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Abstract
This paper analyzes individual behavior in multi-armed bandit problems. We use a between-subjects
experiment to implement four bandit problems that vary based on the horizon (indefinite or finite) and
the number of bandit arms (two or three). We analyze commonly suggested strategies and find that an
overwhelmingmajority of subjects are best fit by either a probabilistic “win-stay lose-shift” strategy or rein-
forcement learning. However, we show that subjects violate the assumptions of the probabilistic win-stay
lose-shift strategy as switching depends on more than the previous outcome. We design two new “biased”
strategies that adapt either reinforcement learning or myopic quantal response by incorporating a bias
toward choosing the previous arm. We find that a majority of subjects are best fit by one of these two
strategies but also find heterogeneity in subjects’ best-fitting strategies. We show that the performance of
our biased strategies is robust to adapting popular strategies from other literatures (e.g., EWA and I-SAW)
and using different selection criteria. Additionally, we find that our biased strategies best fit a majority of
subjects when analyzing a new treatment with a new set of subjects.

Keywords: Experimentation; Multi-armed bandits; Strategy selection; Reinforcement learning

JEL Codes: C91; D83; O30

“Bandit problems embody in essential form a conflict evident in all human action: information
versus immediate payoff.” – P. Whittle in Gittins (1989)

1. Introduction
The tension between immediate reward maximization and information is universal in decision-
making. For example, a consumer often chooses between their favorite brand and a new brand that
may reveal itself to be better. Similarly, a researcher often chooses between their current research
agenda and a potentially promising new area of research. In each of these examples, an individual has
to weigh the short-term benefit of immediate reward maximization (exploitation) versus the long-
term benefit of information (exploration). Other examples of this exploration versus exploitation
trade-off occur in many other environments, such as resource exploration, experimental design, and
job search.

Despite the prevalence of this exploration versus exploitation trade-off, it is unclear how individu-
als actually resolve this trade-off when presented with it. In this paper, we use a series of experiments
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to uncover how individuals resolve this trade-off. We do this by using the canonical multi-armed
bandit problem (Thompson, 1933) to represent the exploration versus exploitation trade-offs found
in everyday decisionmaking.1 Themulti-armed bandit problem is analogous to a gambler continually
choosing between various slot machines (or one-armed bandits) that each have an unknown reward
distribution. The exploration versus exploitation trade-off arises as the gambler, given her informa-
tion, must continually decide between the machine with the highest immediate expected reward and
learning about the other machines.

In this paper, we explore the strategies that individuals use in multi-armed bandit problems. We
ask two main questions in this study. First, which of the previously suggested strategies in the bandit
literature best capture subject behavior? We compare previously suggested strategies from the com-
puter science and management literatures to see how many subjects they best describe. Second, can
we improve upon these previously suggested strategies using the data from the experiment?We build
upon the best-fitting strategies by adapting them to fit important behavioral trends that these strate-
gies are not capturing. It is important to address these questions as uncovering the strategies that best
describe subject behavior will help us better understand how individuals resolve experimentation
problems.

We design an experiment to analyze subject behavior in multi-armed bandit problems. In our
baseline treatment, the two-armed indefinite horizon treatment, subjects repeatedly draw a ticket
from one of two boxes. Each box has a constant probability of returning a ticket that pays out a
constant reward. Subjects know that each box’s payout probability is drawn from a standard uniform
distribution but do not know the payout probability for either box. Subjects repeatedly draw a ticket
from either one of the boxes until the random termination of the bandit problem.

An individual in this problem repeatedly faces an exploration versus exploitation trade-off. An
individual should initially believe that each box is equally likely to pay out a reward, as each box has
a reward rate drawn from the same distribution. However, as an individual samples from a box, their
belief of that box’s reward rate should change as they observe the outcomes from drawing from that
box. As an individual’s beliefs change, they must frequently decide between drawing from the box
that has the highest expected reward rate and learning more about the other box. An individual is
maximizing their expected immediate reward by choosing the box with the highest expected reward
rate. However, an individual may be better off in the future learning about the other box as this box
has some possibility of having a higher true reward rate. The focus of our study is to determine how
a subject chooses between these options.

The experiment has three other treatments besides the baseline treatment: (i) the two-armed finite
horizon treatment, (ii) the three-armed indefinite horizon treatment, and (iii) the three-armed finite
horizon treatment. In the finite horizon treatments, subjects have a fixed known number of tickets
that they can draw. In the three-armed treatments, subjects can draw tickets from a third box. These
treatments allow us to uncover patterns of behavior that are consistent across various bandit prob-
lems and uncover how robust strategies are to changes in the environment. We vary the type of time
horizon as behavior may depend on whether the expected number of future decisions is held con-
stant.We vary the number of bandit arms as implementing certain strategiesmay bemore cognitively
taxing in three-armed bandit problems, given the increased number of options.

We first analyze subject behavior to classify trends that will be compared to our strategies. We
classify subject behavior based on how often subjects choose a myopically suboptimal action (experi-
ment), switch between actions, and choose the best box (i.e., the box with the highest true underlying
reward rate). After controlling for the number of successes and failures from each box, we find that (i)
subjects are more likely to choose a given box when it was chosen last and (ii) subjects are less likely
to switch following a success than a failure. These results suggest that, after controlling for the infor-
mation from each box, subjects treat arms differently based on whether they were last chosen and

1The specific version analyzed in this paper was established in Robbins (1952).
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treat a previous success differently than a previous failure. We also find that subjects are less willing
to switch over time conditional on the last outcome. This suggests that subjects make choices based
on more than the previous outcome.

We then compare the fit of previously suggested strategies on subject behavior. We consider 14
strategies that have either been suggested in the computer science literature or the operations man-
agement literature. We fit each strategy for each subject using Maximum Likelihood Estimation,
and we compare each strategy for each subject using the Bayesian Information Criterion (BIC),
which penalizes the log-likelihood for each strategy based on the number of free parameters.2 Under
this penalization, when comparing two strategies, the strategy with more parameters must have a
sufficiently larger log-likelihood for it to be selected by BIC.

We find that an overwhelming majority of subjects in the experiment are classified as using either
a probabilistic win-stay lose-shift strategy or a reinforcement learning strategy when we compare
previously suggested strategies. In the probabilistic win-stay lose-shift strategy, the probability that a
subject switches from the previous arm depends solely on the previous outcome; a subject can switch
with a different probability following a success than following a failure. In reinforcement learning,
subjects aremore likely to play arms that return successes relativelymore often.While these strategies
fit best among previously suggested strategies, there is evidence that subjects are not playing these
strategies. For example, we show that subjects classified as using probabilistic win-stay lose-shift are
less likely to switch over time (conditional on the last outcome).Thus, these subjects appear to violate
the assumptions of the probabilistic win-stay lose-shift strategy as their switching behavior depends
on more than just the last outcome.

We propose three new strategies that build on previous strategies by incorporating behavioral pat-
terns from the data. As we observe decreasing switching rates over time, we first estimate a decreasing
win-stay lose-shift strategy where subjects are less willing to switch, conditional on the previous out-
come, over time. The second and third new strategies are “biased” strategies that incorporate a bias
toward the previous choice.The second new strategy is biased reinforcement learning, where subjects
are reinforcement learners who are biased towards their previous choice. The third new strategy is
the biased myopic strategy, where subjects are generally myopic, but are biased toward their previous
choice. The biased strategies place arm evaluations (i.e., reward-based indices used in choice) and
inertia into a logit function. Biased myopic uses expected reward to evaluate arms, while biased rein-
forcement learning uses propensity. An overwhelmingmajority of subjects in each treatment are best
fit by one of these two biased strategies.

We run various robustness checks on our results. First, we adapt the Inertia Sampling and
Weighting (I-SAW) model (based on Nevo & Erev (2012)), the Experience-Weighted Attraction
(EWA) model (based on Camerer & Ho (1999)), and the self-tuning EWA model (based on Ho et al.
(2007)) to our environment and estimate them. We still find that our biased strategies best fit a large
majority of subjects. Second, we show that our results are qualitatively unchanged by using a selection
criterion that is not based on log-likelihood. Lastly, we find that our biased strategies best fit amajority
of subjects in a new treatment that consists of a new set of subjects.The consistent performance of the
biased strategies in our papermakes two important suggestions. First, it suggests that subjects’ behav-
ior depends on how similarly they evaluate the arms to be. As subjects appear to evaluate arms using
a reward-based process, we expect decreased experimentation when arms have returned rewards at
very different rates. Second, it suggests that while subjects tend to incorporate all observed outcomes
into their decision-making, they treat arms differently based on whether they were last chosen. Our
biased strategies differ from the rest of the strategies that we estimate by directly modeling both of
these suggestions.

