
J. Fluid Mech. (2024), vol. 998, A25, doi:10.1017/jfm.2024.574

Linear stability analysis of oblique
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We perform a detailed numerical study of modal and non-modal stability in oblique
Couette–Poiseuille profiles, which are among the simplest examples of three-dimensional
boundary layers. Through a comparison with the Orr–Sommerfeld operator for the aligned
case, we show how an effective wall speed succinctly characterizes modal stability.
Large-scale parameter sweeps reveal that the misalignment between the pressure gradient
and wall motion is, in general, destabilizing. For flows that are sufficiently oblique, the
instability is found to depend exclusively on the direction of wall motion and not on its
speed, a conclusion supported, in part, by the perturbation energy budget and the evolution
of the critical layers. Closed forms for the critical parameters in this regime are derived
using a simple analysis. From a non-modal perspective, pseudoresonance is examined
through the resolvent and the ε-pseudospectra. An analysis of the unforced initial value
problem shows that the maximum energy gain is highly dependent on both the magnitude
and direction of the wall velocity. However, the strongest amplification is always achieved
for configurations that are only weakly skewed. Finally, the optimal perturbations appear
to develop via a lift-up effect enhanced by an Orr-like mechanism, the latter driven by
cross-flow shear.
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1. Introduction

Shear flows demonstrate rich dynamical behaviour and underpin a variety of
technological applications, ranging from micro-fluidics and turbo-machinery to large-scale
aerodynamics and meteorology. Quantifying the transition to turbulence in these flows is
a multi-faceted problem, and despite much concentrated effort in the past few decades, a
unified description is yet to be agreed upon. The state-of-the-art on the topic can be found
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in references such as Kerswell (2005), Manneville (2015), Barkley (2016), Eckhardt (2018)
and Avila, Barkley & Hof (2023). Unfortunately, the insight afforded by prevailing theories
is rather limited since a vast majority, primarily for the sake of simplification, focus
on flows that are statistically two-dimensional, with a mean flow direction independent
of the wall-normal coordinate. In contrast, most practical flow scenarios suffer from
non-equilibrium effects that introduce anisotropy and symmetry-breaking, inducing a
three-dimensional boundary layer described by a skewing of the mean velocity vectors
and a flow direction that varies as a non-constant function along the wall-normal axis
(Johnston & Flack 1996). In this work, we systematically examine the stability of a
relatively under-explored class of three-dimensional internal flows that are both simple
in their description and physically representative in their context.

Usually, the investigation of instability in a fluid system derives from the Navier–Stokes
equations, appropriately linearized around some time-invariant state of interest. The
classical (modal) approach focuses on the eigenvalues of the associated linear operator,
and the flow is considered unstable with respect to some dimensionless quantity –
usually a Reynolds number Re – if there exists a mode with a positive growth rate.
These disturbances are capable of achieving exponential-in-time amplification, a type of
so-called primary instability, before saturating due to nonlinear phenomena. The result
is either transition or the development of a steady, modified, base flow susceptible to
secondary instabilities. To varying degrees of success, this framework has been applied to
numerous laminar profiles, such as rectilinear pressure-driven flow (Thomas 1953; Gage
& Reid 1968; Orszag 1971; Zhang et al. 2013), plane Couette flow (Drazin & Reid 2004;
Zou et al. 2023), classic Rayleigh–Bénard convection (Rayleigh 1916; Chandrasekhar
1961), Hagen–Poiseuille flow (Salwen, Cotton & Grosch 1980; Schmid & Henningson
2001) and the asymptotic suction boundary layer (Hughes & Reid 1965; Fransson &
Alfredsson 2003). Contextualizing these calculations against experimental observations,
however, is not always straightforward, particularly because the most unstable disturbance,
as predicted by modal theory, can only be realized in asymptotic time. On the other
hand, significant non-modal energy growth can occur on much shorter time scales and
is, therefore, not captured (Trefethen et al. 1993; Trefethen 1997; Schmid & Henningson
2001; Schmid 2007). A potential model for this behaviour lies in the non-normality of the
linearized Navier–Stokes operator and its, in general, non-orthogonal eigenfunctions. In
particular, within the basis expansion of an arbitrary initial disturbance, the contribution
of these modes can grow or decay at different rates, allowing for a transient amplification
of energy. In many canonical flows and their variants, this non-modal growth has been
shown to be substantial, even in linearly stable parameter regimes (Farrell 1988; Reddy,
Schmid & Henningson 1993; Schmid & Henningson 1994; Hristova et al. 2002; Meseguer
2002; Meseguer & Trefethen 2003; Liu & Liu 2012).

A flow that has arguably received limited attention in the general fluids literature is
the plane Couette–Poiseuille (PCP) flow, generated by the interaction between a pressure
gradient and the prescribed motion of one or both boundaries. The PCP configurations
are standard in geophysical fluid mechanics (for example, in modelling asthenospheric
counterflows; see Turcotte & Schubert 2002), flow in ducts (Owolabi, Dennis & Poole
2019) and tribology. Comprehensive stability analyses for PCP flows are somewhat sparse
in number, and the first few treatments can be found in Potter (1966), Reynolds & Potter
(1967) and Hains (1967). Described by a wall speed ξ often made non-dimensional with
the Poiseuille maximum, the superposition of a (parallel) Couette component with an
otherwise pressure-driven flow is, in general, stabilizing, at least in terms of a critical
Reynolds number Rec below which modal instability is absent. Furthermore, beyond a
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threshold value for ξ , the base flow is capable of achieving complete modal stability against
infinitesimal perturbations, Rec → ∞. Cowley & Smith (1985), using a weakly nonlinear
analysis, determined this ‘cutoff’ velocity to be ξ ≈ 0.7. From a non-modal perspective,
Bergström (2004) showed that the peak in transient energy amplification can depend
heavily on the relative influence of the Poiseuille and Couette components. Modifications
to the geometry and rheology of PCP flows have also been considered and their linear
response analysed, for example, in Nouar & Frigaard (2009), Guha & Frigaard (2010),
Chokshi et al. (2015) and Samanta (2020). More recently, using a zero-mean advection
velocity set-up, Klotz et al. (2017) experimentally probed the subcritical transition in PCP
flows. Uniform turbulence originating from a natural transition was observed beyond Re ≈
780 (with the Reynolds number based on the wall velocity), which stands in reasonable
agreement with the results of Tsanis & Leutheusser (1988).

However, despite their individual merits, the previous literature on the transitional
regime in PCP flows has remained somewhat restrictive in its applicability. For
convenience in modelling or due to experimental limitations, the pressure gradient and
wall velocity vectors are almost always assumed to be perfectly coincident. Although
this unidirectional assumption enables a fairly tractable analysis, it breaks down in more
practical scenarios, e.g. wind–ocean interactions, where the direction of the pressure
gradient in the bulk flow need not be aligned with that of the wind shear. In these cases,
a cross-flow must be taken into account, and the flow angle cannot be assumed to be
constant, potentially affecting, among other aspects, the onset of instability. A linear modal
and non-modal analysis of such three-dimensional PCP flows is yet to be performed, at
least to the best of our knowledge. Therefore, the primary goal here is to contribute to this
gap.

We note that linear instability in three-dimensional boundary layers has already been
the subject of extensive prior investigation, with excellent reviews published in Reed &
Saric (1989) and Saric, Reed & White (2003). In most flow situations, the introduction of
mean three-dimensionality allows for multiple competing mechanisms for transition. For
example, in flows over swept wings, local pressure gradients induce a near-wall cross-flow
component that is inflectional and, therefore, unstable to the inviscid amplification of
the so-called cross-flow modes (Gray 1952; Gregory, Stuart & Walker 1955; Bippes
1999). These modes are co-rotating and, following nonlinear saturation, incite breakdown
to turbulence via high-frequency secondary instabilities (White & Saric 2005). Such
cross-flow instabilities are also common in, for example, the boundary layers that form
on rotating disks (Fedorov et al. 1976; Kobayashi, Kohama & Takamadate 1980; Malik
1986a). In particular, using von Kármán’s similarity solution for a swirling flow over an
infinitely long rotating disk, Malik, Wilkinson & Orszag (1981) determined the critical
Reynolds number associated with these cross-flow modes to be Rec ≈ 170. Taking into
account the streamline curvature and Coriolis effects, the authors refined this estimate
in the same work to Rec ≈ 290, which was in better agreement with their experimental
results. Later, Malik (1986b) and Balakumar & Malik (1990) found a second minimum
in the neutral stability curve at Re ≈ 450, which they associated with a viscous-type
instability. Other classic studies on the transition of three-dimensional boundary layers
include those of swept cylinders (Poll 1985; Kohama, Ukaku & Ohta 1988; Itoh 1996),
rotating cones (Kobayashi 1981; Kobayashi & Izumi 1983; Kobayashi, Kohama &
Kurosawa 1983) and the Ekman layer (Lilly 1966; Melander 1983; Spall & Wood 1984).
On the topic of non-modal disturbances, Corbett & Bottaro (2001) found that swept
boundary layers subjected to adverse or favourable pressure gradients were prone to
larger transient growth than unswept cases. The authors also determined that, similar to
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two-dimensional flows, streamwise-elongated streaks comprised the most dangerous initial
perturbation. More recently, Hack & Zaki (2014) probed the effects of time-harmonic
spanwise wall motion on transitional boundary layers using direct numerical simulation.
They observed that the wall motion could either suppress or accelerate transition. Using
a frozen-in-phase as well as a Floquet approach, Hack & Zaki (2015) attributed this to
the competition between the non-modal amplification of boundary layer streaks and the
inviscid growth of inflectional modes introduced by the spanwise Stokes profile.

Interestingly, studies on skewed turbulent Couette–Poiseuille flows seem not to be
uncommon, though almost every work so far has focused exclusively on wall motion
that is purely orthogonal to the pressure gradient. In this community, such cases fall into
the category of ‘shear-driven’ or ‘viscous-induced’ three-dimensional boundary layers.
Coleman, Kim & Le (1996), Howard & Sandham (1997) and Le, Coleman & Kim
(2000), for example, explored the variation in turbulent statistics of a two-dimensional
channel flow after the sudden imposition of a spanwise wall motion. Kannepalli &
Piomelli (2000) displaced only a finite section of the wall, focusing on the contrast
between the initial response to the perturbation and the subsequent relaxation to a
two-dimensional equilibrium turbulence. More recently, Holstad, Andersson & Pettersen
(2010) investigated near-wall coherent structures in a turbulent Couette flow skewed by
a spanwise pressure gradient. A common topic of emphasis within these studies seems
to be the counterintuitive structural changes that occur between two-dimensional and
three-dimensional (both equilibrium and non-equilibrium) boundary layers. For example,
although the addition of mean shear in the two-dimensional case is known to enhance
turbulence, it usually leads to a reduction in turbulent stresses in the three-dimensional
setting. Furthermore, Townsend’s structure parameter is also often quoted to decrease,
indicating a decline in the efficiency of turbulent kinetic energy production by the mean
flow. For relevant reviews on the topic, we direct the reader to Olcmen & Simpson (1993),
Eaton (1995) and Johnston & Flack (1996). Given the intricate nature of three-dimensional
boundary layers and our limited understanding of their physics, it is hoped that this work
will supplement and invigorate ongoing investigations in this area.

