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This study presents a noise-robust closed-loop control strategy for wake flows employing
model predictive control. The proposed control framework involves the autonomous
offline selection of hyperparameters, eliminating the need for user interaction. To this
purpose, Bayesian optimization maximizes the control performance, adapting to external
disturbances, plant model inaccuracies and actuation constraints. The noise robustness
of the control is achieved through sensor data smoothing based on local polynomial
regression. The plant model can be identified through either theoretical formulation or
using existing data-driven techniques. In this work we leverage the latter approach, which
requires minimal user intervention. The self-tuned control strategy is applied to the control
of the wake of the fluidic pinball, with the plant model based solely on aerodynamic force
measurements. The closed-loop actuation results in two distinct control mechanisms: boat
tailing for drag reduction and stagnation point control for lift stabilization. The control
strategy proves to be highly effective even in realistic noise scenarios, despite relying on a
plant model based on a reduced number of sensors.

Key words: machine learning, wakes

1. Introduction

Prediction and control of fluid flows to pursue a specific objective is a highly compelling
research area (Gad-el Hak 2000). Flow control offers wide-ranging practical applications
in diverse fields, including vehicle dynamics, aircraft and marine transportation,
meteorology, energy production from water and wind, combustion and chemical processes,
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and more (Duriez, Brunton & Noack 2017). The goals of fluid flow control generally
encompass, among others, drag reduction, control of separation and transition, lift or
mixing enhancement. In recent years, drag reduction has received considerable attention
due to its notable impact on the environmental footprint of transportation means (Green
2003).

In the last decades, active flow control has garnered increasing attention. This technique
can be implemented in open-loop and closed-loop configurations. The former involves
predetermining the actuation law irrespective of the system state, thus simplifying
its application. Notable examples include wake control of bluff bodies (Blackburn &
Henderson 1999; Cetiner & Rockwell 2001; Thiria, Goujon-Durand & Wesfreid 2006;
Parkin, Thompson & Sheridan 2014), open-cavity flows (Little et al. 2007; Sipp 2012;
Nagarajan et al. 2018) and heat transfer (Castellanos et al. 2022b), among others. However,
open-loop control’s effectiveness is limited in unstable flow stabilization, responding to
changes in the controlled system parameters or dealing with external disturbances. On
the contrary, closed-loop implementations (also referred to as reactive control) involve
feeding the control law by the knowledge of the state. This approach offers greater
flexibility and adaptability (Brunton & Noack 2015). Experimental evidence demonstrates
the superior performance of closed-loop over open-loop control; see e.g. Pinier et al.
(2007) or Shimomura et al. (2020).

The identification of control laws requires adequate knowledge of the system dynamics
and its response to control inputs. In fluid dynamics, model-based techniques have
traditionally been utilized to obtain this information, proving successful in various
scenarios (Kim & Bewley 2007). Examples of applications include transition delay
in spatially evolving wall-bounded flows (Chevalier et al. 2007; Monokrousos et al.
2008; Tol, De Visser & Kotsonis 2019), cavity flow control (Rowley & Williams 2006;
Illingworth, Morgans & Rowley 2011), separation control on a low-Reynolds-number
airfoil (Ahuja et al. 2007), wake stabilization of cylinders (Schumm, Berger & Monkewitz
1994; Gerhard et al. 2003; Tadmor et al. 2011), skin-friction drag reduction (Cortelezzi &
Speyer 1998; Lee et al. 2001; Kim 2011). However, the identification of efficient analytical
control laws faces an important challenge in the presence of complex nonlinear multiscale
dynamics.

In recent years, model-free techniques have gained popularity, driven by advancements
in hardware and the increasing efficiency of data-driven and machine-learning algorithms.
Examples of model-free techniques include genetic algorithms in jet mixing optimization
(Koumoutsakos, Freund & Parekh 2001; Wu et al. 2018), wake flows (Poncet, Cottet &
Koumoutsakos 2005; Raibaudo et al. 2020), separation control (Gautier et al. 2015) and
combustion noise (Buche et al. 2002). Reinforcement learning (RL) has also recently
gained popularity, with successful applications in the control of bluff body wakes
(Rabault et al. 2019; Fan et al. 2020; Castellanos et al. 2022a) and natural convection
(Beintema et al. 2020). Despite the encouraging results of such model-free techniques,
their effectiveness is limited by the need for large datasets.