2Our results are qualitatively similar using alternative selection criteria such as log-likelihood, the Akaike Information
Criterion (AIC), and the Brier Score. We report this analysis in Online Appendix J.
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This paper contributes to threemain strands of literature.The first is the literature onmulti-armed
bandit experiments.3,4 Previous experiments have generally made design choices that complicate
analysis of the classic multi-armed bandit problem. Horowitz (1973) analyzes a two-armed finite
horizon bandit problem but does not inform subjects how the bandit arms are generated. Banks et al.
(1997) deviate from the classic multi-armed bandit problem by analyzing a special case of the two-
armed indefinite horizon bandit problemwhere subjects are always predicted to bemyopic. Anderson
(2001) analyzes a four-armed bandit problem where payoffs are drawn from a normal distribution
but draws payoffs from a different distribution than the one that was implied to subjects. Lastly, Gans
et al. (2007) analyze the selection of some deterministic strategies in a two-armed bandit problem but
provide subjects with inaccurate initial information on each bandit arm.5 They find that hot-hand
strategies fit best out of the deterministic strategies they estimate. Gans et al. (2007) is the paper clos-
est to our research. We differ from this paper by analyzing the multi-armed bandit problem without
deception, by analyzing multiple multi-armed bandit environments, by incorporating probabilistic
strategies, and by building new strategies based on the datamoments.Wefind that hot-hand strategies
no longer fit best once probabilistic strategies are included.

Our paper contributes to the literature on multi-armed bandit experiments in a few ways. First,
we develop new strategies that better capture individual subject behavior than commonly suggested
bandit strategies and strategies that we adapt from other literatures. Our biased strategies differ from
other strategies that we estimate by directlymodeling both (i) probabilistic choice that depends on the
relative differences in arm evaluations and (ii) inertia.6 Our biased strategies parsimoniously incor-
porate these two features by placing arm evaluations (either expected reward or propensity) and an
inertia constant(s) into a logit function. Second, we show that the best-fitting strategies appear to
be similar under different types of horizons and when comparing two to three arms. Thus, subjects’
underlying behavior may be robust to modest changes in the environment. Lastly, we reintroduce the
canonical multi-armed bandit problem as a tool that experimental economists can use to analyze the
exploration versus exploitation trade-off. There is a scarcity of experimental economics research on
this problem, considering it presents a trade-off that is inherent in many environments. One pre-
vious barrier to conducting these studies was the difficulty in obtaining optimal predictions. We
demonstrate how approximation methods, coupled with simulations, can provide these predictions.

The second strand of literature is on reinforcement learning in economic experiments.
Reinforcement learning became popular in economics following the seminal work of Roth &
Erev (1995), who show that reinforcement learning can explain differences in games with similar
equilibria. Since Roth & Erev (1995), there have been papers that continue to analyze how well
reinforcement learning can capture behavior in various games (Erev & Roth, 1998; Feltovich, 2000)
and papers that have augmented reinforcement learning with plausible behavioral considerations

3There is a larger literature on one-armed bandit experiments. Some of these papers are Anderson (2012), Banks et al.
(1997), Banovetz & Oprea (2023), Deck & Kimbrough (2017), Hoelzemann & Klein (2021), Hudja (2019), Hudja & Woods
(2024), Hudja (2021), and Meyer & Shi (1995). In these bandit problems, only one arm has an unknown reward distribution.
These problems tend to theoretically reduce to stopping problems, which differ from the problems we analyze in our study.

4Other bandit problems have been experimentally analyzed in different disciplines. These bandits either do not have the-
oretical predictions or differ from the exploration versus exploitation trade-off found in our bandit problems. A few papers
analyze (restless) bandits that have arms with nonstationary reward distributions (Daw et al., 2006; Yi et al., 2009; Addicott
et al., 2013; Speekenbrink & Konstantinidis, 2015; Navarro et al., 2018; Hotaling et al., 2021). Some papers analyze bandits
where the arms are correlated (Gershman & Niv, 2015; Wu et al., 2017, 2018; Schulz et al., 2020). Other bandits can be found
in Toyokowa et al. (2014), von Helversen et al. (2018), Kip Viscusi & DeAngelis (2018), and Gershman (2019).

5Gans et al. (2007), in each bandit problem, tell subjects that each of the two arms in the bandit problem has been sampled
three times and that each arm has had two successes out of those three trials. This type of inaccurate information may result
in subjects doubting the veracity of the instructions. We avoid this design choice by providing accurate information in our
instructions. In general, misrepresenting or leaving out information on the prior complicates testing subject behavior.

6One strategy that we do not estimate is from Ferecatu & De Bruyn (2022). This model can capture similar features but
would be computationally impractical using our estimation approach.
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(Duffy & Feltovich, 1999; Rosokha & Younge, 2020). Rosokha & Younge (2020) is a notable exam-
ple as they incorporate loss aversion into reinforcement learning to show that loss aversion can lead
to greater persistence at exploration (in a non-bandit environment). One area where reinforcement
learning has become popular is in decisions from experience (as defined by Erev & Haruvy (2016)).
In these decisions from experience, individuals must choose between options when they are not
given any prior description of the incentive structure. Decisions from experience differ from multi-
armed bandit problems in that decisions from experience do not have an explicit exploration versus
exploitation trade-off. In the complete absence of description, expected payoffs cannot be calculated
or inferred; subjects cannot even be sure that the payoff distribution is stationary. Nevo& Erev (2012)
propose a type of reinforcement learning model (“I-SAW”) that appears to capture behavior well in
these environments. Our biased strategies share some similarities with I-SAW as they both allow
for subjects to treat previously chosen arms differently from previously unchosen arms.7 However,
I-SAW is not directly applicable to our environment without making substantive changes to account
for the lack of forgone payoffs. After making these changes, we find that our biased strategies better
fit more subjects than a modified I-SAW.8 Our paper contributes to the literature of reinforcement
learning in economics experiments by showing that reinforcement learning models best fit the most
subjects (out of themodels we consider) inmulti-armed bandit environments. Additionally, we adapt
reinforcement learning by incorporating a bias toward the previous choice and show that this model
best fits a plurality of subjects.

The third strand of literature is the literature on strategy selection in economics experiments.There
are many papers on strategy selection that focus on behavior in the indefinitely repeated prisoner’s
dilemma game.Dal Bó&Fréchette (2011) use a finitemixturemodel to show that subjects, depending
on the parameters, tend to use the always defect or tit-for-tat strategies. Various subsequent papers
have analyzed strategies in this environment (Fudenberg et al., 2012; Romero & Rosokha, 2018;
Romero & Rosokha, 2023). These papers have shown that the tit-for-tat, grim-trigger, and always
defect strategies are quite common. Our paper contributes to this literature by analyzing strategies
in the multi-armed bandit problem, which has a unique short-term versus long-term trade-off of
immediate reward maximization versus information.

2. Multi-armed bandit problem
This section consists of three subsections. The first subsection describes the specific bandit prob-
lems we consider. The second subsection explains optimal behavior in our indefinite horizon bandit
problems. The third subsection explains optimal behavior in our finite horizon bandit problems.

2.1. Multi-armed bandit problems
Themulti-armed bandit problemwas first proposed byThompson (1933, 1935) as a problem of deter-
mining which of two medical treatments is superior (in a timely manner). The multi-armed bandit
problem consists of N arms that can be pulled in any order and at any time. Each pull from an arm
results in a reward randomly drawn from a fixed distribution. An agent’s objective in themulti-armed
bandit problem is to maximize their expected value of rewards given the time horizon.