We structure the remainder of the paper as follows. Section 2 introduces our base flow
and develops our analysis frameworks. Sections 3 and 4 explore, respectively, modal and
non-modal perturbations. Section 5 offers conclusions and a discussion of relevant future
work.

2. Problem formulation

2.1. Governing equations and base profiles
We use the standard equations of motion for an incompressible Newtonian fluid. In the
absence of body forces, these can be expressed in dimensional format as follows:

ρ

[
∂ũ
∂ t̃

+ (ũ · ∇̃)ũ
]

= −∇̃p̃ + μ∇̃2ũ, (2.1)

where ũ = (ũ ṽ w̃)ᵀ is the Eulerian velocity field, p̃ the hydrodynamic pressure, ρ the fluid
density and μ the dynamic viscosity. The flow of interest in this study is illustrated in the
schematic presented in figure 1. Two rigid surfaces, infinite in the wall-parallel directions
and located at ỹ = ±h, confine an incompressible fluid subject to a fixed streamwise
pressure gradient G < 0. A cross-flow is established by additionally translating the top
wall with a constant velocity Uw at an angle θ with respect to the positive x̃ axis. The
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ỹ

ỹ = h

ỹ = –h

x̃

z̃
Uw

θ

G

Figure 1. A sketch of the three-dimensional flow geometry for oblique Couette–Poiseuille flows; here,
dp/dx = G < 0 is the constant streamwise pressure gradient. The wall at ỹ = h translates with velocity Uw
at an angle θ /= 0 to the streamwise direction, inducing a three-dimensional shear flow.

steady laminar profile Ũ satisfies

−∇̃P̃ + μ∇̃2Ũ = 0, Ũ = (
Ũ(ỹ) 0 W̃(ỹ)

)ᵀ
, ∇̃P̃ = (G 0 0

)ᵀ
, (2.2a–c)

subject to the boundary conditions

Ũ(ỹ = h) = Uw cos θ, W̃(ỹ = h) = Uw sin θ, Ũ(ỹ = −h) = W̃(ỹ = −h) = 0.
(2.3a–c)

In particular, we can find

Ũ(ỹ) = −h2G
2μ

(
1 − ỹ2

h2

)
+ Uw

2

(
1 + ỹ

h

)
cos θ, W̃(ỹ) = Uw

2

(
1 + ỹ

h

)
sin θ.

(2.4a,b)

The resulting system is, therefore, a viscous-induced three-dimensional boundary layer,
for which the flow angle, defined as

φ(ỹ) = tan−1

(
W̃(ỹ)

Ũ(ỹ)

)
, (2.5)

varies with the wall-normal direction. These configurations are herein referred to as
oblique Couette–Poiseuille flows (OCPfs) and, to our knowledge, have not received prior
treatment in the stability literature, despite being among the simplest three-dimensional
flows capable of retaining homogeneity in the streamwise and spanwise directions.
Respectively, Ũ and W̃ are Couette–Poiseuille and Couette profiles, their relative strengths
modulated by the direction of wall movement. In the limit Uw → 0, standard Poiseuille
flow is recovered. On the other hand, for θ → 0 and Uw /= 0, the cross-flow vanishes and
the system reduces to the well-known aligned Couette–Poiseuille flow (ACPf), in which
the pressure gradient and wall motion coincide exactly.

The parameter space characterizing OCPfs is rather complex, and, as is the case for
ACPf, there exist multiple routes to rendering the governing equations non-dimensional.
An obvious candidate is Up, the so-called Poiseuille velocity scale, which is the streamwise
maximum computed in the absence of wall motion. The other option is Umax, the
‘actual’ streamwise maximum, and is preferred if non-equilibrium effects are expected
to significantly distort the streamwise profile away from Up. However, in all possible
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Figure 2. From left to right, plots of the streamwise and spanwise velocities as well as the flow direction φ
(normalized by π) against the wall-normal coordinate y: (a–c) θ = π/4 and ξ ∈ {0.2, 0.4, 0.6, 0.8, 1}; (d–f )
ξ = 0.5 and θ ∈ {π/8,π/4, 3π/8,π/2}. Formally, φ is singular near the lower wall, where U and W both
vanish due to the no-slip condition. However, from l’Hopital’s rule, the limit can be computed as φ( y →
−1) = tan−1(ξ sin θ/(4 + ξ cos θ)), evidently the angle between the wall shear stresses.

realizations of OCPf, the boundedness of cos θ and sin θ ensures that Ũ is O(Up).
Therefore, to facilitate comparison with the previous literature, we choose to scale with
Up. More specifically, the following non-dimensionalization scheme is adopted:

x = x̃
h
, u = ũ

Up
, t = t̃

h/Up
, p = p̃

ρU2
p
, (2.6a–d)

which yields the dimensionless form of the momentum equations

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u, (2.7)

∇ · u = 0. (2.8)

Here, (2.8) represents the incompressibility constraint, and Re = ρUph/μ = Uph/ν is a
Reynolds number, with ν being the kinematic viscosity. The base velocity profiles become

U( y) = 1 − y2 + ξ

2
(1 + y) cos θ, W( y) = ξ

2
(1 + y) sin θ, (2.9a,b)

where by defining Rew = Uwh/ν, we can interpret ξ = Uw/Up = Rew/Re as the
non-dimensional wall speed. In this setting, the influence of the shear angle on the base
profiles becomes more apparent. Suppose that ξ is fixed and θ is varied; while W maintains
its Couette nature, U evolves continuously as a one-parameter homotopy between ACPf
and the plane Poiseuille flow (θ = nπ/2 for odd n). Therefore, it is reasonable to limit
attention to pairs (ξ, θ) ∈ [0, 1] × [0, 2π], the former due to its physical relevance and
the latter due to the periodicity of the base profiles that can be expected to permeate
the forthcoming calculations. For select values of the flow parameters, the associated
non-dimensional profiles are offered in figure 2.
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2.2. The linearized system
This section follows standard monographs on hydrodynamic stability, and we refer the
reader to the works of Schmid & Henningson (2001) or Drazin & Reid (2004), for example.
In operator format, the Navier–Stokes equations can be rewritten as

∂u∗

∂t
= N (u∗), (2.10)

where N is a nonlinear function of the state vector u∗ = (u p)ᵀ. We decompose u∗ as u∗ =
U∗ + u′∗, where U∗ is a time-independent base state superposed by a set of infinitesimal
fluctuations u′∗ = (u′ p′)ᵀ. In particular, we have

U∗ = (
U P

)ᵀ
, U = (

U( y) 0 W( y)
)ᵀ
, ∇P = (−2/Re 0 0

)ᵀ
. (2.11a–c)

By Taylor expanding N around U∗ and neglecting terms that are O(‖u′∗‖2), we obtain
a linearized system of evolution equations for the perturbation variables. To reduce
computational complexity and the size of the matrices dealt with, the usual procedure
here is to eliminate the pressure. This yields a rephrased system based only on fluctuations
in the wall-normal velocity/vorticity q = (v′ η′):[(

∂

∂t
+ U

∂

∂x
+ W

∂

∂z

)
∇2 − d2U

dy2
∂

∂x
− d2W

dy2
∂

∂z
− 1

Re
∇4
]
v′ = 0, (2.12)[

∂

∂t
+ U

∂

∂x
+ W

∂

∂z
− 1

Re
∇2
]
η′ − dW

dy
∂v′

∂x
+ dU

dy
∂v′

∂z
= 0, (2.13)

where ∇2 is the usual Laplacian in a Cartesian coordinate system and ∇4〈·〉 ≡ ∇2(∇2〈·〉)
is the bi-harmonic operator. Here on, for notational brevity, we drop the prime notation.
Note that, contrary to the case of a purely streamwise base flow for which W = 0, the
so-called Squire equation, (2.13), is now forced by mean shear from both the streamwise
and spanwise profiles, which are, in general, non-zero. The spatial homogeneity can be
exploited via a Fourier transform,

q̄( y, t;α, β) =
∫∫ ∞

−∞
q(x, y, z, t) e−i(αx+βz) dx dz, (2.14)

to obtain the canonical form of the Orr–Sommerfeld–Squire (OSS) system. Here, α, β ∈ R

are the real-valued wavenumbers in the x and z directions and q̄ = (v̄ η̄) is a block vector
of Fourier coefficients. The transformed equations can be compactly written as

Lq̄ = − ∂

∂t
M q̄, (2.15)

where, by denoting D ≡ d/dy and k2 = α2 + β2, we have defined

L =
( LOS 0

iβDU − iαDW LSQ

)
, M =

(D2 − k2 0
0 1

)
. (2.16a,b)

The Orr–Sommerfeld (OS) and Squire operators, LOS and LSQ respectively, are given by

LOS = (iαU + iβW)(D2 − k2)− iαD2U − iβD2W − 1
Re
(D2 − k2)2, (2.17)

LSQ = iαU + iβW − 1
Re
(D2 − k2). (2.18)

Equation (2.15) forms an initial-value problem for the Fourier-transformed state vector
q̄ in wavenumber space, where the associated boundary conditions can be obtained by
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applying no-slip/impermeability at both walls. Whenever necessary, the velocity–vorticity
formulation of the OSS problem can be recast into one for the primitive fluctuations using
the transformation ⎛

⎝ ū
v̄

w̄

⎞
⎠ = 1

k2

⎛
⎝iαD −iβ

k2 0
iβD iα

⎞
⎠(v̄

η̄

)
. (2.19)

Details of the numerical discretization of (2.15) can be found in Appendix A.

2.3. Modal analysis
For a modal or eigenvalue analysis, an additional Fourier transform is conducted in time:

q̂( y;α, β, ω) =
∫ ∞

−∞
q̄( y, t;α, β) eiωt dt, (2.20)

where ω = ωr + iωi ∈ C is the complex wave frequency. Equation (2.15) then reduces to
a generalized eigenvalue problem described by the linear operator pencil (L,M):

Lq̂ = iωM q̂, (2.21)

with eigenvalues corresponding to iω = iωr − ωi. Note that this is equivalent to solving for
the eigensystem of S′ = M−1L. In general, the spectrum is a function of {α, β,Re, ξ, θ},
and exponential amplification occurs over time if ωi > 0. Consequently, we seek the
manifold of marginal stability, designated by

ωi(α, β,Re, ξ, θ) = 0. (2.22)

We note that the presence of a non-zero spanwise velocity in OCPfs prevents an application
of Squire’s theorem in its usual form. Although a two-dimensional problem may well
be constructed (see e.g. Mack 1984; Schmid & Henningson 2001), the ‘effective’ base
velocity depends on both spatial wavenumbers and there is no a priori indication of
the appropriate search space. Therefore, for a given configuration (ξ, θ), since a full
stability portrait requires a sweep through the (α, β,Re)-space, a numerical approach will
inevitably be marred by a lack of resolution. While this is a valid criticism, we point out
that most canonical shear flows only become linearly unstable at modest wavenumbers, if
at all. Furthermore, in § 3, we demonstrate that from the perspective of modal stability,
OCPfs are essentially continuations of the aligned variant. Therefore, the results of a
sufficiently broad numerical search, as conducted here, are likely global.