Within model-based techniques, model predictive control (MPC) offers interesting
features to deal with the challenges of fluid flow control. Model predictive control is
based on the idea of receding horizon control. It has found application in industry since
the 1980s (Qin & Badgwell 2003), in particular with extensive use in refineries and the
petrochemical industry (Lee 2011). Model predictive control has demonstrated excellent
performance in controlling complex systems with constraints, strong nonlinearities and
time delays (Henson 1998; Allgöwer et al. 2004; Camacho & Alba 2013; Grüne &
Pannek 2017). Therefore, it is particularly appropriate for complex systems that challenge
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traditional linear controllers (Corona & De Schutter 2008). The method requires the
identification of a model of the system dynamics capable of predicting its behaviour under
exogenous inputs. The optimal control is determined through the iterative solution of an
optimization problem within a prediction window, aiming to minimize a user-defined
cost function that considers the distance of the system state from the control target.
Moreover, MPC allows for the straightforward implementation of hard constraints, such
as hardware limitations, distinguishing it from classical control approaches. Model
predictive control has been successfully applied in the control of complex fluid systems;
see e.g. Collis et al. (2000), Bewley, Moin & Temam (2001), Bieker et al. (2020),
Sasaki & Tsubakino (2020), Morton et al. (2018) and Peitz, Otto & Rowley (2020).
A crucial aspect of MPC implementation is achieving a proper balance among the terms
of the loss function. The user needs to select weights (referred to as hyperparameters)
for the loss, considering factors like closeness to the target, cost of the action and other
application-tailored constraints. This choice has a clear impact on the final performance. In
flow control applications this process traditionally relies on user experience, which poses
the risk of suboptimal choices.

Bayesian optimization (BO) or RL techniques have demonstrated excellent results in
hyperparameter tuning, particularly in the fields of autonomous driving and robotics
(Edwards et al. 2021; Fröhlich et al. 2022; Bøhn et al. 2023). A comprehensive review
in this area can be found in Hewing et al. (2020). However, in the application of
nonlinear MPC to flow control, examples are scarce, and the choice of MPC parameters
is often guided by trial error and intuition. This approach risks falling into suboptimal
configurations that may not adequately account for the different degrees of fidelity in the
terms involved in the loss function. This issue is particularly relevant in fluid mechanics,
where the uncertainty in predicting the plant behaviour and the measured state/control
actions should play a role in the parameter selection process. Unfortunately, an analytical
formulation is elusive in most cases.

Moreover, as a closed-loop strategy, the implementation of MPC requires feedback,
consisting of time-sampled measurements of a feature of the system to be controlled. In
real control scenarios, this sampling is often affected by measurement noise, which can
compromise control decision making. Thus, suitable smoothing techniques are necessary
to enhance noise robustness. In time series analysis a non-parametric statistical technique
called local polynomial regression (LPR) proves particularly effective in this task. Local
polynomial regression estimates the regression function of sensor outputs and their time
derivatives without assuming any prior information. Applications of LPR for control
purposes are described in works such as Steffen, Oztop & Ritter (2010) or Ouyang et al.
(2018).

In this paper we propose a fully automatic architecture that self-tunes control and
optimization process parameters with minimal user input. Our MPC framework adapts
to different levels of noise and/or limited state knowledge. The methodology builds
upon offline black-box optimization via Bayesian methods for hyperparameter tuning.
Furthermore, we discuss the robustness enhancement to noise using an online LPR. The
effectiveness of the control algorithm is evaluated through its application to the control of
the wake of the fluidic pinball (Deng et al. 2020) in the chaotic regime. Although not
strictly needed, plant identification is also data driven. In this work, nonlinear system
identification is performed using the sparse identification of nonlinear dynamics with
control (SINDYc, Brunton, Proctor & Kutz 2016b).

The paper is organized as follows. Section 2 provides a description of the methodology,
emphasizing the mathematical tools and the MPC framework employed. Additionally, this
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Ċl

Cl
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Figure 1. The MPC-based control algorithm schematic: dataset generation, creation of the predictive model
and parameter tuning. The main block displays the closed-loop MPC scheme, including also LPR to mitigate
the effects of sensor measurement noise.

section includes specific details regarding the chosen test case for illustration purposes.
The results of the control application, along with their interpretation are provided in § 3.
Finally, the conclusions are discussed in § 4.

2. Methodology

This section presents the backbone of the control algorithm, with a detailed description
of the mathematical tools involved in it. Figure 1 includes a diagram illustrating all the
required steps for its implementation. In addition, algorithm 1 is introduced to give more
detail on the procedure.