7There are substantive differences between I-SAW and our models. I-SAW differs from our biased models by modeling a
random behavior phase where choices are randomly made, independent of relative arm evaluations. I-SAW has inertia that
directly depends on the surprise from recent outcomes, while our biased models do not use a surprise factor. Additionally,
I-SAW has an implicit underweighting of rare events due to its reliance on small samples; this underweighting is not captured
in our biased models as it is not as appropriate for our environment.

8In subsection 6.4, we modify I-SAW for our environment and show that our biased strategies fit better than this modified
I-SAW. In this modified strategy, we adjust I-SAW’s “surprise”, “inertia”, and “sampling” definitions to reflect the fact that in
multi-armed bandit subjects only observe the outcome of the arm that was chosen. We also further adapt I-SAW as I-SAW’s
original simulation-based approach is not computationally feasible using the estimation approach used in this paper.
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We study a common version (Robbins, 1952) of the multi-armed bandit problem where each arm
is a Bernoulli process with a different unknown success probability. An arm returns a value of 1 in
the event of a success and a value of 0 in the event of a failure. The constant probability (θi) of arm
i returning a success is drawn from a beta distribution with parameters α0 and β0. After each draw
from an arm, an agent should update her beliefs about that arm through Bayesian updating. After
si successes and fi failures on arm i, the expected reward for arm i, given the beta distribution, is

si+𝛼0

si+fi+𝛼0+𝛽0
.

In the experiment, there are four specific bandit environments. The first environment is the two-
armed indefinite horizon bandit problem. In this environment, a subject faces two unknown arms
that each has a probability of success drawn from a beta distribution with 𝛼0 = 1 and 𝛽0 = 1.9
An agent in this environment discounts future rewards by a discount factor of δ = 0.96. The second
environment is the two-armed finite horizon bandit problem, which is similar to the previous envi-
ronment except that a subject can only make 25 decisions (the same expected number of decisions
as the previous environment). The third and fourth environments are three-armed versions of the
two-armed indefinite horizon bandit problem and the two-armed finite horizon bandit problem.

2.2. Optimal behavior for indefinite horizon
Gittins & Jones (1974) and Gittins (1979) show that an optimal solution to the indefinite horizon
multi-armed bandit problem is to always choose the arm with the largest Gittins index. The Gittins
index for an arm is the maximum discounted expected reward per unit of discounted time. Let r(Xt)
denote the reward associated with the observation Xt and π be the state of the arm. For each arm i,
the following index is calculated,

v(𝜋) = sup
𝜏

{
E∑𝜏−1

t=0 𝛿tr(Xt)

E∑𝜏−1
t=0 𝛿t

} ,

where τ is a stopping time. The idea is to find for each arm the stopping time τ that results in the
highest discounted expected return per discounted expected number of rounds in operation. After
finding this τ for each arm, the Gittins index for each arm is compared, and the arm with the largest
Gittins index is chosen.

While Gittins indices solve the indefinite horizon bandit problem, the state space is too large to
compute exact Gittins indices. Thus, we use an approach suggested by Wang (1997) that allows us to
approximate Gittins indices. We outline this approach in Online Appendix E. Wang (1997) provides
bounds on the approximation error for using this approach. Through this approximation, we are able
to calculate “approximateGittins indices” that are within 5e−8 of the actual Gittins indices.This allows
us to form predictions through simulation by using approximated Gittins indices.

2.3. Optimal behavior for finite horizon
The solution for a finite horizon bandit problem does not rely on Gittins indices. The solution can
be derived using dynamic programming. We use the two-armed finite horizon problem as an exam-
ple. Denote the value function in the last decision (T) as V(T, s1, f1, s2, f2). In the last decision, the
expected value from drawing from arm i is given by si+𝛼0

si+fi+𝛼0+𝛽0
. Thus, it is optimal to choose the arm

with the highest expected payoff. The value function in decision T is given by

V(T, s1, f1, s2, f2) = max { s1 + 𝛼0
s1 + f1 + 𝛼0 + 𝛽0

, s2 + 𝛼0
s2 + f2 + 𝛼0 + 𝛽0

} .

9This distribution is also known as the standard uniform distribution.
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In a decision (t) before T, an agent should consider the possibility of learning about the arm that
they choose. Let 𝜇1 = s1+𝛼0

s1+f1+𝛼0+𝛽0
and 𝜇2 = s2+𝛼0

s2+f2+𝛼0+𝛽0
. The value function in decision t is given by

V(t, s1, f1, s2, f2) =
max {𝜇1(1 + V(t + 1, s1 + 1, f1, s2, f2)) + (1 − 𝜇1)V(t + 1, s1, f1 + 1, s2, f2),
𝜇2(1 + V(t + 1, s1, f1, s2 + 1, f2)) + (1 − 𝜇2)V(t + 1, s1, f1, s2, f2 + 1)} .

We can use these value functions and backward induction to calculate the optimal decision for each
possible value of t, s1, f 1, s2, and f 2. We will use these optimal decisions in simulations to make
predictions.

3. Experimental design
The experiment is designed with two goals in mind. The first goal is to uncover the strategies that
subjects use in multi-armed bandit problems. The second goal is to uncover whether strategy use is
robust to changes in the environment.

3.1. Treatments and parameters
The experiment consists of four treatments: (i) the two-armed indefinite horizon treatment, (ii) the
two-armed finite horizon treatment, (iii) the three-armed indefinite horizon treatment, and (iv) the
three-armed finite horizon treatment. We use a between-subjects design where each subject faces
30 periods (i.e., 30 bandit problems) in the same environment. In the indefinite horizon treatments,
the discount factor (continuation probability) is δ = 0.96, which results in an expected period length
of 25 rounds (arm pulls). In the finite horizon treatments, the period length is 25 rounds. In each
treatment, the payoff from a success is $0.50 and the payoff from a failure is $0.00.10

3.2. Experiment
Instructions for the experiment were displayed on each subject’s computer. After subjects read the
instructions, they completed five incentivized comprehension questions. Upon completion of the
comprehension questions, the experiment began.

We use the two-armed indefinite horizon treatment as an example of the experiment. In the two-
armed indefinite horizon treatment, subjects must repeatedly draw a ticket from either the “L box” or
the “R box”. Each box has 1,000 tickets, which are a random combination of red and blue tickets. At
the start of the period, the number of red tickets in each box is randomly chosen, with each integer
between 0 and 1,000 being equally likely.11 If a subject draws a red ticket from a box, they obtain $0.50.
If a subject draws a blue ticket from a box, they obtain $0.00. Tickets are drawn with replacement, so
that once a ticket is drawn from a box, it is placed back in the appropriate box. A subject repeatedly
chooses between the L box and the R box until the bandit problem randomly ends due to the random
termination probability.12

Figure 1 shows an example of the interface for the two-armed indefinite horizon treatment. For
each box, the interface displays the number of red tickets drawn so far, the number of blue tickets
drawn so far, and the last ticket drawn. In addition to this information, the interface has history
buttons for each box that display a table with the previous outcomes of that box when pressed. These
history boxes can update on their own when opened, and it was possible for subjects to have all

10The scaling of payoffs in this way does not affect predictions using the optimal strategy.
11These probabilities are limited to the third decimal place for ease of explanation while satisfying the constraint of the

discretization having a negligible effect on our predictions (see Online Appendix F).
12All random variables were generated during the experiment. This is important so that our strategy estimation is not

influenced by a specific realization of random variables that everyone faces.
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Fig. 1 An example of the experimental interface for the two-armed indefinite horizon treatment

of these history boxes open when making decisions. The interface also displays the period (bandit
problem), the round (the current draw number), a button that displays a recap of the instructions,
and the total period payoff.

The other treatments differ slightly from the two-armed indefinite horizon treatment. The two-
armed finite horizon treatment has a known ending of 25 rounds for each period. The three-armed
indefinite horizon treatment and the three-armed finite horizon treatment are similar to their two-
armed counterparts, except that there is a third box (the “M box”) that subjects can draw from that
is generated in the same way as the other boxes.