Before proceeding, we make some key observations. First, as is true for strictly
streamwise base flows, the Squire modes remain damped. The proof proceeds in the usual
way by converting to a formulation involving the x-phase speed, c = ω/α, multiplying the
homogeneous Squire equation by the complex conjugate of the fluctuating normal vorticity
and integrating over y. Therefore, for a modal analysis, it suffices to consider only the OS
operator, (2.17). Furthermore, since neither component of the base velocity is inflectional,
OCPfs do not admit an inviscid cross-flow-like instability as observed, for example, over
swept wings or rotating disks. In particular, in the inviscid limit, Rayleigh’s criterion can
be modified to require the following expression to hold at some wall-normal location:

D2U + γD2W = 0, (2.23)

where γ = β/α. Although (2.23) will, for general flows, vary in wavenumber space, the
linearity of W implies that D2W = 0 for OCPfs. Thus, since D2U = −2, the instability
must be viscous in nature.
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2.4. Non-modal analysis
For most shear flows, a spectral analysis of the linearized Jacobian as in § 2.3 rarely agrees
with experiment. In fact, quite often, the transition to turbulence is observed at subcritical
Re, that is, below the threshold predicted by modal theory (Trefethen et al. 1993). This
behaviour is now well understood to be a consequence of the highly non-normal nature of
the OSS operator S′, which, in part, arises from the off-diagonal term (iβDU − iαDW)
driving the Squire equation; see (2.13) and (2.16a,b). In general OCPfs, this forcing can
evidently comprise both the streamwise and spanwise mean shear.

A non-normal operator such as S′ admits eigenfunctions that are non-orthogonal in the
underlying Hilbert space. When arbitrary initial states are transformed into the basis of
these eigenfunctions, they can suffer from large cross-terms in the induced norm (Schmid
2007). An immediate consequence is that while a modal analysis might suggest asymptotic
decay, energy amplification can still occur over finite time horizons. In shear flows, the
transition to turbulent regimes has often been attributed to these transient phenomena,
providing a potential explanation for the so-called bypass transition (Butler & Farrell
1992). Furthermore, there is no guarantee that the long-time eigenmode is even realized,
in spite of the most careful calibration, since sufficiently strong transient amplification will
likely excite nonlinear mechanisms in the flow and violate the linear assumption (Waleffe
1995b; Trefethen 1997)

To explore the implications of non-normality in OCPfs, we first solve the initial-value
problem in (2.15) exactly to yield

q̄(t) = Φ(t, 0)q̄0, (2.24)

where Φ(t, 0) ≡ eiSt is the state-transition operator, S = iS′, and q̄0 is the state of the
system at the initial time t = 0. Under appropriate norms in the input and output spaces,
the gain can be defined as

G(α, β,Re, ξ, θ, t) = sup
q̄0 /= 0

‖q̄‖2
out

‖q̄0‖2
in
, (2.25)

where, due to its physical significance, we let ‖·‖out = ‖·‖in = ‖·‖E be an energy norm,

‖q̄‖2
E =

∫ 1

−1
v̄†v̄ + 1

k2

(
η̄†η̄ + ∂v̄†

∂y
∂v̄

∂y

)
dy 
 q̄†E q̄, (2.26)

over the volume V defined by the Cartesian product (x, y, z) ∈ [0, 2π/α] × [−1, 1] ×
[0, 2π/β]. In this way, the energy of one full wavelength of a disturbance can be captured
(see Butler & Farrell 1992). Here, 〈·〉† denotes a conjugate transpose operation, and the
operator E is positive-definite and incorporates the Clenshaw–Curtis quadrature weights
(Trefethen 2000). With a Cholesky decomposition, we may write E = F †F so that

‖q̄‖2
E 
 q̄†F †F q̄ = ‖F q̄‖2

2. (2.27)

It immediately follows that

G = sup
q̄0 /= 0

‖FΦ(t, 0)q̄0‖2
2

‖F q̄0‖2
2

= sup
q̄0 /= 0

‖FΦ(t, 0)F−1F q̄0‖2
2

‖F q̄0‖2
2

= ‖FΦ(t, 0)F−1‖2
2, (2.28)

which can be computed trivially via the singular value decomposition (note, in fact, that
G = ‖Φ(t, 0)‖2

E). The associated right and left singular functions represent, respectively,
the initial condition and response pair for which the gain at time t is realized.
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Intuitively, no energy growth is expected if G ≤ 1. An equivalent condition can be
expressed in terms of the resolvent of S. Consider an exogenous harmonic forcing
profile H(x, y, z, t) = h(x, y, z) e−iζ t with frequency ζ ∈ C to the linearized system,
appropriately transformed into wavenumber space:

h̄( y;α, β) =
∫∫ ∞

−∞
h(x, y, z) e−i(αx+βz) dx dz. (2.29)

The long-time response, assuming asymptotic stability, can easily be verified to be

q̄ = ie−iζ t(ζ I − S)−1h̄, (2.30)

where the operator R ≡ (ζ I − S)−1 is known as the resolvent. From an input–output
perspective, R serves as a transfer function between the excitation and its response. The
quantity R = ‖R‖E is, therefore, of particular interest here, since for a non-normal system,
it can be large even if the forcing is pseudoresonant, that is, ζ /∈ Λ(S), the spectrum of S
(Trefethen & Embree 2005). Such a paradigm is especially informative for the receptivity
of the flow to external disturbances (Brandt 2014), and if ζ is restricted to real values,
a physical interpretation of the resolvent is the perturbed operator that can result, for
example, from external vibrations or planar imperfections (Trefethen et al. 1993). By
further generalizing to the complex plane, one recovers the ε-pseudospectra, the set of
values defined as

Λε(S) = {ζ ∈ C : R ≥ ε−1}. (2.31)

For non-normal operators, Λε can protrude deep into the upper-half of the complex
plane, and the more pronounced this effect, the greater the potential for transient growth
irrespective of the presence of linear instability. More rigorously, the Hille–Yosida
theorem states that G ≤ 1 if and only if the ε-pseudospectra lie sufficiently close to the
lower half-plane (Reddy et al. 1993). For further details, we refer the reader to that paper,
the citations within and the text of Trefethen & Embree (2005).

2.5. Energy budget analysis
An investigation of the perturbation energy budget can reveal the mechanism of instability
in OCPfs. Throughout this section, the Einstein convention is implied via repeated indices.
We define the perturbation energy density E as

E = 1
2 u†u = 1

2 u†
i ui = 1

2(|u|2 + |v|2 + |w|2). (2.32)

By multiplying equation (2.7) throughout by u† and integrating over V , evolution equations
for the total energy are recovered:

d
dt

∫
V
E dV =

∫
V

dE
dt

dV = −
∫

V

1
2
(u†

i uj + uiu
†
j )
∂Ui

∂xj
dV − 1

Re

∫
V

∂u†
i

∂xj

∂ui

∂xj
dV, (2.33)

where we have assumed spatial periodicity of the disturbance field in x and z. Under the
normal mode ansatz, (2.20), the above expression reduces to

2ωi

∫ 1

−1

1
2

û†
i ûi dy =

∫ 1

−1
P dy −

∫ 1

−1
ε dy, (2.34)
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where we have defined

P = −

τu︷ ︸︸ ︷
1
2
(û†v̂ + ûv̂†)

∂U
∂y︸ ︷︷ ︸

Pu

−

τw︷ ︸︸ ︷
1
2
(ŵ†v̂ + ŵv̂†)

∂W
∂y︸ ︷︷ ︸

Pw

, (2.35)

ε = 1
Re

[(Dûi)
†Dûi + k2û†

i ûi]. (2.36)

Two contributions to the disturbance kinetic energy can be identified: P , the production
against the background shear(s), and ε, the viscous dissipation. The former can be further
separated into terms representing the transfer of energy from the base streamwise and
spanwise flows, respectively, to the perturbation field through the action of the associated
Reynolds stresses, τu and τw. These have been denoted by Pu and Pw. In general, (positive)
production destabilizes, whereas dissipation stabilizes the disturbance field.

3. Modal analysis

3.1. Characteristics of the eigenspectra
We begin by investigating the dynamics of the eigenspectra in OCPfs. For a sample
wavenumber combination, figure 3 illustrates the loci of the first ≈ 50 least stable modes
as the non-dimensional wall speed ξ is varied at θ = π/6. The results have been presented
in terms of c = ω/α. A familiar Y-shaped distribution can be observed, with three distinct
branches reminiscent of the spectrum for plane Poiseuille flow (pPf). As the wall speed
increases, this structure collectively translates further into the right half-plane, and the
most unstable mode monotonically stabilizes. In doing so, the shape of the S-branch,
comprising the so-called mean modes related to the mean velocity, remains relatively
undistorted. On the other hand, a sharper change occurs in the A-branch – the wall modes
– which separate into two distinct subsets associated, respectively, with each wall. In a
somewhat similar manner, starting from its bottom half, the P-branch of centre modes also
begins to split into two noticeable sub-branches. Together, these observations are indicative
of the increased Couette contribution to the base flow, since the spectra for various flavours
of Couette flow are usually scattered symmetrically within two A-branches (e.g. Duck,
Erlebacher & Hussaini 1994; Schmid & Henningson 2001; Zou et al. 2023).