The main block in the schematics represents the MPC algorithm, following the approach
proposed by Kaiser, Kutz & Brunton (2018). The main novelty in this module is the
robustness enhancement by online filtering with LPR. This is particularly useful when
the plant dynamics is modelled with time-delay coordinates or their derivatives. Local
polynomial regression is directly applied to past sensor data for online implementation.
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Algorithm 1 Control algorithm

Training data collection

Output: Training dataset of fluidic pinball forces
1: Choose open-loop actuations
2: Resolve fluidic pinball wake using DNS
3: Post process flow fields for Cd and Cl computation

Nonlinear system identification (§ 2.1.2)
Output: SINDYc fluidic pinball force model: ȧk = Θ(a, b)ξ̂ k, k = 1, . . . , Na in (2.9)

4: Construct the matrices A, Ȧ and B in (2.5) using training dataset
5: Compute SINDYc active terms of the dynamics:
6: ξ̂ k = arg min

ξk

{
1
2‖Ȧ•,k − Θ(A, B)ξ k‖2

2 + λ‖ξ k‖1

}
in (2.8)

MPC-tuning (§ 2.1.4)
Output: Optimal hyperparameter vector ηopt solution of (2.19)

7: Select different vectors of hyperparameters for seeding
8: while BO stopping criterion not met do
9: Update JBO sampling points

10: Use GP to update posterior distribution of JBO given the samples available so far
11: Build and optimize the acquisition function to find the next search point
12: end while
MPC application (§ 2.1.1)
13: for j = 1, . . . , nBO do
14: Measure system state
15: if there is noise in the measure then
16: Use LPR to last sensor data (§ 2.1.3)
17: end if
18: Optimization of MPC cost function in (2.2) using hyperparameters optimized in

MPC-tuning
19: Apply first optimal control component bj+1 = bopt

1
20: Advance fluidic pinball wake of Ts time units
21: end for

The roadmap suggests several necessary steps before implementing the control. First, a
training dataset is generated. The dataset consists of the time series of the state dynamics
under different exogenous inputs. This data can be collected using various methods,
including simulations or experiments. The system state and exogenous inputs should be
defined based on the specific system being controlled. Second, a plant model is defined
to predict the system behaviour. In this work we use a data-driven nonlinear system
identification. The final step, before the implementation of the control, focuses on tuning
the parameters that define the MPC cost function. Control performance is significantly
influenced by their selection. The self-tuning of the hyperparameters is the core of our
framework. This tuning is carried out using a BO algorithm.

An important aspect of the proposed method is the need for minimal user interaction.
Indeed, the two main inputs are the reference set point (i.e. the control target) and a
cost function for the MPC algorithm. The weight of the different contributions in the
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cost function will be determined in the MPC tuning. Bayesian optimization automatically
adjusts to different levels of noise and uncertainties. This greatly enhances the usability
and adaptability of the framework to different systems.

2.1. Self-tuning MPC

2.1.1. Model predictive control
This section describes the MPC implementation. It is assumed to have a time-evolving
process whose complete description relies on Na ≥ 1 parameters. These are included in a
state vector, denoted at a given instant t as a ≡ a(t) = (a1(t), . . . , aNa(t))′. The evolution
in time of the process can be influenced by the choice of Nb ≥ 1 exogenous parameters.
These are included in an input vector b ≡ b(t) = (b1(t), . . . , bNb(t))′, b ∈ B ⊂ R

Nb , where
B is the set of allowable inputs. Denoting the time derivative of the state vector with ȧ, the
system dynamics is described by the following set of equations:

ȧ = f (a, b),

a(0) = a0.

}
(2.1)

Here a(tj) = aj and f is the function characterizing the system’s temporal evolution. The
process is considered as controlled. This means that for each time t, the input vector
b(t) can be selected in order to manipulate the system dynamics according to a specific
objective. More specifically, the aim is to control Nc ≥ 1 features of the dynamical system,
included in the vector c ≡ c(t) = (c1(t), . . . , cNc(t))′. Note that the vector c is dependent
on the system state. In this context, it is assumed that the target features are part of the state
vector itself, although this may not always be applicable. The objective is to achieve control
over the vector c by ensuring that it closely tends to a desired reference c∗ ∈ R

Nc over time.
Model predictive control can be used for set-point stabilization, trajectory tracking or path
following (see Raković & Levine 2018, pp. 169–198), depending on the choice of c∗.

For the purpose of a control application, a, b and c are sampled over a discrete-time
vector, equispaced with a fixed time interval Ts. This discrete-time representation is
essential to determine how often the exogenous input is updated. The input is assumed to
be constant between consecutive time steps of the control. The implementation of the MPC
follows a series of sequential procedures, as can be seen in algorithm 1. An illustration of
the process is provided in figure 2.