3.3. Procedures
The experimental sessions were conducted on Prolific (prolific.co).13 The data was collected in June
2021. We recruited subjects who were between 18 and 27 years of age, who lived in the United
States, and who were in college. We wanted to recruit subjects with similar demographics to sub-
jects who would be found on a college campus so that our sample would be similar to typical physical
laboratory-based studies.There are 215 subjects in the experiment, with 53 subjects in the two-armed
finite horizon treatment and 54 subjects in the other treatments. Subjects were paid a completion fee
of $3.50, paid $0.20 for each correct answer to the five comprehension questions, and paid for one ran-
domperiod (bandit problem) of the experiment. Subjects earned $12.33 on average for an experiment
that generally lasted between 15 and 25 minutes.14

4. Predictions
In this section, we present predictions for each treatment. These predictions were obtained through
simulation. For each treatment, each simulation consisted of one million bandit problems based on
optimal behavior. In the indefinite horizon treatments, we use approximated Gittins indices to sim-
ulate behavior.15 In the finite horizon treatments, we solved for the optimal decision in each possible
situation through backward induction and used these optimal decisions in the simulation. Details on
the simulation can be found in Online Appendix E. In this section, we report the averages of these
simulated bandit problems.16

13Subjects in online experiments have been shown to behave similarly to subjects in laboratory experiments (Arechar et al.,
2018; Snowberg & Yariv, 2021). The experiment was coded in oTree (Chen et al., 2016).

14The effective hourly rate is clearly highly incentivized for Prolific, who recommended paying at least $9.60 an hour at the
time that the experiment was run.

15Our simulations are unaffected by the approximation. There is no decision where the approximated Gittins indices are
unequal and differ by less than or equal to twice the maximum error. Thus, the largest approximation error for two Gittins
indices can not result in a decision reversal.

16The realization of random variables between these simulations and the experiment is likely to be different. Online
Appendix F reports alternative simulations based on the realization of reward rates and period lengths that subjects faced
in the experiment. The predictions are largely robust to these differences.
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Table 1. Predictions and results for each treatment

Indefinite horizon Finite horizon

2 Arms 3 Arms 2 Arms 3 Arms

(a) Predictions

Experimentation Overall 0.03 0.06 0.03 0.06

Over time 0.05/0.04/0.02 0.10/0.08/0.04 0.05/0.02/— 0.10/0.04/—

Switching Overall 0.11 0.13 0.13 0.14

Over time 0.25/0.08/0.03 0.29/0.09/0.03 0.24/0.06/— 0.27/0.06/—

Best arm Overall 0.82 0.72 0.80 0.69

Over time 0.73/0.83/0.88 0.60/0.74/0.81 0.74/0.83/— 0.61/0.74/—

(b) Results

Experimentation Overall 0.18 0.25 0.19 0.30

Over time 0.26/0.17/0.13 0.35/0.25/0.21 0.25/0.16/— 0.38/0.27/—

Switching Overall 0.12 0.17 0.15 0.20

Over time 0.20/0.10/0.06 0.31/0.13/0.07 0.20/0.12/— 0.29/0.14/—

Best arm Overall 0.73 0.63 0.70 0.59

Over time 0.64/0.74/0.79 0.50/0.65/0.73 0.64/0.74/— 0.50/0.64/—

Experimentation refers to non-myopic behavior when all arms have different expected immediate rewards. Switching refers to a different arm
being chosen than in the previous round. Best Arm refers to the arm with the highest true underlying reward rate being chosen. The numbers
given are the rate at which the event occurs. First-round decisions are excluded as they are uninformative. The three groupings for the “Over
Time” rows refer to behavior in rounds 2–10, rounds 11–25, and after the 25th round.

We use these predictions to get a better understanding of optimal behavior in various multi-
armed bandit problems. Our goal with these predictions is to guide our data analysis by creating
a benchmark that can be compared to subject behavior rather than testing for comparative statics.
We focus on three variables for these predictions: experimentation rate, switching rate, and best arm
rate. Experimentation rate refers to how often a subject behaves non-myopically when all arms have
different expected immediate rewards. Switching rate refers to how often a subject chooses an arm
that is different from the arm that they previously chose. Best arm rate refers to how often a subject
chooses the arm with the highest true underlying reward rate. We ignore first round decisions for
each of these variables as first round behavior does not depend on the information generated from
the bandit arms.

Table 1a) shows various predictions that are useful for our data analysis. This table shows that the
experimentation rate is non-zero but still small. This is not unexpected as bandit arms often have
quite different underlying reward rates. A related situation to experimentation is when subjects have
to decide between arms that have the same expected reward rate but differing levels of information.
Subjects, except for the last period of a finite horizon, are predicted to prefer the arm with less infor-
mation if there are two arms with the same expected reward rate (Gittins et al., 2011). This arises
as collecting information is valuable for the future. This is an important situation as it contains only
exploration incentives and is thus a clean test of these incentives under optimal theory.

Table 1a) also predicts how behavior should change over time. It shows that subjects should exper-
iment less over time, switch less over time, and be better at identifying the best arm over time. These
predictions make sense as subjects have more information later in the period. Thus, over time, sub-
jects have less incentive to experiment, should switch less due to more accurate beliefs, and should be
better at identifying the best arm. In addition to these predictions, we also analyze switching based on
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the last outcome (which is not shown in Table 1a). Subjects are predicted to never switch following a
success, which is a property of these types of bandit problems (Robbins, 1952). The simulations also
show that subjects should be less willing to switch, conditional on a failure, over time.

5. Results
In this section, we go over the results of the experiment. We first discuss the general results. We next
discuss how behavior changes over the course of a bandit problem. We lastly discuss the implications
of these results for subjects’ strategies.

5.1. General results
Table 1b displays the general results of the experiment. This table suggests a few results. First, the
experimentation and switching rates are greater than the optimal strategy predicts. Second, the best
arm rate is lower than the optimal strategy predicts. Third, subjects appear to experiment less over
time, switch less over time, and be better at identifying the best arm over time.

We now test the point predictions for the experiment. We test each point prediction in each treat-
ment through a treatment-specific regression. Throughout the rest of this paper, regressions refer
to random effects regressions with subject-level random effects and subject-level clustering (unless
stated otherwise). First, we find significantly more experimentation than predicted at the 1% level in
each treatment.17 Second, we fail to reject the null hypothesis of the predicted amount of switching
at the 10% level in each of our two-armed treatments. In each of the three-armed treatments, we find
significant over-switching at the 5% level. Finally, we find that subjects choose the best arm less often
than predicted at the 1% level in each treatment. These deviations from point predictions are impor-
tant because they suggest that subjects do not use the optimal strategy. Result 1 summarizes these
findings.

Result 1: There is more experimentation than predicted by optimal theory in each treatment. There
is more switching than predicted by optimal theory in the three-armed treatments. There is a lower best
arm rate than predicted by optimal theory in each treatment.

The over-experimentation in each treatment suggests that subjects may experiment differently
than predicted by theory. In the predictions section, we mentioned how subjects are predicted to
prefer arms that have less information when multiple arms have the same expected reward rates.18
We analyze this prediction by focusing on the two-armed treatments but find similar behavior in the
three-armed treatments. Subjects choose the arm with less information less than 20% of the time
in the situation where it was not previously chosen. This provides further evidence that subjects
experiment in a different way than predicted. We summarize this with Result 2.

Result 2: Subjects do not always choose the arm with less information when there are two arms with
the same expected reward rate.

We now briefly discuss the comparative statics across treatments. When comparing the two-
armed and three-armed indefinite horizons, we find more switching (p-value=0.046), more

17While decision noise would lead to over-experimentation, if subjects were otherwise playing optimally, this level of over-
experimentation would require substantial noise. Simulations show subjects would need to tremble (i.e., choose randomly)
33%, 33%, 34%, and 42% of the time for the experimentation rates by treatment reported in Table 1b, respectively.