In OCPfs, the distribution of this Couette component between the base velocities is
directly controlled by the shear angle θ . However, its impact at the level of the OS equation
is rather subtle. Since W is linear, D2W = 0, and the OS operator, simplified from (2.17),
becomes

LOS =
O1︷ ︸︸ ︷

(iαU + iβW)(D2 − k2)−
O2︷ ︸︸ ︷

iαD2U −

O3︷ ︸︸ ︷
1

Re
(D2 − k2)2, (3.1)

where U and W retain their definitions from (2.9a,b), instantiated with some wall
speed ξ . We immediately observe, despite the three-dimensionality of the flow, that
the spanwise velocity appears only in a single term, O1, in (3.1). In particular, for a
spanwise-independent mode, β = 0, the effects of obliqueness in the base flow are, in
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(a) (b) (c)

(d ) (e) ( f )

Figure 3. The locus of the eigenspectrum for (α, β) = (1, 0.5) at Re = 5700 and θ = π/6 for (a–f ) ξ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}. The A, P and S branches have been appropriately labelled. On each plot, a grey dashed
line denotes the stability boundary, ci = 0.

a sense, ‘shut off’, since the corresponding OS operator

LOS = iαU(D2 − α2)− iαD2U − 1
Re
(D2 − α2)2 (3.2)

reduces precisely to that for ACPf under the umbrella of Squire’s theorem (excluding, of
course, the factor of cos θ in U, which can essentially be lumped into the wall speed).
To extend this analogy to more general disturbances, a modification must first be made.
Consider the generic three-dimensional (that is, prior to an application of Squire’s result)
OS operator for ACPf

LACPf
OS =

A1︷ ︸︸ ︷
iαUACPf (D2 − k2)−

A2︷ ︸︸ ︷
iαD2UACPf −

A3︷ ︸︸ ︷
1

Re
(D2 − k2)2, (3.3)

where

UACPf = 1 − y2 + ξACPf

2
(1 + y). (3.4)

Comparing the two operators in (3.1) and (3.3) allows us to identify crucial similarities in
structure. Specifically, for a constant wave triplet (α, β,Re), while O3 ≡ A3 is immediate,
O2 ≡ A2 follows from the fact that D2U = −2 = D2UACPf . Therefore, LOS and LACPf

OS
differ exclusively in their terms O1 and A1, respectively. However, since k2 has also been
fixed by our choice of wavenumbers, O1 ≡ A1 can be made possible by requiring

iαUACPf = iαU + iβW =⇒ ξACPf = ξ(cos θ + γ sin θ), (3.5)

where γ = β/α. Therefore, for an arbitrary OCPf, the OS problem at any wavenumber
pair can be exactly mapped to one for ACPf via the ‘effective’ wall speed ξeff :

ξeff ≡ ξ(cos θ + γ sin θ). (3.6)
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Figure 4. At Re = 10 000 and ξ = 0.2, the variation with ξeff of the least stable eigenmode for (α, β) =
(1, 0.25). The only dashed grey line marks the boundary ci = 0. Both components change in tandem with ξeff ,
and when juxtaposed with the information in figure 3, lend weight to ξeff serving as an effective wall speed.
Note that ci is, in fact, π-periodic, the underlying mechanism being precisely that which allows for symmetric
growth rates around ξ = 0 for ACPf (see § 3.2).

With the corollary

ω(α, β,Re, ξ, θ /= 0) = ω(α, β,Re, ξeff , θ = 0), (3.7)

we conclude that the stability of any OCPf can be prescribed entirely by comparison with
the appropriate ACPf configuration(s). A stronger result, and one perhaps in the same
spirit as Squire’s theorem, is as follows: if 𝔒 denotes the set of all possible OS operators
for OCPf and 𝔄 the equivalent set for ACPf, then 𝔒 ⊆ 𝔄.

The influence of the shear angle on modal behaviour can now be made precise. We start
by noting that ξeff is 2π-periodic and

−ξk/α ≤ ξeff ≤ ξk/α, (3.8)

so that it varies strongly even throughout wavenumber space. Mathematically, at a fixed
triplet (α, β,Re), its action in θ seems to be to accentuate or mask the strength of the
wall speed. As an example, figure 4 shows how changes in ξeff with θ affect the real
and imaginary components of the most unstable eigenvalue for an arbitrarily chosen
wavenumber pair. It is evident that the periodicity of ξeff directly translates to that of
the spectrum, which itself becomes, at a minimum, 2π-periodic. Furthermore, we found
(not shown here; refer to figure 3) that variations in ξeff modified the distribution of the
eigenmodes in the complex plane in much the same fashion as variations in ξ for fixed θ ,
e.g. increasing ξeff increased cr, and vice versa. When taken together, these observations,
combined with (3.7) and the interpretation of ξeff , suggest that the manifold of marginal
stability for OCPfs is contained wholly within that for ACPf. Accounting for a non-trivial
directionality in the flow affects perhaps only the subset of the latter that is ultimately
accessed.

3.2. Exploring criticality in OCPfs
In this section, we present the findings of a comprehensive investigation into the modal
stability of OCPfs. We introduce the critical Reynolds number, denoted Rec, which

998 A25-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

57
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.574


M. Abdullah and G.I. Park

represents the minimum Reynolds number below which the flow remains linearly stable.
At this value, at least one disturbance, characterized by the critical wavenumbers (αc, βc),
must achieve neutral stability. When analysing two-dimensional flows, Squire’s theorem
(Squire 1933) allows us to focus solely on disturbances that are independent of the
spanwise direction, that is, βc = 0. However, for general three-dimensional profiles, an
accurate assessment of stability necessitates the consideration of modes with non-zero β.
Consequently, in the case of an OCPf (ξ, θ), a thorough exploration of the entire
three-dimensional (α, β,Re)-space is required.

To reduce the degree of computation, we now consider some important simplifications.
First, we note that in the stability literature for ACPf, the analysis for ξ < 0 is typically
neglected, since the modal growth rates are symmetric around ξ = 0 (although the
corresponding real parts might not be). Potter (1966) rationalized this by adopting the
coordinate transformation y → −y. Since ξeff (θ + π) = −ξeff (θ), a similar argument
allows us to restrict our attention to θ ∈ [0,π]. However, a second reduction is also
possible and can be achieved by noting that, at a constant ξ , if (αc, βc,Rec) is the critical
tuple for θ = θ ′, then (αc,−βc,Rec) is necessarily the critical tuple for θ = π − θ ′. This
result is immediate from the definition of ξeff in (3.6), since

ξeff (α, β, ξ, θ
′) = −ξeff (α,−β, ξ,π − θ ′), (3.9)

where we have assumed α > 0. Thus, it suffices to explore the range θ ∈ [0,π/2]. For the
Fourier wavenumbers, we focused on small to intermediate values, in particular, (α, β) ∈
[−3, 3] × [−3, 3]. This is generally the subspace of the wavenumber plane within which
linear instability is first encountered in most canonical shear flows, and particularly for
ACPfs (Potter 1966). In total, O(1010) different parameter combinations were investigated,
and our numerical procedure, including our method for traversing such an unwieldy space,
is outlined in Appendix A. In what follows, all results are presented for values of θ in
degrees rather than in radians.

In general, the introduction of skewness in Couette–Poiseuille flows was found to be
destabilizing, at least relative to ACPf. However, two qualitative regimes could still be
identified in θ . The first, denoted Θ1, comprises 0◦ < θ � 20◦ and is arguably the most
interesting of the two, as it exhibits drastic changes in stability throughout its extent. Since
OCPfs reduce to the standard aligned case as θ → 0, it is natural to expect the stability
characteristics of ACPf to continue at least to modest θ . Figure 5 supports this intuition.
For all θ ∈ Θ1, a short range of stabilization in the Rec curves is followed by an inflection
point between 0.2 � ξ � 0.4 and then further growth, a trend that is precisely reminiscent
of ACPf (Potter 1966).

Perhaps the most striking feature is the fact that linear instability seems to persist
throughout the entire range of wall speeds considered here. This behaviour was observed
even for ‘small’ angles, such as θ ∈ {1◦, 1.5◦} (and even down to θ ∈ {0.5◦, 0.75◦}, not
shown here), where the wall motion is approximately parallel to the pressure gradient.
This is in stark contrast to ACPf, which achieves unconditional linear stability, Rec → ∞,
against infinitesimal disturbances beyond the so-called cutoff wall speed ξA ≈ 0.7 (Potter
1966; Cowley & Smith 1985). A crude explanation for this is that the inclusion of a
spanwise velocity makes β a relevant stability parameter, providing, in light of the effective
wall speed ξeff and the analysis outlined at the end of § 3.1, an additional buffer for an OCPf
to return to a region of linear instability for ACPfs. The absence of an equivalent cutoff wall
speed for OCPfs seems to manifest itself in terms of the appearance of a limiting regime
in the critical parameters. Here, linear instability seems to become entirely independent of
ξ , as evidenced, in part, by the flattening of the Rec curves in figure 5.
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Figure 5. The critical Reynolds number Rec against ξ for Θ1 ≡ (0, 20◦]. Throughout this figure, a dashed
line indicates the equivalent plot for ACPf. The insets magnify regions of particular interest that have been
discussed in the text. A circle in inset (b) denotes the crossing point I. In this range of shear angles, a typical
Rec curve mimics that for ACPf when ξ � ξA, but appears to have been ‘dragged’ down from infinity when
ξ > ξA, yielding a finite Rec even beyond this threshold wall speed.

We note that before achieving the respective asymptotes in their Rec curves, the
destabilization experienced by OCPfs inΘ1 at any wall speed is not necessarily monotonic
with θ . Beginning with inset (a) in figure 5, we see that increasing the shear angle is
conclusively destabilizing up to ξ ≈ 0.2. However, between approximately 0.2 < ξ �
0.275, some of the more modest angles, say θ � 10◦, tend to stabilize, while the values of
Rec for even larger angles, θ � 18.5◦, remain below those of ACPf (see figure 5b). Around
ξ ≈ 0.3 lies the crossing point I, which initiates a region of monotonic stabilization for
θ � 10◦, a pattern that persists until around ξ ≈ 0.375. Here, as seen in figure 5(c), all
Rec curves experience a turning point, which occurs at increasing wall speeds with θ , and
begin to ascend towards their eventual plateaus. Beyond this location, the stabilization
becomes monotonic throughout θ > 0, as can be verified in figure 5(d).

Figure 6 presents the spatial wavenumbers at criticality for θ ∈ Θ1. Consistent with the
trends observed for ACPf, the critical streamwise wavenumber αc generally displays an
initial monotonic decline towards αc = 0, the latter limit corresponding to the complete
loss of linear instability in ACPf beyond ξ = ξA. However, even for the smallest shear
angles treated here, we see that the critical streamwise wavenumber for OCPfs is only close
to, but never exactly, zero. Furthermore, in conjunction with the critical Reynolds number,
the αc curves also level out at sufficiently high wall speeds, reinforcing the presence of
a limiting regime in modal stability. Meanwhile, the critical spanwise wavenumber βc
is generally non-zero, a reminder of the three-dimensional nature of the base flow and
the consequent inapplicability of Squire’s theorem. An especially interesting behaviour
is observed in figure 6(b) for a short range around ξ ≈ 0.3, where βc ≈ 0. Here, as
shown in figure 5, the Rec curves for OCPfs in Θ1 also experience an inflection point.
The latter is a key stability feature in ACPf, and, in this range, Potter (1966) had noted
that ξ ≈ cr,c, the real part of the x-phase speed at criticality, hinting at some sort of
link between this equality and the accompanying destabilization. We were able to verify
this relation for Θ1 as well, suggesting that its secondary effect here is a preference for
spanwise-independent modes (note that this is implicit for ACPf). Finally, just before this
inflectional region, for θ = 20◦, we can resolve a rather dramatic trough in the αc-curve,
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Figure 6. Curves of the critical wavenumbers (a) αc and (b) βc versus ξ forΘ1 ≡ (0, 20◦]. As usual, a dashed
line represents the equivalent plots for ACPf (note that for the latter, Squire’s theorem implies βc = 0 for
all linearly unstable wall speeds). Asymptotic behaviour similar to the curves for Rec is observed for all θ .
Furthermore, at wall speeds beyond the cutoff value ξA for ACPf, the αc curves appear to once again have been
pulled away from αc = 0 as θ increases.

which seems to temporarily terminate at the corresponding asymptotic (ξ -independent
value) before recovering to its original trajectory. We interpret this as the first indication
of an imminent departure from the modal characteristics of ACPf, which naturally leads
to a discussion of Θ2, the second stability regime defined by 20◦ < θ ≤ 90◦.