Firstly, the control process starts from a time instant tj, where a measurement sj of the
state vector is available. It is assumed that the entire vector of target features is observed.
A conditional prediction of the state vector is obtained by a model of the dynamics.
This prediction under a given input sequence, referred to as âj+k| j, is generated within
a prediction window tj+k, k = 1, . . . , wp. Consequently, a prediction of the target features
vector ĉj+k| j is obtained.

The optimal input sequence {bopt
k }wc

k=1 can be determined in a control window tj+k,

k = 1, . . . , wc, by minimizing a cost function JMPC : R
Nb → R

+. A common choice for
the cost function is

JMPC(b) =
wp∑

k=0

‖ĉj+k| j − c∗‖2
Q

+
wc∑

k=1

(‖bj+k| j‖2
Rb

+ ‖�bj+k| j‖2
R�b

), (2.2)
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Figure 2. Graphical representation of MPC strategy for stabilizing around a set point (horizontal dashed line).
Past measurements (light-blue-shaded region) depict system state (blue lines with squares) and actuation (green
line). The control window wc is shown in orange. Dashed lines indicate future state and actuation predictions.
Blue circles represent a discrete sampling of the system state prediction. The continuous formulation allows
non-mandatory discrete sampling and step-like actuation can be relaxed.

where Q ∈ R
Nc×Nc and Rb, R�b ∈ R

Nb×Nb are positive and semi-positive definite weight
matrices, respectively. In addition, ‖d‖2

M = d′Md represents the weighted norm of a
generic vector d with respect to a symmetric and positive definite matrix M , where d′
denotes the transposition of the vector d. The variable �bj+k| j denotes the input variability
in time, that is, bj+k| j − bj+k−1| j. In the definition of the cost function, the errors in state
predictions with respect to the reference trajectory, i.e. ĉj+k| j − c∗, are penalized, as well
as the actuation cost and variability. In this paper the aforementioned weight matrices are
assumed to be diagonal; thus,

Q = diag(Q1, . . . , QNc),

Rb = diag(Rb1, . . . , RbNb ),

R�b = diag(R�b1, . . . , R�bNb ).

⎫⎪⎬
⎪⎭ (2.3)

Once the optimization problem in (2.2) is solved, only the first component of the
optimal control sequence, bj+1 = bopt

1 , is applied. The optimization is then reinitialized
and repeated at each subsequent time step of the control. Generally, the prediction window
covers a wider range than the control window (wp ≥ wc). The control vector is considered
constant beyond the end of the control window, as discussed in Kaiser et al. (2018).

Hard constraints on the input vector can readily be incorporated into the optimization
process. At each time step, the optimal problem must guarantee that b ∈ B, where B is
generally determined by the control hardware. The set of allowable inputs is

bk
j ∈ [bk

min, bk
max],

�bk
j ∈ [�bk

min, �bk
max], j = 1, . . . , t and k = 1, . . . , Nb,

}
(2.4)

where bk
j and �bk

j are the kth control input and input variability component at the jth
time step. The superscripts min and max indicate the minimum and maximum admissible
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values for the control input and its variability between consecutive time steps, respectively.
A critical issue of this control technique concerns the choice of parameters. Many of

these can be selected based on the physics of the system to be controlled or appropriate
control hardware limits, such as the actuation constraints or the control time step. The
selection of parameters involved in (2.3), as well as the length of the prediction/control
window, is traditionally tuned by trial and error. In § 2.1.4 we introduce our hyperparameter
self-tuning procedure.

2.1.2. Nonlinear system identification
The optimization loop of MPC requires an accurate plant model for predicting the
system’s dynamics. The choice of the predictive model typically involves a trade-off
between accuracy and computational complexity. In this work we adopt a data-driven
sparsity-promoting technique. The framework was illustrated in Brunton, Proctor & Kutz
(2016a) and later applied in MPC by Kaiser et al. (2018) for a variety of nonlinear
dynamical systems. It must be remarked that the self-tuning framework proposed here
can easily be adapted to accommodate a different plant model, either analytical or data
driven, including deep-learning models.

SINDy is a method that identifies a system of ordinary differential equations describing
the dynamical system. In particular, the version described in this work corresponds to the
extension of the SINDy model with exogenous input (SINDYc, Brunton et al. 2016b).
Considering a system of ordinary differential equations such as the one shown in (2.1),
SINDYc derives an analytical expression of f from data. This process requires a dataset
comprising the time series of the state vector a and the exogenous input b. This method is
based on the idea that most physical systems can be characterized by only a few relevant
terms, resulting in governing equations that are sparse in a high-dimensional nonlinear
function space. The resulting sparse model identification aims to find a balance between
model complexity and accuracy, preventing overfitting of the model to the data.