18One illustrative example is choosing between one arm that has one success and one failure and anotherwith three successes
and three failures. Both arms have an expected reward rate of one-half, but more information would be gained by pulling on
the arm with fewer draws due to a larger shift in the estimate of the expected reward rate.
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experimentation (p-value=0.072), and a lower best arm rate (p-value=0.000) in the three-armed
treatment. We find similar results for the finite horizon comparison but with some different signifi-
cance levels (switching p-value=0.076, experimentation p-value=0.000, best arm p-value=0.000).19
These results suggest that changing the number of arms leads to changes in our variables of interest
that are consistent with the comparative statics from optimal theory. When comparing the two-
armed indefinite and finite horizons, we find no significant differences (switching p-value=0.300,
experimentation p-value=0.870, best arm p-value=0.164). When comparing the three-armed finite
horizon to the three-armed indefinite horizon, we do find some significant differences (switching
p-value=0.203, experimentation p-value=0.015, best arm p-value=0.008). However, we find no sig-
nificant differences when comparing the two-armed (three-armed) finite horizon to the two-armed
(three-armed) indefinite horizon once we control for the round.This suggests that the different round
compositions between our finite and indefinite horizon treatments sometimes has an effect on aggre-
gate results. It also suggests that wemay see similar types of strategies across finite and indefinite hori-
zons (controlling for the number of arms). The regressions in this paragraph are displayed in Online
Appendix O.

5.2. Behavior over time
Table 1b suggests that subjects experiment less often, switch less often, and choose the best arm more
often as time goes on. We test these suggestions through treatment regressions of the variable of
interest on the round number. In each treatment, we find that subjects are significantly less likely to
experiment in later rounds, less likely to switch in later rounds, and more likely to identify the best
arm in later rounds. All of these results are significant at the 1% level. These results are important
because they suggest that while subjects do not behave optimally, theymakemore targeted and better
decisions over time. We summarize these results with Result 3.

Result 3: The experimentation and switching rates decrease over time, while the best arm rate
increases over time.

We now look at switching rates, conditional on the last outcome, as we have predictions as to how
these should evolve over time. Table 2 displays the switching rates over time following a failure and
following a success.The table shows a few results. First, subjects sometimes switch following a success.
However, switching rates are generally low following a success. Second, subjects generally switch at a
higher rate following a failure than following a success. Additionally, subjects often stay on the arm
they previously chose following a failure. Third, subjects tend to switch less over time (conditional
on the last outcome). This suggests that subjects incorporate more than the previous outcome when
making (switching) decisions. We summarize these observations with Result 4.

Result 4: Subjects are more likely to switch following a failure than a success. Additionally, subjects
are less likely to switch over time (conditional on the last outcome).

One question that arises is whether subjects are switching more following a failure than a success
because of the changes in incentives or because they overreact to the last outcome. It appears that
subjects over-react to the last outcome. This is supported by treatment regressions of the decision to
switch on an indicator variable for whether the last outcomewas a failure and the number of successes
and failures on each bandit arm. In these regressions, found in Online Appendix O, the indicator

19If we adjust for optimal predictions, we no longer find significant differences in switching and best-arm rates between two
and three arms (all p-values>0.135). This suggests that subjects’ underlying behavior may be similar in the presence of two
and three arms.
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Table 2. Switching based on last outcome

Indefinite horizon Finite horizon

Two-armed Three-armed Two-armed Three-armed

Switch (Fail.):

Overall 0.21 0.31 0.27 0.37

Over time 0.33/0.18/0.11 0.50/0.25/0.16 0.33/0.22/—– 0.47/0.30/—–

Switch (Succ.):

Overall 0.06 0.09 0.07 0.10

Over time 0.10/0.05/0.03 0.18/0.07/0.04 0.10/0.05/—– 0.16/0.06/—–

“Switch (Fail.)” refers to the switching rate following a failure. “Switch (Succ.)” refers to the switching rate following a success. The three
groupings for the “Over time” rows refer to behavior in rounds 2–10, rounds 11–25, and after the 25th round.

variable for the last outcome being a failure is positive and significant at the 5% level. Thus, subjects’
response to the previous outcome is driven by more than the change in incentives. We summarize
this result with Result 5.

Result 5: Subjects are more likely to switch following a failure than a success after conditioning for
the failures and successes on each arm.

5.3. Summarizing experimental results
The results from the earlier subsections have a few implications for estimated strategies. First, subjects
do not appear to use the optimal strategy. This is shown by various results: (i) subjects finding the ex
ante best arm less often than predicted, (ii) subjects experimenting in a different way than predicted,
and (iii) subjects treating failures differently than successes after controlling for the number of suc-
cesses and failures on each arm. Second, while subjects do not appear to use the optimal strategy,
they do appear to be making better decisions over time. The dynamics of subject behavior within a
bandit problem are consistent with incentives and exhibit a similar pattern of behavior to what opti-
mal theory suggests.Third, subjects appear to focus onmore than just the last outcome whenmaking
decisions. This suggests that while the last outcome may be important, subjects avoid strategies that
make decisions solely based on the last outcome.

6. Strategies
This section investigates the possible strategies that subjects use in multi-armed bandit problems.
The first two subsections introduce and estimate commonly suggested deterministic and probabilistic
strategies.20 While some of these strategies do not capture the aggregate behavioral trends identified
in the previous section, it is possible that some subjects use them. In the third subsection, we build
on some of the commonly suggested strategies using the behavioral trends from the experiment and
compare these new strategies to our previously estimated strategies. In the fourth subsection, we run
some robustness checks on our results.

Throughout this section, for succinctness, we only briefly describe the previously suggested
strategies that we estimate. We provide more details on each of these strategies in Online
Appendix H.

20The term “deterministic” refers to strategies that typically predict a unique arm and the term “probabilistic” refers to
strategies that typically predict a non-zero probability of choosing any individual arm.
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Table 3. List of commonly suggested deterministic strategies

Name Description Versions

Optimal Choose optimal action

Myopic Choose arm with highest immediate expected
reward rate

• Correct
• Empirical

Hot-hand-N Switch if arm pulled at least N consecutive times
and resulted in N consecutive losses

• N:1-5

Never Switch Stay on previous arm • Copy Last
• Copy First

Exponential
smoothing

Choose arm with highest E-S index
(𝛾Isuccess * 0.50 + (1 − 𝛾)ESi(t − 1))

Last-N Choose arm with highest expected reward rate
(based on last N draws in each arm)

• Bayesian (N:1-5)
• Empirical (N:1-5)

Simple Choose arm with largest simple index
(𝜔i

t−1 − lit−1 * D)

6.1. Deterministic strategies
We consider seven types of commonly suggested deterministic strategies.21 These strategies are dis-
played in Table 3. The first two strategies are the optimal and myopic strategies. The optimal strategy
predicts that a subject always chooses the optimal action as described in subsections 2.2 and 2.3. The
myopic strategy predicts that a subject always chooses the arm with the highest immediate expected
payoff. We analyze two different versions of the myopic strategy. The first version is Myopic-Correct,
where subjects’ decisions are based on the correct calculation of the immediate expected reward. The
second version is Myopic-Empirical, where subjects’ beliefs of an arm’s expected immediate reward
are equivalent to that arm’s average payout.22 Weadd this version as subjectsmay use empirical reward
rates to avoid the cognitive costs of updating.

The next two strategies are the hot-hand-N and never-switch strategies. The hot-hand-N strategy
is where a subject switches arms once an arm has been pulled at least N consecutive times and has
resulted in N consecutive failures. In the case that a subject switches, they switch randomly to one of
the other arms. We estimate the hot-hand-1 through hot-hand-5 strategies.23 The fourth strategy is
the never-switch strategy, where subjects are predicted to not switch. We estimate a copy-last version
(where subjects choose the same armas they selected in the last round) and a copy-first version (where
subjects choose the arm that they selected in the first round). Although these strategies result in the
same predictions in theory, they result in different predictions when subjects tremble.

The next two strategies are the exponential-smoothing and last-N strategies. In the exponential-
smoothing strategy, subjects choose the armwith the largest exponential-smoothing index.The initial
index (ESi(1)) for each arm is 0.25, which is the ex ante expected immediate payoff of each arm. In
each round t, where a subject previously samples from arm i, the index ESi(t) = 𝛾Isuccess *0.50+(1−
𝛾)ESi(t − 1), where 0 ≤ 𝛾 ≤ 1 (non-chosen arms have unchanged indices) and 0.50 is the payoff

21Theoptimal, myopic, hot-hand, exponential-smoothing, last-N, and simple strategies were estimated inGans et al. (2007).
We add empirical versions of the Myopic and last-N strategies. Copy-Last is equivalent toHH − ∞, which fits well with Gans
et al. (2007). We add Copy-First as a possible alternative.

