(\w\)R(w). (2.3)

Here, 8 : [0, oo) -> [0, 1] is a fixed smooth function with 6(s) = 1 for
0 < s < 1, 6(s) = 0 for s > 2 and \0\s)\ < 2 for s > 0. And 6p(s) = d(j)
for s > 0 , where p = 2p0.

THEOREM 2.2. (Theorem 2.2 of [Foias, Sell and Teman]). Under the above
assumptions, there exist NQ, K{2, Kn > 0 such that if one has

N>NQ, *N+l>Kl2, XN+l-kN>Kn, (2.4)

then (2.3) possesses an inertial manifold of dimension N.

3. Inertial manifolds: our model

In order to show that (1.8), (1.9) possess an inertial manifold, we will first
cast them in the form (2.1) and verify the hypotheses of Theorem 2.2. Let
H be the Hilbert space L2[0, L] x L2[0, L]. Let A be the linear opera-
tor (-d2/dx2, -d2/dx2) defined on the subspace of H consisting of all
pairs (M, V) , where u, v £ C [0, L] satisfy the boundary conditions (1.9).
By Friedrichs' extension theorem, ^ e can extend A to a closed operator,
again denoted by A. Then A is an unbounded, self-adjoint, positive op-
erator from its domain D(A) to H with A~l compact. Moreover, if we
denote the eigenvalues of A by 0 < kx < k2 < ... , then A2/1_, = k2n = fi2

n,
where fin is the «-th positive root of the equation tnn(fiL) = y//i. Since
(n — l)nL~l < nn < (n — j)nL~ , (2.4) can be satisfied with a large
enough AT.
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Let R-.H-+H denote the Nemitski operator corresponding to the reac-
tion term, i.e.

R{u, v)(x) = (f{z{x) - \u(x)\ - \v(x)\)u(x), g{z(x) - \u(x)\ - \v{x)\)v(*)).
(3.1)

We first show that R is globally Lipschitz continuous on H. Consider
the integral

-c dx

Then

where

-( +f +f
JM^nM^ JM~nM^ JM+nM

M~

M* := {x G [0, L]: z(x) - |M,(X)| - |W,(JC)| > - 1 } ,

M; := {x e [0, L): z{x) - |K,(X)| - \Vi(x)\ < - 1 } .

Denote these integrals by / , , I2 , I3 and / 4 , respectively.
For x e Afj" n M^ , the absolute value (i.e. without the square) in the

integrand of / is (with the x suppressed):

m m m a, - M, .1 ' 2 I

Therefore, /4 < C4||M[ - M2||2 , for some c4 > 0.
For x £ Af,+ n Af2

+ , by Proposition 1.3, the absolute value is:

m<m\ul-u2\ + —

m\ux - u2\
(O) + i ) A , , A

Therefore, /, < c,(||u, - w2||2 + ||i>, — VJHJ)2 , for some cx > 0.
There are similar estimates on I2 and 73 as well as on the second com-

ponent of R. Hence, R is globally Lipschitz continuous.
Next we will show that the dissipative condition (2.2) is satisfied. Inte-

grating

uut = uuxx + f(z - \u\ - \v\)u2
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we get

<-C f U2+ f /(Z-|M|-|V|)M
2,

Jo Jo

by Proposition 1.1. Fix any t and consider the integral

/:= f f(z-\u\-\v\)u2= f f(z-\u\-\v\)u2+ f / (!- |M|-M)M2

JO JM+ JM~

where
M+ := {x e [0, L]: z{x) - \u{t, x)\ - \v{t, x)\ > -1}
M~ := {x e [0, L]: z{x) - \u(t, x)\ - \v(t, x)\ < -1}.

Denote these integrals by /, and I2 respectively. The first integral / , is
bounded above by

m f u2<m(z(0)+l)2L:=K.
JM+

Let p > 0 be such that p2 = m a x { ^ ^ , ^ ± ^ } +(z(0) + \)2L and
pick any po> p. Suppose \\u{T, .)||2 > p0 for some T. Then for t = I, we
have

Le[0,L]; y+Le[0,L];
X \u(t,x)\<z(x)+l 1 J \ |M(<,JC)|>Z

which implies

fxe[0,L]; X
U ^ O - / p € [ o , L ] ; l "

I \u(t,x)\>z(x)+\ / •'I \u(t,x)\<i(x)+\ J
Jf

Therefore, at t = T,

Hence, / < 0 and consequently ft\\u{t, .)| |2 < -2C | |M( / , . ) | | 2 , whenever
\\u{t,.)\\2>pQ. Similarly, ^ | |«(r , . ) | | 2<-2c| | t ;( / , .)| |2, whenever ||t;(*,.)||2

>P0-
Thus, by Theorem 2.2, we have proved that the prepared equation for

(1.8), (1.9) possesses an inertial manifold M .
Actually the above argument shows a little more. If we let

B:={(u,v)eH:\\u\\2, |M|2
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where px> p then B is positively invariant and absorbing, i.e., if we denote
the solution operator for (1.8), (1.9) by T(t) then T(t)B c B and for each
bounded set Bl, there exists f, such that T(t)Bl cB for all t > tx. More-
over, T{t) maps bounded sets to bounded sets. Hence, by Theorem 4.2.4 of
Hale [3], (1.8), (1.9) possess a global attractor which lies in B. If we now
pick pQ> p{ so large that the ball in H with radius pQ and centered at the
origin contains the B, then B n M is an inertial manifold for (1.8), (1.9).
Thus, we have proved that

THEOREM 3.1. Under the above assumptions, (1.8), (1.9) possess an inertial
manifold.
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