In particular, figure 7 highlights for Θ2 a noticeable shift in the stability characteristics
of OCPfs. The Rec curves lose their inflectional nature as in Θ1, and while increasing
the shear angle still induces destabilization, the decrease in Rec at any ξ is uniform in θ .
Furthermore, all critical parameters reach their asymptotic values at smaller wall speeds,
doing so by following relatively smoother trajectories (compare, for example, with the
βc curves in figure 6). From the perspective of the critical Reynolds number, the most
unstable OCPf configurations occur as θ → 90◦ ∈ Θ2, when the wall motion is perfectly
orthogonal to the direction of the pressure gradient. In this limit, the streamwise and
spanwise velocities reduce to

U = 1 − y2, W = ξ

2
(1 + y), (3.10a,b)

which are, respectively, pPf and Couette profiles. At this angle, we found that the critical
parameters remained invariant for all the wall speeds studied here, approaching, in fact,
the equivalent tuple for pPf. Specifically, we had

(αc, βc,Rec)θ=90◦ = (1.02, 0, 5773.22), (3.11)

effectively indicating for this θ a superposition of the stability of the individual velocity
components (note that the Couette flow is always linearly stable; see Romanov 1973). To
rationalize this, we recall that the influence of the spanwise cross-flow on the OS operator
is partially modulated by the wavenumbers, particularly through the effective wall speed
ξeff . Since the corresponding eigenvalue problem can always be mapped to an equivalent
one for ACPf, one would wish to somehow negate the Couette contribution, which is
known to be stabilizing, in order to ‘maximize’ instability. This is achieved most optimally
in disturbances with β = 0, immediately reducing the OS operator to that for pPf under
Squire’s theorem and yielding the critical tuple in (3.11).
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Figure 7. The critical Reynolds numbers and Fourier wavenumbers plotted against ξ for some choices of
θ ∈ Θ2 ≡ (20◦, 90◦]. The black arrow depicts the direction of increasing θ in increments of 10◦ from θ = 30◦
to θ = 90◦ (perfect orthogonality). At the latter angle, the critical triplet is constant in ξ and equal to that
obtained from an analysis of the two-dimensional OS equation for Poiseuille flow.

0.8

0.6

0.4ξf

ξf  ~ θ

0.2

0

0 30°

θ
60° 90°

Figure 8. The variation with θ of ξf , the wall speed at which the critical parameters asymptote. A dashed line
indicates the linear law ξf ∼ θ , which holds well in Θ2.

For full contour plots of the critical parameters in the (ξ, θ) plane as well as a discussion
of the critical phase speeds, we refer the reader to Appendix B.

3.3. The limiting regime of modal stability
In the previous section, it was observed that when the wall speed is sufficiently high,
the stability of OCPfs becomes independent of ξ . The values of ξf , which represents
the approximate wall speed that initiates this limiting regime, are shown in figure 8. It
can be seen that ξf generally decreases with θ , following a roughly linear relationship
within the range Θ2, where OCPfs demonstrate the strongest deviations from the stability
characteristics of ACPf. In this section, by adopting a simple juxtaposition with known
results on the linear stability of pPf and ACPf, we aim to derive analytical formulae for
the asymptotic values of the critical parameters. A small part of the following argument
was briefly mentioned earlier when discussing criticality for θ = 90◦, but will now be
elaborated upon.

For purely streamwise velocity profiles, a classic argument due to Squire (1933) is that
transversal (β = 0) modes must become unstable at a lower Re than both longitudinal
(α = 0) and oblique (α, β /= 0) modes. The proof proceeds by defining a two-dimensional
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(β = 0) OS problem and arguing that, at criticality, the corresponding Reynolds number
Rec,2D cannot be larger than that of the three-dimensional (β /= 0) case Rec,3D. Now,
consider ACPf, θ = 0, and recall that in the limit ξ → 0, pPf can be recovered. In
particular, an application of Squire’s theorem to both these flows yields

RepPf
c,3D > RepPf

c,2D, ReACPf
c,3D > ReACPf

c,2D . (3.12a,b)

However, from the work of Potter (1966), we know that ReACPf
c,2D ≥ RepPf

c,2D, which
immediately allows us to conclude that

ReACPf
c,3D > RepPf

c,2D, (3.13)

as well. For OCPfs, due to the mean three-dimensionality, Squire’s theorem is no
longer valid. However, (3.7) implies that there exists a one-to-one mapping of the OS
eigenproblem for an arbitrary OCPf, initialized with any combination of the wavenumbers,
to an equivalent (in general) three-dimensional one for ACPf. Therefore, we have that

Rec(θ /= 0, ξ /= 0;α, β) = Rec(θ = 0, ξ = ξeff ;α, β) ≥ RepPf
c,2D. (3.14)

Here, the merits of the effective wall speed ξeff are once again apparent, as it can be made
as large or as small as possible due to its dependence on θ and, more importantly, on
the wavenumbers themselves. Therefore, to optimize the instability for an OCPf, which
is equivalent to ‘≥’ in (3.14) approaching equality, the OS operator should degenerate
precisely into the two-dimensional analogue for pPf. This can happen if and only if

ξeff = ξ(cos θ + γ sin θ) = 0, α2 + β2 = α2
c,pPf , αRe = αc,pPf Rec,pPf , (3.15a–c)

where γ = β/α and (αc,pPf ,Rec,pPf ) ≈ (1.02, 5773.22) (see Orszag 1971). Assuming
ξ /= 0, the first of these three equations yields

γ = − cot θ, (3.16)

a result that can be combined with the remaining constraints in (3.15a–c) to obtain the
following closed solutions:

α = αc,pPf | sin θ |, β = −αc,pPf sgn(sin θ) cos θ, Re = Rec,pPf | csc θ |, (3.17a–c)

where sgn represents the signum function and we have selected the positive solution for α.
Figure 9 presents the asymptotic values of the critical parameters, denoted by the subscript
〈·〉f , obtained from our numerical results overlaid with the analytical solution in (3.17a–c).
An almost exact match is observed up to the resolution error of the domain sweep.

Some crucial remarks can now be made. As the shear angle approaches zero, (3.17a–c)
claims that the asymptotic streamwise wavenumber vanishes, while the asymptotic
spanwise wavenumber experiences a discontinuity. Although this may seem erroneous
at first glance, we note that the critical parameters in ACPf continuously vary with
wall speed, showing no limiting behaviour, so (3.17a–c) has no meaning in this limit
anyway. On the other hand, figure 6(a) seems to suggest that a flattening of the critical
parameters for ACPf, if it occurs, should do so for α → 0. Meanwhile, we note that for
θ → π/2, an asymptotic spanwise wavenumber βf = 0 is predicted, which validates our
findings in § 3.2. Finally, an additional interesting consequence arises when considering
the wavenumber vector k = (α β)ᵀ. In wave theory, the wavenumber vector encodes the
direction of wave motion, and a wave with wavenumber vector k propagates at an angle
ψ to the positive streamwise direction, where tanψ = β/α = γ . From (3.16), we can
then conclude that the asymptotic eigenmode propagates at an angle ψ = θ − π/2 to the
pressure gradient, that is, exactly perpendicular to the wall motion.
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Figure 9. The asymptotic values of (a,b) the critical streamwise and spanwise wavenumbers and (c) the
critical Reynolds number versus θ . The solid line denotes the theoretical estimate provided in (3.17a–c).

3.4. Eigenmodes and linear energetics
Figure 10 illustrates for ξ = 0.35 the spatial distributions of u and w, which are,
respectively, the streamwise and spanwise velocity perturbations associated with the most
unstable eigenmode at criticality. For θ = 10◦ ∈ Θ1, it is observed that both disturbance
components propagate approximately parallel to the streamwise direction. This can be
attributed, in part, to the critical spanwise wavenumber being close to zero, which, as
shown in figure 6(b), is typically the case for intermediate wall speeds within this range
of angles. The streamwise fluctuations bear some resemblance to a Tollmien–Schlichting
wave, suggesting a possible similarity between the mechanisms of modal transition in
ACPf and weakly skewed OCPfs. However, the spanwise fluctuations are non-zero and
consist of weakly parallel flattened structures that are localized near the lower wall. The
exact role of these structures in the transition process is not immediately clear and requires
further numerical investigation, which is beyond the scope of this paper. On the other hand,
for θ = 45◦ ∈ Θ2 and θ = 135◦, ξ = 0.35 ≈ ξf , indicating that the stability characteristics
of both flows are close to the asymptotic regime. Therefore, the most unstable wavenumber
pair satisfies (3.16) and is oblique. Consistent with the argument presented in § 3.3, we
observe that the associated eigenmode propagates exactly perpendicular to the direction of
motion of the wall. The streamwise and spanwise fluctuations are qualitatively similar,
both consisting of vortices tilted slightly away from each end of the channel. The
cross-sections of these vortices for u are somewhat distorted, while for w they have a
more regular, elliptical shape. Furthermore, we found that between θ and 180◦ − θ , the
support of these structures moved from the lower to the upper wall, although this effect
was not very noticeable.

The most interesting behaviour is observed for θ = 90◦, when the pressure gradient
and the wall velocity vectors are exactly orthogonal. First, we recall from (3.11) that
despite the value of ξ for this configuration, βc = 0, and the OS operator can always be
identified with that for the pPf. Thus, the wall-normal and streamwise components (see
(2.19)) of the disturbance are identically invariant with the wall speed, precisely reducing
to the Tollmien–Schlichting instability found in pPf. However, unlike the latter flow,
for which β → 0 induces a vanishing normal vorticity in the (resulting) homogeneous
Squire equation, the spanwise fluctuations are no longer zero due to the cross-flow shear
in the off-diagonal forcing term, (2.16a,b). They comprise bands of transverse arch-like
structures that, to the best of our knowledge, have not been previously recorded in the
linearized analysis of any canonical shear flow. Moreover, varying ξ had little effect on the
shape of these modes.