22The initial expected immediate reward is indeterminate before a lever is pulled (because beliefs should be based on empir-
ical results). We treat this value as a free parameter. We estimate this strategy for various levels of this free parameter ({0, ...,
.995, 1}).

23We do not go higher than hot-hand-5 because these strategies become similar to our never-switch strategies. It is rare that
a subject is on an arm for six or more consecutive failures.
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in the case of a success.24 The sixth strategy is the Last-N strategy, which has two versions. The first
version is Last-N-Empirical, where subjects’ beliefs of an arm’s expected immediate reward are that
arm’s average payout from the last N draws. The second version is Last-N-Bayesian, where subjects
Bayesian update each arm’s expected reward using that arm’s last N draws and the initial prior. For
each version, we estimate five Last-N strategies (N ∈ {1, 2, 3, 4, 5}).

The last strategy is the simple strategy. The simple strategy is an index strategy where the index
value of each arm is given by 𝜔i

t−1 − lit−1 * D, where i denotes the arm, 𝜔i
t−1 denotes the number of

previous successes on arm i, lit−1 denotes the number of previous losses on arm i, and D denotes the
weight on losses.25

We estimate the best-fitting deterministic strategies in the following way. For each subject, we
obtain the log-likelihood for each strategy.26 In the two-arm treatments, we model the log-likelihood
for these strategies as

LL = log (∏
P

∏
R

((1 − 𝛽) + 𝛽
2)

ICU
(𝛽

2)
IIU

(1
2)

ITie
) ,

where ∏P multiplies over each period and ∏R multiplies over each round. The indicator variable ICU
refers to a unique correct prediction, the indicator variable IIU refers to a unique incorrect prediction,
and the indicator variable ITie refers to a prediction that could justify drawing from either box.27
The parameter β can be interpreted as a tremble where a subject loses concentration and behaves
uniformly random.28 Weuse BIC to compare different strategies as it penalizesmodels for the number
of free parameters.29

In the three-arm treatments, the log-likelihood for these strategies is modeled as

LL = log (∏
P

∏
R

((1 − 𝛽) + 𝛽
3)

ICU
((1 − 𝛽)

2 + 𝛽
3)

IC2

((𝛽)
3 )

II
(1

3)
ITie

) .

This is analogous to how the log-likelihood is modeled in the two-arm treatments. Once again, the
indicator variable ICU refers to a unique correct prediction. The indicator variable IC2 refers to a cor-
rect prediction when the strategy predicted either of two arms. The indicator variable II refers to the
strategy not predicting the current choice. The indicator variable ITie refers to a prediction that could
justify drawing from any box.

The results of the deterministic strategy estimation are presented in Table 4.This table displays the
number of subjects that each deterministic strategy fits best (among only deterministic strategies).We
uncover a few insights from this comparison.We find thatmost subjects can be best classified (among
deterministic strategies) as using a never-switch strategy or a hot-hand strategy. These strategies

24Due to identifiability issues, we estimate many versions of this strategy (𝛾 ∈
{0, 0.005.0.010, 0.015, ..., 0.990, 0.995, 1}). When estimating index strategies, identifiability issues arise as a small
change in a parameter will often have no effect on the ranking of indices. We use a grid search method to address this (this is
the same approach as used in Gans et al. (2007)).

25Due to identifiability issues, we estimate D ∈ {0, 0.005, 0.010, 0.015, ..., 2.995, 3}. A simple strategy with D> 3 does
not outperform the strategies within this range for any subject.

26We prefer this approach over a finite mixture model as it allows us to estimate each strategy at the individual level.
Furthermore, a finite mixture model is not computationally tractable in this situation due to the number and complexity
of the strategies that we consider.

27When a deterministic strategy predicts multiple arms, we assume subjects choose one of these arms randomly. For exam-
ple, multiple arms can tie for the highest expected reward rate in the myopic strategy (e.g., each arm has one success and zero
failures).

28We utilize this type of tremble because it easily extends to bandit problems with more arms.
29We also use AIC, which leads to similar results and can be found in Online Appendix J. BIC places a larger penalty on free

parameters than AIC, given the number of observations we have. We prefer BIC over AIC for this reason. We provide more
details on BIC and AIC in Online Appendix N.
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Table 4. Comparison of deterministic strategies

N-S HH Myopic Last-N Simple Optimal ES

Two indefinite 27 9 5 6 6 1 0

Two finite 23 13 9 7 1 0 0

Three indefinite 17.5 12.5 15 4 4 0 1

Three finite 17 16 5 13 2 1 0

Displays the number of subjects each deterministic strategy fits best (among only deterministic strategies). If multiple strategies fit a subject
equally, each strategy is given equal weight.

Table 5. List of commonly suggested probabilistic strategies

Name Description Versions

Epsilon-greedy Behave myopically (randomly) with prob.
1 − 𝜔0e𝜔1(t−1) (𝜔0e𝜔1(t−1))

• Correct
• Empirical

Epsilon-first Behave myopically (randomly) with probability
1 − 𝜖1 (𝜖1) in first N rounds; behave myopically
(randomly) with probability 1 − 𝜖2 (𝜖2) otherwise

• Correct (N:2-10)
• Empirical (N:2-10)

Win-stay lose-shift Switch with probability 𝛾success following a success and
𝛾failure following a failure

Randomization Each arm has equal probability of being chosen

Thompson
sampling

Draw probability of arm success from posterior
distribution and choose arm with highest draw

Reinforcement
learning

Each arm’s probability of being chosen is a function of
propensity weights

• Cumulative
• Discounted

Myopic QR Each arm’s probability of being chosen is based on a
logit form of expected rewards

• Correct
• Empirical

suggest that the last arm chosen has an important role in subjects’ decision making.30 Additionally,
strategies that compare immediate expected rewards (myopic and last-N) fit more subjects than the
optimal strategy.

6.2. Probabilistic strategies
We now consider seven different commonly suggested probabilistic strategies.31 These strategies are
displayed in Table 5. The first two strategies are the epsilon-greedy and epsilon-first strategies. In
the epsilon-greedy strategy, subjects behave myopically with probability 1 − 𝜖 and behave randomly
with probability 𝜖. We allow for 𝜖 to decrease over time as we set 𝜖 = 𝜔0e𝜔1(t−1), where t is the
current round number. In the epsilon-first strategy, subjects in the first N rounds behave myopically
with probability 1 − 𝜖1 and behave randomly with probability 𝜖1. After the first N rounds, subjects

30The vast majority of subjects identified as never-switch are best fit by the copy-last version.
31Although their original references are unclear, the epsilon-greedy and epsilon-first strategies are often suggested (Slivkins,

2021). Probabilistic win-stay lose-shift is explored in Hu et al. (2013). Randomization is a special case of this strategy.
Thompson Sampling was originally suggested in early work on the multi-armed bandit problem (Thompson, 1933, 1935).
Reinforcement learning is a common strategy in economics (based on Roth & Erev (1995)) and psychology (based on Rescorla
& Wagner (1972)). Myopic QR is a popular way of generally behaving myopically (through the softmax function) in computer
science (Sutton & Barto, 1998). We also estimate the EXP3 strategy, which is suggested in Auer et al. (2002). We leave details
on this strategy to Online Appendix H as it does not fit any subjects best and is complex.
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behavemyopically with probability 1−𝜖2 and behave randomly with probability 𝜖2. We estimate nine
epsilon-first strategies (N ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}).

The next two strategies are the probabilistic win-stay lose-shift and randomization strategies. In
the probabilistic win-stay lose-shift strategy, a subject switches arms with probability 𝛾success following
a success andwith probability 𝛾failure following a failure. In the case that a subject switches, they switch
randomly to one of the other arms. In the randomization strategy, each subject plays each action with
equal probability.

The next strategy is the Thompson Sampling strategy. In the Thompson Sampling strategy, sub-
jects maintain a current posterior of beliefs over the possible success probabilities for each arm,
draw a probability of success from each posterior, and then choose the arm with the highest drawn
probability of success.