To derive an expression of the function f from data, a discrete sampling is performed
on a time vector, yielding r snapshots at time instances ti, i = 1, . . . , r for the state vector
ai = a(ti), its time derivative ȧi = ȧ(ti) and the input signal bi = b(ti). The data obtained
are arranged into three matrices A ∈ R

r×Na , Ȧ ∈ R
r×Na and B ∈ R

r×Nb :

A = (a1, . . . , ar)
′ ,

Ȧ = (ȧ1, . . . , ȧr)
′,

B = (b1, . . . , br)
′ .

⎫⎪⎬
⎪⎭ (2.5)

A library of functions Θ is then set as

Θ(A, B) = (1r, A, B,
(
(A1• ⊗ A1•)′, . . . , (Ar• ⊗ Ar•)′

)′
,(

(A1• ⊗ B1•)′, . . . , (Ar• ⊗ Br•)′
)′

(
(B1• ⊗ B1•)′, . . . , (Br• ⊗ Br•)′

)′
, . . .), (2.6)

where 1r is a column vector of r ones, Ai• denotes the ith row of the matrix A and H ⊗ K
denotes the Kronecker products of H and K . The choice of functions to be included in the
library is typically made by the user. This procedure is often guided by experience and
prior knowledge about the dynamics of the system to be controlled. This issue introduces
some limitations that are later discussed in § 4.
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The system data can be then assumed to be generated from the following model:

Ȧ = Θ(A, B)Ξ . (2.7)

Here Ξ = (ξ1, . . . , ξNa) represents the matrix whose rows are vectors of coefficients
determining which terms of the right-hand side are active in the dynamics of the kth state
vector component. This matrix is sparse for many of the dynamical systems considered. It
can be obtained by solving the optimization problem

ξ̂ k = arg min
ξ k

{
1
2‖Ȧ•k − Θ(A, B)ξ k‖2

2 + λ‖ξ k‖1

}
, (2.8)

where λ is called the sparsity-promoting coefficient, A•k denotes the kth column of the
matrix A. ‖·‖1 and ‖·‖2 are the L1 and L2 norms, respectively. It must be remarked that λ
must be optimized to reach a compromise between parsimony and accuracy. Nonetheless,
since this block of the MPC framework can easily be replaced by other strategies, λ will
not be included in the self-tuning optimization illustrated in § 2.1.4.

Finally, the system can be described by

ȧk = Θ(a, b)ξ̂ k, k = 1, . . . , Na, (2.9)

where in this case Θ(a, b) is a vector that takes into account the same functions included
in the library in (2.6). The SINDYc-based model is utilized to make predictions of the
dynamics involved in the control process starting from a specific state’s initial condition.
The steps described in this section to obtain the plant model are also condensed in the
nonlinear system identification step in algorithm 1.

2.1.3. Local polynomial regression
Effectively estimating system dynamics is crucial for various control techniques,
particularly in MPC, where sensor feedback is utilized to make informed decisions. The
accuracy of system dynamics estimation becomes paramount in MPC as it relies on sensor
information to predict the behaviour of the controlled system. However, the presence of
noise can hinder accurate estimation, necessitating the implementation of noise mitigation
techniques.

This challenge falls within the broader context of time series analysis, as sensor outputs
represent discrete samples over time of a process variable. To address measurement
noise, LPR emerges as a robust, accurate and cost-effective non-parametric smoothing
technique. Applying LPR to sensor output data enhances the reliability and accuracy of
estimating the current state of the system under varying noise conditions. In this section we
provide a succinct overview of the formulation of LPR. The notation convention involves
denoting random variables with capital letters, while deterministic values are represented
in lowercase.

The objective is to predict or explain the response S (sensor output) using the predictor
T (time) from a sample {(Tj, Sj)}n

j=1 using the following regression model:

Sj = m(Tj) + σ(Tj)εj. (2.10)

Here m is the regression function, {εj}n
j=1 are zero mean and unit variance random variables

and σ 2 is the point variance. For simplicity, it is assumed that the model is homoscedastic,
i.e. that the variance is constant. From a practical point of view, σ also represents the
measurement of noise intensity.
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The reason why LPR is used in this context is that it allows for a fast joint estimation
of the regression function and its derivatives without making any prior. By making only
a few regularity assumptions, it is characterized by a good flexibility that allows us to
model complex relations beyond a parametric form. The working principle of the LPR is
to approximate the regression function locally by a polynomial of order p, performing a
weighted least squares regression using data only around the point of interest.