Figure 11 shows the linear energy budget at criticality for the angle θ = 30◦. As the
wall speed increases from ξ = 0.1 to ξ = 0.2, the streamwise production Pu decreases
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Figure 10. Iso-surfaces of the (a,c,e,g) streamwise u and (b,d, f,h) spanwise w velocity fluctuations for the
most unstable eigenmode at ξ = 0.35 for different θ . For each case, the blue and red contours represent 25 %
of the (signed) minimum and maximum values of the perturbations, respectively.
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Figure 11. At criticality, the spatial distribution of the perturbation energy budget terms for θ = 30◦ and wall
speeds between ξ = 0.1 and ξ = 0.8 in increments of 0.1. (a) The streamwise Pu and (b) the spanwise Pw
production, (c) the viscous dissipation ε, (d) the total production (P = Pu + Pw) and the Reynolds stresses
(e) τu and ( f ) τw.

somewhat dramatically in the lower half of the channel, consistent with the initial rise in
Rec seen in figure 7(a). However, for ξ ≥ ξf , it eventually stagnates near the stationary
wall, whereas a continuous, although noticeably slow, decline is observed near the moving
wall. On the other hand, while Pw seems to always suffer from a region of negative
production near the upper wall, it operates at least one order of magnitude lower than Pu.
As a result, the total production P ≈ Pu remains positive throughout most of the channel.
Viscous dissipation decreases with increasing ξ and, similar to Pu (and, therefore, P), it
converges to some extent for high wall speeds. Therefore, even from the standpoint of the
linear energy budget, there is a clear indication of modal stability in OCPfs approaching
asymptotic regimes, where the potential for exponential amplification at criticality seems
to become entirely agnostic to the wall speed.

The spatial variation of the Reynolds stresses is also shown in figure 11(e, f ). Regarding
τu, we see that while it is primarily negative near the stationary wall, it is always positive
near the moving wall. This is in stark contrast to ACPf and many of its variants (e.g.
Sadeghi & Higgins 1991; Nouar & Frigaard 2009; Guha & Frigaard 2010), for which an
increasing wall speed also generates a region of negative stress in the upper half of the
channel. Since the base streamwise shear in ACPfs is (typically) also negative throughout
this region, the latter phenomenon decreases the overall energy production, stabilizing the
flow (see Appendix A). A related commentary can be made on the changes and eventual
disappearance of the critical layers at each wall, which, for strictly streamwise flows, are
the wall-normal locations where the streamwise velocity matches the real part cr of the
x-phase speed. In ACPf, the critical layer near the moving wall is known to vanish as ξ
increases, which is often identified with stabilization. For OCPfs, due to the structure of
the OS equation, an analogous argument can be constructed using the effective velocity
profile:

Ueff = U + γW = 1 − y2 + ξeff

2
(1 + y), (3.18)
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which essentially represents a projection of the base velocity in the direction of the
wavenumber vector (Schmid & Henningson 2001). Here, we are interested in the
wall-normal location(s) yc such that Ueff ( yc) = cr (note that since we are focusing on
criticality, c = cr). In general, since the effective velocity is quadratic in y, two such points
can exist, associated with each wall, and are explicitly given in closed form as follows:

yc = 1
4

(
ξeff ±

√
(4 + ξeff )2 − 16cr

)
. (3.19)

The distance of each layer from the wall can then be expressed as δc = 1 − |yc| (see e.g.
Nouar & Frigaard 2009), and is shown in figure 12 for criticality at θ = 10◦ ∈ Θ1 and
θ = 60◦ ∈ Θ2. For the former case, similar to ACPf (see Appendix A), both layers initially
approach the channel boundaries. Eventually, past the point of inflection in the associated
Rec curve, the critical layer near the moving wall vanishes (i.e. δc → 0), whereas the one
near the lower wall begins to move further towards the centreline, stabilizing the flow.
Mathematically, this can be attributed to changes in the asymmetry of Ueff , which, in
turn, are influenced by variations in the effective wall speed ξeff . However, a particularly
intriguing behaviour is observed when ξ ≥ ξf . In this case, δc for the moving wall
experiences a sudden increase from zero to a roughly constant value approximately equal
to that of the lower wall. This can be explained by the constraints on the asymptotic
wavenumber pair, (3.15a–c), which enforce ξeff ≈ 0 in the asymptotic regime and reduce
Ueff to a symmetric parabolic profile. As a result, the absolute values of the roots in (3.19)
coalesce and remain |yc| ≤ 1, which appears to be consistent with the plateauing observed
in the critical parameters (figures 5 and 6). In a similar vein, for θ = 60◦, because the
asymptotic regime is accessed earlier (that is, at smaller ξ ), the effective velocity profile
is almost always perfectly symmetric, so that the distance δc remains roughly identical
and non-zero for both walls throughout most of the ξ range explored here. On a separate
note, for θ = 60◦, figure 12(b) highlights an initial increase in δc near the stationary wall,
which seems to support the monotonicity of the corresponding Rec curve in this range
(figure 7a). Furthermore, considering the behaviour of the critical layers when the wall
speed approaches the point of inflection in the Rec curves for ACPf and OCPfs in Θ1, it is
likely that the absence of such a feature forΘ2 is related to the fact that both critical layers
remain intact at these angles.

4. Non-modal analysis

We now proceed to investigate the potential for non-modal growth in OCPfs, focusing first
on the resolvent R and its associated energy norm R ≡ ‖R‖E. For some representative
pairs of wavenumbers, figure 13 visualizes Rmax, defined as

Rmax = max
ζ

R(α, β,Re, ξ, θ, ζ ), (4.1)

for Re = 1500, which is subcritical for all possible configurations. As is the case with many
of the quantities explored in § 3, the periodicity of the base flow in θ once again embeds
itself in Rmax, which appears to be π-periodic. On the other hand, the forcing frequency
ζ that gives rise to Rmax was found to be 2π-periodic, though it is not shown here.
Comparing figure 13(a,b), we immediately see that the response of spanwise-independent
disturbances is relatively damped compared with disturbances with α = 0, a difference
that spans approximately an order of magnitude. In the former case, allowing for a weak
z dependence by steadily varying β produced only a negligible increase. However, for
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Figure 12. For representative θ , the development of δc for each critical layer. A solid versus dashed line is
used to distinguish the lower, stationary, wall from the upper, moving, wall. In each case, an inset illustrates
the effective mean velocity profiles Ueff for values of the wall speed between ξ = 0.2 and ξ = 1 in increments
of 0.1. (a) For θ = 10◦, an arrow depicts the direction of increasing ξ (note that ξ → ξf implies ξeff → 0).
(b) For θ = 60◦, while not immediately apparent, the effective velocity profiles for the wall speeds chosen here
coincide almost exactly.

140

120

0 90° 180° 270° 360°

α = 0

β = 0

β = 0.1

β = 0.2

β = 0.3

α = 0.05

α = 0.1

α = 0.15

104

103

m
ax

0 90° 180°

θ

270° 360°

m
ax

(a)

(b)

Figure 13. Plots of Rmax, the maximum of the resolvent energy norm across all forcing frequencies ζ for
ξ = 0.35 and Re = 1500: (a) α = 1 and β varied in increments of 0.1; (b) β = 1 and α varied in increments
of 0.05. In (b), the inset zooms in on the region where Rmax appears to increase in conjunction with α. Note
the periodicity in θ .

disturbances of the second kind, changes in the streamwise wavenumber appeared to
have a more diverse effect. In particular, while Rmax decreased for, say, θ � 90◦, it
actually increased for 90◦ � θ � 165◦. This is significantly different from many classical
two-dimensional flows, where it is usually disturbances completely independent of x that
elicit the most vigorous response (Trefethen et al. 1993; Schmid & Henningson 2001).

For more general forcing frequencies, ζ ∈ C, figure 14 illustrates for θ = 30◦ the
contours of ‖R−1‖−E in the complex plane, where ‖·‖−E is the ‘inverse’ energy norm:

‖R−1‖−E = σmin(FR−1F−1), (4.2)

in which σmin denotes the smallest singular value of the operator FR−1F−1. Here, we
have chosen to focus on wall speeds ξ ≥ ξf and the associated asymptotic parameters
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Figure 14. For θ = 30◦ and (a–d) various ξ ≥ ξf , the logarithmic level curves at (αf , βf ,Ref ) for the
ε-pseudospectra from log ε = −1 to log ε = −8 (outer to inner) in decrements of −1. The OS and Squire
modes in the x-phase speed formulation are depicted via circles. A dashed line indicates the stability boundary
ci = 0.

(αf , βf ,Ref ) (§ 3.3). Within the paradigm of the ε-pseudospectra, the interpretation of
these plots is as follows. Since the properties of the 2-norm imply

R = σmax(FRF−1) = σ−1
min(FR−1F−1) = ‖R−1‖−1

−E, (4.3)

the set Λε in (2.31) admits the alternative definition

Λε = {ζ ∈ C : ‖R−1‖−E ≤ ε}. (4.4)

Thus, within the level curve ‖R−1‖−E = ε, O(ε−1) amplification can be realized.
Additionally, the extent to which these contours protrude into the upper half-plane can
be connected to the potential for transient energy amplification. In particular, Reddy et al.
(1993) showed that such growth cannot occur (that is, G ≤ 1) if and only if βε ≤ ε for all
ε ≥ 0, where

βε = sup
ζ∈Λε(S)

�(ζ ) (4.5)

is the pseudospectral radius. The significance of the restriction on βε lies in noting that
for a normal operator, the 2-norm ε-pseudospectra comprise closed balls of radius ε
centred around the eigenvalues (Trefethen & Embree 2005). Therefore, for a linearly (not
necessarily asymptotically) stable normal operator, βε reaches its maximum at βε = ε,
specifically for a marginally stable mode. More concretely, the pseudospectral radius can
also provide a reasonably sharp lower bound for unforced algebraic growth (Trefethen
et al. 1993). Returning to figure 14, we observe for all wall speeds pseudoresonance down
to ε ≈ 10−8. Larger ξ only expand and widen the pseudospectral contours, particularly
toward the unstable half of the complex plane, which indicates an increasing susceptibility
to non-modal mechanisms despite the convergence of modal features. Note also that
in figure 14, the associated spectra appear to be invariant with ξ . This is, of course,
a consequence of the asymptotic triplet enforcing a reduction to the ‘same’ eigenvalue
problem (recall § 3.3 and see also Appendix C). An immediate consequence is that
all variations in non-modal growth within this regime must stem exclusively from the
off-diagonal forcing term, since any ξ dependence in LOS and LSQ necessarily drops out.

We now turn our attention to the dynamics of the unforced initial value problem, (2.15).
In particular, we are interested in Gmax, defined for an OCPf configuration (ξ, θ) as the
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Figure 15. For various θ , curves of Gmax, the largest possible energy gain exhibited by OCPfs across time and
wavenumber space. The black dashed line indicates the equivalent plot for the aligned case, θ = 0. In general,
the largest amplification is realized for small but non-zero angles, peaking at θ = 4.5◦ for most ξ . A greater
degree of skewness in the flow tends to suppress the amplification, particularly for modest to large wall speeds.

maximal amplification in time and wavenumber space:

Gmax(Re, ξ, θ) = max
α,β,t

G(α, β,Re, ξ, θ, t). (4.6)

Figure 15 outlines the findings of a large parameter sweep for Gmax at Re = 1000, slightly
above the range for transition in ACPf as quoted, for example, by Tsanis & Leutheusser
(1988) and Klotz et al. (2017) (note, however, that their Reynolds numbers are based on
the wall velocity). As in § 3, all results are presented relative to those of ACPf, θ = 0,
which experiences a monotonic increase in Gmax with ξ . The introduction of a weak
misalignment maintains this trend, but allows for greater amplification throughout the full
range of wall speeds explored here. This effect was determined to be most pronounced
at θ ≈ 4.5◦. At even larger shear angles, two different regimes can be identified in ξ . In
particular, while Gmax continues to grow with θ (albeit slowly) for 0 < ξ � 0.15, it tends
to decrease quite rapidly for 0.2 � ξ ≤ 1. Furthermore, at least for wall speeds in this
range, no asymptotic behaviour was resolved for Gmax, which is in sharp contrast to our
modal calculations.