The last two strategies are reinforcement learning and the Myopic QR strategy. We estimate two
versions of reinforcement learning. In the first version (Roth & Erev, 1995), we model reinforcement
learning as subjects having an initial propensity for each arm and subjects increasing the propensity
for a given arm by the reward it obtains when chosen.32 The probability that each arm is chosen is
obtained by dividing each arm’s propensity over the sum of all the arms’ propensities. In the sec-
ond version (Rescorla & Wagner, 1972), subjects’ propensity is similar to the exponential-smoothing
index except that the initial index/propensity is now a free parameter. The probability that an arm
is chosen is a logit function of the propensities. In the Myopic QR strategy, subjects choose each
action based on a logit function (similar to Quantal Response Equilibrium) that incorporates each
arm’s expected immediate reward. We estimate one version of this strategy using the arms’ correct
expected immediate reward and another using the empirical average as a proxy for the expected
immediate reward.

Our estimation for probabilistic strategies is complicated by the differing nature of these strategies.
One simple way of describing the way we estimate these strategies is that we add log(p) to the log-
likelihood after every choice, where p is the probability that the specific strategy places on that action
being chosen. Thus, we model the log-likelihood for these strategies as

LL = log (∏
P

∏
R

(p1)IArm1(p2)IArm2(p3)IArm3) ,

where (pi) denotes the probability that the given strategy assigns to choosing arm i (given the ban-
dit history). Online Appendix H displays more information about how the log-likelihoods for these
strategies are developed. It is not necessary to add a tremble β for these estimations as these strategies
are nondeterministic.33

The results of the probabilistic strategy estimation are presented in Table 6, which considers all
previously suggested strategies (i.e., deterministic strategies are included).34 An overwhelming num-
ber of subjects are best fit by either the probabilistic win-stay lose-shift strategy or reinforcement
learning. Probabilistic win-stay lose-shift best fits the most subjects, but reinforcement learning is a
close second. The prevalence of the probabilistic win-stay lose-shift strategy further suggests that the
last arm plays an important role in decision making but also suggests that subjects are sensitive to the
last outcome. This table also shows that very few subjects are best fit by deterministic strategies. In
each treatment, fewer than seven subjects are best fit by a deterministic strategy.

32The initial propensity is a free parameter.
33We choose not to add a tremble β to the probabilistic strategies because it can reduce the identifiability of the other

estimated parameters for these probabilistic strategies (additionally, some strategies also have a built-in tremble). This leads to
a slight difference in how probabilistic and deterministic strategies are estimated. One way of thinking about the estimations
from the previous subsection is to think of them as partially deterministic strategies. This difference in estimation approaches
is unimportant as our ‘probabilistic’ strategies fit much better than our ‘deterministic’ strategies.

34Online Appendix B shows that behavior appears to stabilize in the last 20 periods. Similar results are found when using
the last 20 periods instead of the entire dataset.
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Table 6. Comparison of previously suggested strategies

WSLS RL M. QR N-S HH TS Last-N 𝜖-G

Two indefinite 29 15 6 3 0 0 1 0

Two finite 27 15 5 2 4 0 0 0

Three indefinite 24 21 4 1 1 1 1 1

Three finite 29 15 4 2 2 2 0 0

Displays the number of subjects each strategy fits best in each treatment. If multiple strategies fit a subject equally, each strategy is given equal
weight toward fitting a subject best.

It is interesting that the probabilistic win-stay lose-shift strategy best fits a majority of subjects
in Table 6. The previous section suggested that subjects deviate from this strategy by switching less
over time (conditional on the last outcome). In Online Appendix A, we show that even subjects who
are classified as using probabilistic win-stay lose-shift in Table 6 switch less over time (conditional
on the last outcome). Thus, there may be strategies that better capture subject behavior. In the next
subsection, we use both the data moments from the experiment and the best-fitting strategies from
this subsection to uncover better-fitting strategies.

6.3. Additional strategies
We design three new strategies in order to try to better uncover subject behavior. These three new
strategies are decreasing win-stay lose-shift, biased reinforcement learning, and biased myopic. Each
of these new strategies is an adaptation of one of the three previously best fitting strategies.

The decreasing win-stay lose-shift strategy adapts the probabilistic win-stay lose-shift strategy by
allowing for subjects to be less willing to switch, conditional on the last outcome, over time. We
estimate this strategy because Result 4 shows that subjects appear to switch less (conditional on the
last outcome) over time. In this strategy, the probability that an individual switches following a failure
is given by 𝜔0Fe𝜔1F(t−1) and the probability that an individual switches following a success is given by
𝜔0Se𝜔1S(t−1). The variable t is the round number. We restrict 0 ≤ 𝜔0F ≤ 1, 0 ≤ 𝜔0S ≤ 1, 𝜔1F ≤ 0, and
𝜔1S ≤ 0.

The biased reinforcement learning strategy adapts the Rescorla & Wagner (1972) reinforcement
model by penalizing arms that require switching. In this new model, an individual’s propensity
updates, when previously chosen, by the following equation:

Vt = (1 − 𝛼)Vt−1 + 𝛼Rt−1,
where Rt−1 is the reward obtained and 0 ≤ 𝛼 ≤ 1. The probability that an individual stays on arm i
is then given by

e𝜆Vt,i

e𝜆Vt,i + ∑j≠i e
𝜆(c+Vt,j)

,

where c ≤ 0 and 𝜆 ≥ 0.35 This strategy is essentially reinforcement learning but is biased toward the
previously chosen arm.

We impose this bias into reinforcement learning (and myopic QR) for two main reasons.36 First,
the previously estimated strategies that tend to fit best either (i) treat previously selected and unse-
lected arms differently (probabilistic win-stay lose-shift) or (ii) suggest that subjects are influenced
by all bandit outcomes (reinforcement learning and myopic QR). We may be able to build a better-
fitting strategy by incorporating these two elements. Second, subjects treat previously chosen arms

35Given the logit function, this is equivalent to a function where the previously chosen arm gets its propensity adjusted
upwards by −c ≥ 0.

36Online Appendix L shows that our biased strategies can capture the win-stay lose-shift violations.
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Table 7. Comparison of previously suggested and new strategies

B. RL B. M RL DWSLS M. QR WSLS HH N-S TS 𝜖-G

Two indefinite 17 23 8 3 2 1 0 0 0 0

Two finite 26 17 2 2 2 3 1 0 0 0

Three indefinite 19 22 6 3 1 0 1 1 0 1

Three finite 29 15 4 2 1 1 0 1 1 0

Displays thenumberof subjects each strategy fits best in each treatmentafter incorporating thenewstrategies. Ifmultiple strategies fit a subject
equally, each strategy is given equal weight toward fitting a subject best.

differently from previously unselected arms. Subjects are more likely to choose an arm, conditional
on the number of failures and successes on each arm, if they previously chose it.37 This is true even
when the last outcome was a failure.

The biased myopic strategy adapts the myopic QR strategy by penalizing arms that have not been
previously chosen. Under this strategy, the probability that an individual stays with the current arm
i is equal to

e𝜆(Isuccess*𝛼+E[rewardi])

e𝜆(Isuccess*𝛼+E[rewardi]) + ∑j≠i e
𝜆(c+E[rewardj])

,

where Isuccess is an indicator variable denoting a previous success, α is an upward adjustment for a
previous success, and c is a cost for switching. We restrict 𝛼 ≥ 0 and c ≤ 0. The idea behind this
strategy is that subjects respond to the expected reward of each arm but require a premium to switch
to another arm.38 We impose a bias toward the previously selected arm (through c) into myopic QR
for a similar reason as reinforcement learning. The presence of α allows subjects’ bias toward the pre-
vious arm to depend on the previous outcome (biased reinforcement learning has something similar
through δ).

Table 7 displays the best-fitting strategies among the previously estimated strategies and the three
new strategies for each treatment. There are a few takeaways from this table. First, a slight majority
of subjects can be classified as using some sort of reinforcement learning. Second, an overwhelming
majority of subjects can be classified as being biased toward their previous choice. Third, probabilis-
tic win-stay lose-shift does not do very well once we have incorporated biases into reinforcement
learning and myopic QR.

6.4. Robustness checks
In the previous subsection, we found that our biased strategies best fit the most subjects compared
to previously suggested bandit strategies. However, it is possible that commonly suggested strategies
from outside of the bandit literature may do well once adapted to our environment.39 Additionally, it
is possible that our estimation would result in different conclusions if conducted on a dataset that did
not inform our strategy design. In this subsection, we briefly discuss these two robustness checks.