It is assumed that the regression functions admit derivatives up to the order p + 1 and,
thus, that it can be expanded in a Taylor’s series. For close time instants t and Tj, the
unknown regression function can be approximated by a polynomial of order p, then

m(Tj) ≈
p∑

i=0

m(i)(t)
i!

(Tj − t)i ≡
p∑

i=0

βi(Tj − t)i. (2.11)

The vector of parameters β = (β0, . . . , βp)
′ can be estimated by solving the minimization

problem

β̂ = arg min
β

n∑
j=1

{
Sj −

p∑
i=0

βi(Tj − t)i

}2

Kh(Tj − t), (2.12)

where h is the bandwidth determining the size of the local neighbourhood (also called
smoothing parameter) and Kh(t) = (1/h)K(t/h) with K a kernel function assigning the
weights to each observation. Once the vector β̂ has been obtained, an estimator of the qth
derivative of the regression function is

m̂(q)(t) = q!β̂q. (2.13)

The solution of the optimization in (2.12) is simplified when the methodology is
presented in matrix form. To that end, T ∈ R

n×( p+1) is the design matrix

T =
⎛
⎝1 (T1 − t) . . . (T1 − t)p

...
...

...

1 (Tn − t) . . . (Tn − t)p

⎞
⎠ , (2.14)

while the vector of responses is S = (S1, . . . , Sn)
′ and W = diag(Kh(T1 − t), . . . , Kh(Tn −

t)). According to this notation and assuming the invertibility of T ′W T , the weighted least
squares solution of the minimization problem expressed in (2.12) is

β̂ = (T ′W T )−1T ′W S (2.15)

and, thus, the estimator of the local polynomial is

m̂(t) = e′
1(T

′W T )−1T ′W S =
n∑

j=1

Wp
j (t)Sj, (2.16)

where ek ∈ R
p+1 is a vector having 1 in the kth entry and zero elsewhere and Wp

j (t) =
e′

1(T
′W T )−1T ′W ej.

The critical element that determines the degree of smoothing in LPR is the size of the
local neighbourhood. The selection of h determines the accuracy of the estimation of the
regression function: too large values lead to a large bias in the regression, while too small
values increase the variance. Its choice is generically the result of a trade-off between the
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variance and the estimation bias of the regression function. There are several methods to
select the bandwidth to be used for LPR. One possible approach is to choose between
a global bandwidth, which is common to the entire domain and is optimal for the entire
range of data, or a local bandwidth that depends on the covariate and is therefore optimal at
each point of the regression function estimation. The latter would allow for more flexibility
in estimating inhomogeneous regression functions. However, in the proposed framework,
a global bandwidth was chosen due to its simplicity and, more importantly, its reduced
computational cost. In the presented approach, the global bandwidth is chosen using the
leave-one-out-cross-validation methodology. Specifically, this parameter corresponds to
the one that minimizes the following expression:

n∑
j=1

(Sj − m̂h,−j(Tj))
2. (2.17)

Here m̂h,−j(Tj) denotes the estimation of the regression function while excluding the jth
term. For further information regarding the optimal bandwidth selection, see Wand &
Jones (1994) and Fan & Gijbels (1996). Additionally, there exist other methodologies that
utilize machine-learning techniques to select the local bandwidth such as in Giordano &
Parrella (2008) where neural networks are used.

Once the smoothing parameter has been set, it remains to choose the weighting function
and the degree of the local polynomial, although these two have a minor influence on the
performance of the LPR estimation. A common choice for the first is the Epanechnikov
kernel. As for the degree of the local polynomial, there is a general pattern of increasing
variability according to which, to estimate m(q)(t), the lowest odd order is recommended,
i.e. p = q + 1 or occasionally p = q + 3 (Fan & Gijbels 1996).

It is also worth noting that due to asymmetric estimation within the control algorithm,
boundary effects arise, leading to a bias in the estimation at the edge. These effects,
discussed in more detail in Fan & Gijbels (1996), disappear when using local linear
regression ( p = 1).

2.1.4. Hyperparameter automatic tuning with BO
Model predictive control relies on a specific set of hyperparameters to precisely define
the cost function in (2.2) for the selection of the optimal action over the control window.
A new functional, based on the global performance of the control, is defined. Bayesian
optimization is employed to find the hyperparameter vector that maximizes the control
performance. By adopting this approach, a more efficient and effective MPC-based
control framework may be achieved. The hyperparameters are indeed adapted to different
conditions of measurement noise and/or model uncertainty by the BO process. This
proposed framework is practically independent of the user.