Interestingly, within the paradigm of transient growth, it is apparent that larger values
of θ are typically the most ‘stable’, with θ = 90◦ providing the strongest reduction in
Gmax for a wide range of wall speeds. The latter observation stands, of course, in strong
opposition to the results presented in the previous section, particularly (3.11), which claims
that a perfectly orthogonal OCPf configuration is, in fact, capable of minimizing Rec
in the (ξ, θ) plane. An antagonistic effect, therefore, appears to be at play here, since,
individually, both ACPf and the standard Couette flow support strong transient responses,
yet for sufficiently skewed OCPfs, Gmax can drop to as low as 46 % of the equivalent value
for pPf at this Reynolds number (Gmax ≈ 196). From a mathematical perspective, one can
attribute this to the nonlinearity of the operator norm or to the fact that, contrary to modal
analysis, we are now investigating the full OSS system, for which ξeff no longer constitutes
an informative parameter. Physically, however, an intriguing analogy can be drawn to
fully turbulent three-dimensional boundary layers, for which increasing skewness, in the
mean sense, is known to dampen the generation of Reynolds stresses and, therefore, the
production of turbulent kinetic energy relative to the two-dimensional case (Eaton 1995;
Coleman et al. 1996; Johnston & Flack 1996; Lozano-Durán et al. 2020). Although the
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Figure 16. (a) The variation in ξ of θmax, the shear angle that optimizes Gmax. Some combinations of (ξ, θmax)

have been selected and the associated flow directions and cross-flow profiles highlighted with the appropriate
colour in (b,c), respectively. Our conclusions are robust to the choice of these pairs. The inset in (b) shows the
y-averaged deviation 〈φ〉 of the optimal net base flow from the streamwise direction, (4.8).

physical mechanisms involved are not yet well understood, it is often believed that the
addition of a mean spanwise strain detracts large momentum-carrying eddies from their
optimal alignment (Van Den Berg et al. 1975; Bradshaw & Pontikos 1985). In the context
of laminar OCPfs as treated here, one can partially quantify the existence of such an ideal
configuration by considering θmax:

θmax(Re, ξ) = {θ ′ | Gmax(Re, ξ, θ ′) = max
θ

Gmax(Re, ξ, θ)}, (4.7)

which, at a given ξ , represents the angle of wall motion that achieves the most vigorous
algebraic amplification. Figure 16(a) highlights that θmax decays primarily as a power law.
More importantly, as shown in figure 16(b,c), the cross-flow component W associated
with θmax is quite weak, allowing the flow direction φ to collapse throughout most of the
channel and experience rapid variation only near the upper wall. To further visualize this,
an average skewness 〈φ〉, defined as

〈φ〉 = 1
2

∫ 1

−1
φ( y) dy, (4.8)

is also plotted in the inset of figure 16(b) and remains small (� 6◦ at best) for all ξ . Thus,
the optimal configuration for energy growth in OCPfs appears to be an approximately
collateral boundary layer, with a flow direction roughly constant in y and almost aligned
with the streamwise axis.

In figure 17, we present the contours of the wavenumbers and the time t that achieve
the maximum amplification Gmax. For purely streamwise flows, this optimal gain is
generally observed for longitudinal modes, αmax = 0 (Trefethen et al. 1993; Schmid &
Henningson 2001). However, this may or may not be the case for three-dimensional
flows. Indeed, for OCPfs, we found the maximum amplification to occur for small but
often non-zero streamwise wavenumbers, with little overall variation in the (ξ, θ)-space.
In some cases, streamwise-invariant disturbances remained optimal, but these were the
exception rather than the rule. On the contrary, the optimal spanwise wavenumbers
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Figure 17. The variation in (ξ, θ)-space of (a) the streamwise wavenumber αmax, (b) the spanwise wavenumber
βmax and (c) the time tmax at which the maximum energy amplification Gmax is attained. In the case of αmax, a
dashed line (not obeying the colour-bar) indicates the level curve αmax = 0. (d) Contours of ξoff , which seem
to be positively correlated to Gmax.

fluctuated more strongly, varying from βmax ≈ 2.05 to βmax ≈ 2.25 and even down to
βmax ≈ 1.3. A rudimentary explanation for these trends can be obtained by recalling that
the non-normality of the OSS operator S is partially tied to the mean shear(s) coupling the
velocity perturbations in the Squire equation through the operator iβDU − iαDW (see
(2.13) and (2.16a,b)). Thus, in the same spirit as the effective wall speed ξeff , one can
attempt to split this operator into its ‘Poiseuille’ and ‘Couette’ constituents:

iβDU − iαDW = i(−2βy + ξoff ), (4.9)

where we have defined

ξoff = ξ

2
(β cos θ − α sin θ). (4.10)

Since the Poiseuille contribution in (4.9) is agnostic to the wall motion and does not, at any
rate, favour either half of the channel, maximizing the effective mean shear is equivalent to
maximizing |ξoff |. Then, assuming β > 0, smaller shear angles would be biased towards
larger spanwise wavenumbers because sin θ ≈ 0. On the contrary, for larger θ , cos θ is
small and α should ideally become increasingly negative, though figure 17(a) shows that
this preference seems to emerge only at higher wall speeds. In figure 17(d), we see that
ξoff somewhat emulates the changes in Gmax at this Reynolds number. For example, while
its maximum in the (ξ, θ) plane occurs in the purely parallel, high-ξ limit, its minimum
is realized as θ → 90◦. Of course, however, this correlation is bound to be imperfect,
particularly because ξoff , in this case, cannot be a definitive statistic. The nature of the
remaining blocks in S is equally important and does not admit a simple interpretation,
calling for a more complex analysis that is outside the scope of this article. Finally, the
time tmax taken to achieve the maximum growth appears to be the longest when an OCPf
is weakly oblique and generally decreases in the direction of increasing ξ and θ . Note that,
for the latter combination of flow parameters, Gmax also tends to a minimum, indicating
that transient phenomena for these configurations operate on shorter time scales and are
likely suppressed by the viscosity before reaching sufficient amplitudes to trigger further
instability. We remark in passing that while a search was conducted for θ ∈ (90◦, 180◦],
Gmax and all associated optimal parameters were found to be symmetric around θ = 90◦.
An exception to this was αmax, which was determined to be anti-symmetric, a result that is
not suggested by any operator-level symmetries.

Figure 18 concludes this section by visualizing for θ = π/4 and θ = π/2 the initial
condition and response pair associated with Gmax. Respectively, these are the first right
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Figure 18. The optimal initial condition (a,d) and response (b,e) pair for θ = π/4 (a,b) and θ = π/2
(d,e) at ξ = 0.25. Black-to-white shades denote the streamwise vorticity, blue-to-red the streamwise velocity
u and arrows the cross-stream components v and w. All quantities represent disturbance variables. (c,f ) The
time evolution of Ew, the domain-averaged cross-flow (i.e. spanwise) perturbation energy; here, the dashed line
represents the energy-optimal initial condition for ACPf.

and left singular functions of the state transition operator Φ(t, 0). In two-dimensional
flows, the optimal initial field, typically observed for α = 0, is characterized by weak
counter-rotating streamwise vortices that evolve through a redistribution of horizontal
mean momentum by the normal velocity fluctuations to form high-energy streaks at
t = tmax. Originally proposed in the works of Ellingsen & Palm (1975) and Landahl
(1975, 1980), this process is commonly referred to as the lift-up effect, in which a
linear amplification in time proportional to the streamwise shear can be achieved for
a streamwise-independent disturbance, at least in the inviscid limit. In the viscous
alternative, this growth would continue to persist, but only to the leading order before
decaying due to viscosity (Brandt 2014). Although the three-dimensionality of our flow
introduces additional nuance, Ellingsen & Palm (1975) had suggested that the lift-up
process could remain viable even in skewed boundary layers, arguing, however, that
streak growth would substantially decrease, particularly so in the case of OCPfs because
the streamwise shear itself decreases as θ → π/2. Indeed, Corbett & Bottaro (2001),
for example, found that streamwise streaks developing via lift-up remained the optimal
disturbance in Falkner–Skan–Cooke boundary layers.

Therefore, it is not surprising that the optimal initial conditions in figure 18 comprise
weak streamwise vortices whose amplification at the optimal time decreases in response
to an increase in flow obliqueness. However, what is more interesting is that these vortices
initially oppose and are eventually rotated in the direction of the mean spanwise shear.
This, as noted in Blesbois et al. (2013) and Hack & Zaki (2015), allows for an additional
non-modal energy gain in the cross-flow perturbation component through the inviscid
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down-gradient Reynolds stress mechanism proposed by Orr (Orr 1907; Butler & Farrell
1992). One particular physical characterization of this process invokes conservation of
circulation around material circuits (e.g. Waleffe 1995a), and is visualized in figure 18
through the disturbance x-vorticity (note that αmax ≈ 0 here, but this discussion can
be made robust by adopting a coordinate system aligned with the streak direction –
see Blesbois et al. (2013)). Sheets of perturbation streamwise vorticity lean against the
background cross-flow shear at initial time (figure 18a,d) and are subsequently realigned to
a down-shear orientation (figure 18b,e), driving a transient amplification in the cross-flow
disturbance energy (figure 18c, f ). This growth is absent in the energy-optimal initial
conditions for two-dimensional base flows, such as ACPf, which develop exclusively
via lift-up and involve no feedback on the cross-stream components, which then must
monotonically decay due to viscous dissipation. In short, it appears that at least up to the
stage of primary instability, the route to transition for OCPfs is dominated by a lift-up
process interspersed by an Orr-type mechanism. Furthermore, since the Orr mechanism
is enhanced by the presence of increasing (spanwise) shear and because the ultimate
contribution of the cross-flow perturbation energy to Gmax is somewhat negligible (see
figure 15), it is likely that the trends observed in the maximal amplification can be
attributed to a decrease in the effectiveness of the lift-up process.

5. Conclusion

We performed a comprehensive modal and non-modal stability analysis in OCPfs, which
are described by a wall motion at an angle θ to the pressure gradient. These are
generalizations of the traditional aligned case and, to the best of our knowledge, have
not received prior attention in the stability literature.