We first structurally estimate two successful strategies from outside of the bandit literature to test
whether they can better fit subjects than our biased strategies. The first strategy is a modified I-SAW

37This is supported by regressions, for each arm and treatment, of an indicator variable for whether the subject chose arm i
on the number of failures and successes on each arm and an indicator variable for whether the subject last chose arm i. These
regressions can be found in Online Appendix O.

38We estimate both Correct and Empirical versions of this strategy.
39We thank an anonymous referee for this suggestion and for a suggestion that a selection criterion that does not rely on

log-likelihood may result in different strategies performing better. We show that our estimation is robust to different selection
criteria in Online Appendix J.
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Table 8. Comparison of strategies in Robustness treatment

B. RL B. M RL M. QR WSLS N-S TS LastN EWA I-SAW

Original set 26 19 5 3 2 2 1 1 — —

EWA & I-SAW 25 18 5 3 2 2 1 1 2 0

Displays the number of subjects each strategy fits best in the Robustness treatment. If multiple strategies fit a subject equally, each strategy
is given equal weight towards fitting a subject best. “Original set” refers to estimating all of the strategies except for EWA and I-SAW. “EWA &
I-SAW” refers to estimating every strategy that was previously estimated in the paper.

model that is based on Nevo & Erev (2012). As mentioned in the Introduction, Nevo & Erev (2012)
introduce I-SAW, which is a type of reinforcement learning model that predicts behavior well in
decisions from experience. The original I-SAW model is not directly applicable to our environment,
and we thus have to modify it. The second strategy is the Experience-Weighted Attraction (EWA)
model.40 We estimate two versions of this model: the original version (Camerer & Ho, 1999) and
the self-tuning version (Ho et al., 2007). Both of these versions are reinforcement learning models
and we adapted both to our environment. Online Appendix H displays the details of these strategies
and how they were adapted. Table 17 in Online Appendix I displays the results of the estimation
once we add these strategies. In our experiment, we find that only one subject is best fit by the
modified I-SAW strategy, and only six subjects are best fit by a modified EWA strategy. There are
still 164 subjects (76.3%) who are best fit by one of our biased strategies. This estimation shows
that our biased strategies are able to capture subject behavior in a way that the other strategies
cannot.

We lastly consider the possibility that our biased strategies only performed well in our estimations
because we estimated them on the same subjects that inspired them. It is possible that we designed
strategies that fit well for this specific set of subjects and that these strategies may not perform well
under a different set of subjects. This concern is mitigated by our relatively large sample of subjects
and by the biased strategies fitting well across four different environments. However, in July 2024,
we conducted a new treatment to test this possibility. This “Robustness” treatment is similar to our
three-armed finite horizon bandit treatment, but now a bandit problem lasts 18 rounds (instead of 25
rounds).We additionally had subjects face 40 bandit problems to keep the overall number of decisions
similar to our previous experiment. We chose a shorter bandit problem as we additionally wanted to
test whether strategies with inertia would still perform well in a shorter bandit problem. Details on
the Robustness treatment can be found in Online Appendix M.

Table 8 displays the number of subjects best fit by each strategy in the Robustness treatment. We
observe very similar results to our original experiment. In theRobustness treatment, 72.9%of subjects
are best fit by a biased strategy. This is very similar to the 76.3% of subjects that are best fit by a biased
strategy in the original data. Additionally, we once again find a slight majority of subjects best fit
by a reinforcement learning model. The results of this estimation are qualitatively consistent with
out-of-sample exercises in Table 25 and 26 in Online Appendix M. Table 25 shows that behavioral
predictions based on the best-fitting strategies in the original experiment predict aggregate subject
behavior very well in the Robustness treatment. Table 26 reports the best-fitting strategies in the
Robustness treatment when the strategy parameters are determined from the original experiment.
Our biased strategies in this exercise capture a majority of subjects. Overall, our results suggest that
our biased strategies capture behavior well across many different environments and many different
subjects.

40EWA is used as a base for a model that fits well (Ferecatu & De Bruyn, 2022) for a bandit based on a normal distribution.
The full model in Ferecatu & De Bruyn (2022) is not suitable for our specific estimation approach due to its large number of
free parameters.
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7. Discussion
In this paper, we conduct an exploratory analysis on behavior in the classic multi-armed bandit prob-
lem. We estimate fourteen different strategies from the multi-armed bandit literature and find that
most subjects are best fit by either a probabilistic win-stay lose-shift strategy or reinforcement learn-
ing. However, we show that it is unlikely that subjects are using these strategies.We develop three new
strategies and show that most subjects are best fit by either a biased reinforcement learning strategy
or a biased myopic strategy. In this discussion section, we discuss the implications of these results.

Our results have various important takeaways. The first takeaway is that most subjects appear to
judge bandit arms through a reinforcement learning process. We find that a majority of subjects in
our initial experiment (112/215) and in our Robustness treatment (32/59) are best fit by a strategy
that incorporates reinforcement learning. This is impressive given that the large number of strategies
that were estimated and that BIC places a larger penalty on strategies with more parameters. The
success of reinforcement-like strategies suggests that most subjects do play relatively successful arms
more often but do not explicitly evaluate these arms based on a correct Bayesian updating process.

The second takeaway is that subjects tend to place a premium on the last chosen arm, given
how they evaluate arms. This is shown by the overwhelming majority of subjects in both our ini-
tial experiment (164/215) and Robustness treatment (43/59) that are best fit by a biased strategy.
Biased reinforcement learners evaluate arms through a reinforcement learning process, but are more
likely to choose their previous arm than their propensities predict. Similarly, biased myopic subjects
evaluate arms through a myopic process but are more likely to choose their last chosen arm than the
expected reward rate of each arm predicts. The success of these strategies suggest that subjects are
more likely to play their previous action than their underlying evaluation process suggests.

The third takeaway is that subjects experiment differently than theory predicts.This is suggested by
the relatively poor fit of the optimal strategy.Our strategy estimation instead suggests that experimen-
tation occurs through randomness and subjects staying onmyopically suboptimal arms. Randomness
is consistent with the fit of the biased strategies, which allow for intelligent noise through logit func-
tions. This intelligent noise is more sophisticated than an arbitrary “tremble,” as it is proportional
to each arm, meaning that randomness is more likely when arms are evaluated as being more sim-
ilar. We thus expect subjects to experiment more often when bandit arms have returned rewards at
similar rates as subjects appear to evaluate arms using a reward-based process that is correlated with
expected immediate reward. Subjects experimenting through staying onmyopically suboptimal arms
follows from our best-fitting strategies. Simulations on subjects’ implied strategies show that shutting
off or turning down either of these channels in isolation reduces the strategy’s average payoffs. These
channels that can induce experimentation prove to be beneficial, given how subjects otherwise make
decisions.

The fourth takeaway is that estimations should focus on strategies that both exhibit inertia and
that have probabilistic choice based on perceived similarity in the bandit arms. In terms of the previ-
ously suggested strategies that we estimate, most of them lacked one of these two considerations. For
example, while the probabilistic win-stay lose-shift strategy initially performed well, it suffered from
only focusing on the previous outcome. Subjects respond to more than just the previous outcome
and appear to condition their behavior based on reward-based evaluations of the arms. Additionally,
strategies that focus solely on the observed bandit outcomes suffer from not incorporating subjects’
tendency to treat arms differently based onwhether theywere last chosen. Only our two biased strate-
gies (out of the strategies that were estimated) directly modeled both of these features. It thus seems
fruitful to focus on strategies that model both inertia and probabilistic choice based on perceived
similarity in the bandit arms.

There are many paths for future research. Future research could try to uncover behavioral factors
that influence experimentation in multi-armed bandit problems. It would be interesting to uncover
why subjects treat arms differently based onwhether theywere last chosen. Future research could also
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analyze behavior in different types of multi-armed bandit environments. There are many extensions
of the classicmulti-armed bandit problem thatwould be interesting to analyze, such as restless bandits
and multi-armed bandits that include safe options. Lastly, future research could use other methods
to try to uncover subject behavior. We focus on estimating strategies, but other papers could try to
elicit strategies more directly by allowing subjects to build their own strategies.
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