The parameters under consideration include (i) the components of the weight matrices,
as presented in (2.3), which penalize errors of the state vector with respect to the
control target trajectories, input cost and input time variability; and (ii) the length of
the control/prediction windows, assumed equal for simplicity. All aforementioned control
parameters are included in a single vector denoted as η ∈ R

Nη , where Nη = 2Nb + Nc + 1.
A further reduction in the number of control parameters can also be considered by
imposing that the components of Rb and R�b related to the rear cylinders of the
fluidic pinball are identical under a flow symmetry argument, as in Bieker et al. (2020).
Therefore, in this case it is stated that Rb2 = Rb3 = Rb2,3 and R�b2 = R�b3 = R�b2,3 and
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the total number of parameters is reduced to Nη = 2(Nb − 1) + Nc + 1. Section 3 also
provides several results that justify this choice.

Note that control results depend on the selection of the vector η. Consequently,
an offline optimization process can be implemented to select the optimal value of η,
which maximizes the control performance. Consider using a specific realization of the
hyperparameter vector η to control the system. The state vector measure is indirectly
dependent on the choice of hyperparameter vector and is denoted here by s̃(η). By running
the control on a discrete-time vector of nBO time steps, the cost function can be defined as

JBO(η) = 1
nBO

Nc∑
k=1

nBO∑
j=1

(
s̃k

j (η) − ck
∗
)2

. (2.18)

Note that the user selects the target to be optimized, specified by the cost function JBO.
In addition, in absence of measurement noise, s̃(η) is the ideal measure of the target
feature vector. Otherwise, the LPR technique is applied to the state vector measure. In this
study the parameters are optimized to minimize the quadratic error between the controlled
variables and the user-defined target. Thus, the optimal hyperparameter vector can be
obtained by solving the problem

ηopt = arg min
η∈H

JBO(η), (2.19)

where H ⊂ R
Nη is the search domain. Solving the optimization in (2.19) is computationally

costly due to the expensive sampling of the black-box cost function JBO. Each sample of
JBO is obtained via application of the MPC over nBO time steps. In this framework, BO
serves as an efficient method to address this problem, offering an algorithm to search the
minimum of the function with a high guarantee of avoiding local minima and characterized
by rapid convergence. Indeed, BO has shown to be an efficient strategy particularly
when Nη ≤ 20 and the search domain H is a hyper-rectangle, that is, H = {η ∈ R

Nη |ηi ∈
[ηi

min, η
i
max] ⊂ R, ηi

min < ηi
max, i = 1, . . . , Nη}, where ηmin and ηmax are the lower and

upper bound vectors of the hyper-rectangle, respectively.
In order to find the minimum of the unknown objective function, BO employs an

iterative approach, as shown in the MPC-tuning step of algorithm 1. It utilizes a
probabilistic model, typically a Gaussian process (GP), to estimate the behaviour of the
objective function. At each iteration, the probabilistic model incorporates available data
points to make predictions about the function behaviour at unexplored points in the search
space. Simultaneously, an acquisition process guides the samplings by suggesting the
optimal locations in order to discover the minimum point. A specific function (called the
acquisition function) is set to balance exploration, by directing attention to less-explored
areas of the search domain, and exploitation, by concentrating on regions near potential
minimum points. Finally, the BO iterations continue until a stopping criterion is met, such
as reaching a maximum number of iterations or achieving convergence in the search for
the minimum. Thus denoting as α(η) the acquisition function selected, the point where to
sample next in the iterative approach, that is, η+, can be obtained by solving

η+ = arg max
η∈H

α(η). (2.20)

The expected improvement is used as an acquisition function (Snoek, Larochelle & Adams
2012), which evaluates the potential improvement over the current best solution.

983 A26-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.47


Self-tuning model predictive control for wake flows

The subsequent discussion will centre on the probabilistic model utilized in
BO. Specifically, a prior distribution, which corresponds to a multivariate Gaussian
distribution, is employed. Consider the situation where problem (2.19) is tackled using BO.
A GP regression is required for the functional JBO based on the available observations of
the function up to the given iteration.

Since JBO is a GP, for any collection of D points, included in Ξ = (η1, . . . , ηD)′, then
the vector of function samplings at these points, denoted as J = (JBO(η1), . . . ,JBO(ηD))′
is multivariate Gaussian distributed, then

J ∼ ND(μ, K), (2.21)

where μ = (μ(η1), . . . , μ(ηD))′ is the mean vector and K the covariance matrix whose
ijth component is Kij = k(ηi, ηj), with μ a mean function and k a positive definite kernel
function. For simplicity, the mean function is assumed to be null.