We derive the corresponding OSS system, identifying by a simple analogy an effective
wall speed that completely characterizes modal solutions. A large-scale numerical sweep
reveals that, in general, a misalignment between the pressure gradient and the wall velocity
is destabilizing, at least relative to the aligned case. Considerations of symmetry and
periodicity allow for a restriction of the parameter space to θ ∈ [0◦, 90◦] and, in this
range, two regimes are identified. For shear angles 0◦ < θ � 20◦, almost all stability
features in OCPfs continue from the aligned case. On the other hand, the range 20◦ �
θ ≤ 90◦ demonstrates sharper differences, including, in particular, the lack of a trademark
inflection point in the Rec curves as observed for ACPf. The linear energy budget and the
movement of the critical layers generated by the effective velocity profile seem to confirm
these trends. Modal instability is optimized by the perfectly orthogonal configuration, θ =
90◦, which exhibits a constant critical tuple for all ξ . For all θ /= 0, we find that unstable
modes persist throughout ξ ∈ [0, 1], notably distinct from ACPf, where ξ ≈ 0.7 marks the
transition to a regime of unconditional linear stability. This behaviour is accompanied by
a convergence of the critical parameters starting at the threshold ξ = ξf , which appears to
decrease with θ . A simple theoretical analysis explains the latter phenomenon and derives
the exact asymptotic values of the critical parameters in the limiting regime.

On the topic of non-modal disturbances, OCPfs, through the non-normality endowed to
the OSS operator by the streamwise and cross-flow shears, exhibit trends that conflict with
those commonly quoted for two-dimensional flows. For example, the resolvent norm is
not necessarily maximized for disturbances with α = 0. Meanwhile, the ε-pseudospectra
reveal that even if modal stability converges beyond ξ = ξf , non-modal mechanisms
might continue to be amplified by changes in the wall speed. Finally, considering the
unforced initial-value problem, the maximum energy amplification Gmax appears to
decrease strongly with the skewness of the base profiles, implying that the imposition
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of three-dimensionality is generally detrimental to energy growth. This is reminiscent of
fully turbulent three-dimensional boundary layers, where increased skewness is known
to suppress turbulent energy production. Note that while Hack & Zaki (2015) observed
similarly declining energy gains for their Blasius–Stokes flow, Corbett & Bottaro (2001)
calculated a stronger transient growth relative to the two-dimensional case in their study
on swept boundary layers, suggesting a strong dependence on the particular mechanism
enforcing skewness in the base flow. At all wall speeds, however, the configuration
that optimizes energy amplification appears to be a weakly three-dimensional collateral
boundary layer. Finally, the most energetic initial perturbations seem to develop via a
lift-up process complemented by an Orr-like mechanism driven by the spanwise shear,
the latter being absent in streak amplification for two-dimensional flows.

A natural extension of this article seems to be through an investigation of OCPfs in
the turbulent regime, which is perhaps where a majority of practical applications reside.
Although there have been some previous studies, they have primarily focused on the
perfectly aligned case (Kim & Lee 2018; Kim et al. 2020; Cheng et al. 2023) or the
perfectly orthogonal case (Coleman et al. 1996; Howard & Sandham 1997; Kannepalli
& Piomelli 2000; Le et al. 2000), with little or no attention devoted to intermediate θ .
Some initial work on the latter configurations has been conducted (e.g. Zhang et al. 2023),
but additional effort is needed and will likely contribute well to our overall understanding
of the physics in three-dimensional boundary layers.
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Appendix A. Numerical methods and validation

To discretize the OSS system, a Chebyshev pseudospectral method was written in Python.
The clamped boundary conditions were incorporated in (2.15) as discussed in Trefethen
(2000). An initial convergence check allowed us to choose N = 128 Gauss–Lobatto points
for collocation, resulting in a (2N + 2)× (2N + 2) matrix problem. We found this to be
sufficient to achieve precision up to eight decimal places. To efficiently traverse the large
parameter space, we scaled to an embarrassingly parallel workload on many CPUs using
the open-source Python module Ray (Moritz et al. 2018).

Modal solutions were computed by solving the generalized eigenvalue problem using
the LAPACK wrapper in SciPy. For the singular value decomposition, we used a built-in
sparse solver based on the implicitly restarted Arnoldi method (Lehoucq, Sorensen &
Yang 1998). We remark that this choice was motivated not by the size of the matrices
being created, which is rather small and enables reasonably fast dense solutions, but by the
size of the parameter space investigated. The ε-pseudospectra, specifically, were created
using Eigentools (Oishi et al. 2021), a high-level eigenvalue module that implements
the economy method of Embree & Keeler (2017). Eigentools is wrapped over Dedalus,
a general-purpose sparse spectral solver capable of handling nearly arbitrary partial
differential systems and boundary conditions (Burns et al. 2020).
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Figure 19. (a) The variation of αc and Rec with the wall speed ξ . Note where either curve suddenly
‘disappears’, this marks ξA, the cutoff wall speed beyond which the flow is always asymptotically stable.
(b) The neutral curves in the (α,Re) plane for ACPf at ξ = 0.1 to ξ = 0.6 in increments of 0.1. In each case,
the critical pair is denoted by a circle. The dashed line here represents the distinguished limit α ∼ Re−1.

A.1. Aligned Couette–Poiseuille flow
In the limit θ → 0, the wall movement becomes perfectly parallel to the pressure gradient
and the ACPf is recovered:

U( y) = 1 − y2 + ξ

2
(1 + y) W( y) = 0. (A1a,b)

This is a classic base flow that has received numerous treatments in the literature. Potter
(1966) was the first to determine that the imposition of wall motion is generally stabilizing.
He found that while the critical Reynolds number Rec increased, albeit non-monotonically,
the critical streamwise wavenumber αc approached zero (note that Squire’s theorem allows
βc = 0). Above a threshold value, ξA, of the non-dimensional wall speed, this stabilization
was found to be unconditional. Figure 19(a) summarizes the stability of ACPf and is
consistent with the findings of, for example, Potter (1966), Nouar & Frigaard (2009)
and Kirthy & Diwan (2021). Initially, Rec increases before experiencing an inflection
point between 0.2 � ξ � 0.4, and then continues to increase until ξA ≈ 0.70370. The
movement of the neutral curves in the (α,Re) plane is illustrated in figure 19(b). As
described in Cowley & Smith (1985), the associated upper and lower branches scale as
α ∼ Re−1 as Re → ∞. The most unstable eigenmode is the usual Tollmien–Schlichting
wave, streamwise-propagating and uniform in z.

Figure 20(a) presents an expedited analysis of the linear energetics at criticality for
ACPf. The inflectional region in the Rec curve is typically discussed in the context of
the distances δc ≡ 1 − |yc| for the critical layers, the wall-normal location(s) yc such that
U( yc) = cr, where energy production is often localized. In principle, the quadratic nature
of U allows the existence of two such critical points, associated, respectively, with each
wall. Referencing figure 20(b,c), we see that initially as ξ increases, δc decreases near
both walls, supporting destabilization. Eventually, the critical layer near the moving wall
vanishes completely due to the asymmetry of U in the upper half of the channel at large ξ .
Simultaneously, in the same region, τu (note that τw = 0) begins to become increasingly
negative, and since DU < 0 here as well, energy is extracted from the perturbation field
back to the base flow. Furthermore, the critical layer near the lower fixed wall gradually
shifts towards the centre of the channel, which has a stabilizing effect (Potter 1966; Guha
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Figure 20. For ACPf, (a) the energy production Pu through the mean streamwise shear, (b) the real part of the
x-phase speed c at criticality and (c) the movement of the critical layers. The stationary wall is, of course, the
lower one. Note that as ξ increases, a large region of negative production appears near the upper wall.
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Figure 21. Plots of (a) Rec, (b) αc, (c) βc and (d) �(ck) in the (ξ, θ) plane. For visual clarity in the contours
of the critical Reynolds number, we have restricted the θ axis to θ ∈ [0, 90◦] and opted for a logarithmic scale
normalized by Rec,pPf ≈ 5773.72, the equivalent threshold for linear instability in pPf. In each panel, a dashed
line indicates ξf , the wall speed initiating the asymptotic regime.

& Frigaard 2010). Viscous dissipation (not shown here), while confined primarily to thin
layers near each wall, appears to increase as well, which, of course, must happen in order
to ensure neutral stability.

Appendix B. Summarizing modal stability in OCPfs

In figure 21(a–c), we provide complete data on the critical flow parameters (αc, βc,Rec)
in the (ξ, θ) plane for OCPfs. As predicted in § 3.2, βc is anti-symmetric about θ = π/2,
whereas both αc and Rec are symmetric. Stability is maximized in the sense of the critical
Reynolds number when θ → 0. On the other hand, OCPfs are the most unstable either
when ξ → 0 (pPf) or when θ → π/2.

Figure 21(d) highlights the variation of the most unstable eigenvalue at criticality, whose
imaginary component, by definition, must be zero. Here, ck denotes the complex k-phase
speed, defined by means of the following dispersion relation:

ck = ω

‖k‖2
= ω√

α2 + β2
, (B1)
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Figure 22. The growth rates of the most unstable mode for the critical versus asymptotic wavenumbers at
θ = 25◦ and ξ = 0.1 < ξf . The horizontal dashed line indicates the boundary ωi = 0.

where ω is the complex frequency and k is the wavenumber vector (Rumpf 2015).
While its imaginary component �(ck) represents a (scaled) exponential growth rate,
the real part �(ck) characterizes the wave propagation speed in the direction of k.
Note that this quantity is a generalization of the x-phase speed c = ω/α that occurs
somewhat organically in the OS problem and that is typically adopted for the study of
two-dimensional flows. Indeed, under Squire’s theorem, ‖k‖2 = α and ck = c. For mean
three-dimensional flows with non-trivial spanwise wavenumbers, the k-phase speed is
more physically informative and capable of providing a better collapse, since the most
unstable waves are generally oblique. We observe a mild symmetry around θ = 90◦ for
�(ck), which is ultimately broken near the boundaries, that is, for Θ1 versus 180◦ −Θ1,
where the stability characteristics of OCPfs essentially continue from the aligned case.
Interestingly, this is somewhat synonymous with the asymmetries that have also been
captured for c when comparing positive versus negative wall speeds in ACPf; see, for
example, figure 3 in Kirthy & Diwan (2021).

Appendix C. On the asymptotic critical triplet

The existence of the asymptotic critical triplet raises the question of its relevance to wall
speeds ξ ≤ ξf (and indeed ξ > 1, i.e. beyond the upper limit of our numerical work). To
investigate this, we set θ = 25◦ and ξ = 0.1 < ξf , exploring in figure 22 the growth rates
ωi of the most unstable mode for the critical (that is, as predicted by a standard parameter
sweep) versus the asymptotic pair of wavenumbers. An interesting behaviour is captured;
whereas the former pair becomes unstable, as expected, at Rec, the latter also eventually
destabilizes, doing so precisely when Re = Ref . One can, of course, rationalize this by
noting that (αf , βf ) induces a vanishing ξeff in the OS (and Squire) eigenvalue problem,
ensuring that any dependence on the wall speed drops completely. Thus, the asymptotic
wavenumber pair remains, in a sense, unaffected by changes in ξ , and eventually coincides
with the critical pair beyond ξ ≥ ξf , when all other disturbances stabilize.
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