In order to make a prediction of the value of the unknown function at a new point of
interest η∗, denoted as JBO∗ , conditioned on the values of the function already observed,
and included in the vector J , the joint multivariate Gaussian distribution can be considered:(

J
JBO∗

)
∼ ND+1

(
0,

(
K k∗
k′∗ k∗∗

))
. (2.22)

Here k∗∗ = k(η∗, η∗) and the vector k∗ = (k(η1, η∗), . . . , k(ηD, η∗))′. This equation
describes how the samples J at the locations Ξ correlate with the sample of interest JBO∗ ,
whose conditional distribution is

JBO∗ |η∗, Ξ , J ∼ N
(
μ∗, σ 2

∗
)

(2.23)

with mean μ∗ = k′∗K−1J and variance σ 2∗ = (k∗∗ − k′∗K−1k∗)2. Equation (2.23)
provides the posterior distribution of the unknown function at the new point where the
sample has to be performed. It then furnishes the surrogate model used to describe the
function JBO in the domain for the search of the minimum point.

2.2. The fluidic pinball
The proposed framework is tested on the control of the two-dimensional viscous
incompressible flow around a three-cylinder configuration, commonly referred to as a
fluidic pinball (Pastur et al. 2019; Deng et al. 2020, 2022). The fluidic pinball was chosen
because it represents a suitable multiple-input–multiple-output system benchmark for flow
controllers.

A representation of the fluidic pinball can be seen in figure 3. The three cylinders have
identical diameters D = 2R, and their geometric centres are placed at the vertices of an
equilateral triangle of side 3R. The centres are symmetrically positioned with respect to
the direction of the main flow. The leftmost vertex of the triangle points upstream while the
rightmost side is orthogonal to the flow direction. The free stream has a constant velocity
equal to U∞. The cylinders of the fluidic pinball, denoted here with 1 (front), 2 (top) and 3
(bottom), can rotate independently around their axes (orthogonal to the plane of the flow)
with tangential velocity b1, b2 and b3, respectively.

The dynamics of the wake past the fluidic pinball is obtained through a two-dimensional
direct numerical simulation (DNS) with the code developed by Noack & Morzyński
(2017). The flow is described in a Cartesian reference system in which the x and y axes
are in the streamwise and crosswise directions, respectively. The centre of the Cartesian
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Figure 3. Domain of the incompressible two-dimensional DNS of the flow around the fluidic pinball. Front,
top and bottom cylinders are labelled as 1, 2 and 3, respectively. The rotational velocities of the cylinders are b1,
b2 and b3. The arrows indicate positive (counterclockwise) rotations. The background shows the 8633 nodes
grid used for the DNS. The contour colours indicate the out-of-plane vorticity.

reference system coincides with the mid-point of the rightmost bottom and top cylinder
and the computational domain, that is, Ω , is bounded in (−5D, 20D) × (−5D, 5D). The
position in the reference system is then described by the vector x = (x, y) = xe1 + ye2,
where e1 and e2 are respectively the unit vectors in the directions of the x and y axes
and the velocity vector is assumed to be u = (u, v). The constant density is denoted
by ρ, the kinematic viscosity of the fluid by ν. All quantities used in the discussion
are assumed non-dimensionalized with cylinder diameter, free-stream velocity and fluid
density. The Reynolds number is defined as ReD = U∞D/ν. A value of ReD = 150 is
adopted, which is sufficiently large to ensure a chaotic behaviour, although still laminar.
The two-dimensional solver has already been used in previous work at this same ReD
(Wang et al. 2023). The boundary conditions comprise a far-field condition (u = U∞e1)
in the upper and lower edges, a stress-free one in the outflow edge and a no-slip condition
on the cylinder walls, which in the absence of forcing becomes u = 0.

The DNS allows forcing by independent rotation of the cylinders. To this purpose,
a velocity with module |bi| is imposed at the cylinder surface. Positive values of bi

are associated with counterclockwise rotations of the cylinders. In the remainder of the
paper, a reference time scale is set as the convective unit (c.u.), i.e. the time scale based
on the free-stream velocity and the cylinder diameter. The lift coefficient is defined as
Cl = 2Fl/(ρU2∞D), where Fl is the total lift force applied to the cylinders in the direction
of the y axis and the same quantity is applied in the scaling of Fd, the force applied to
the cylinders in the direction of the x axis, to obtain the total drag coefficient Cd. The
DNS uses a grid of 8633 vertices and 4225 triangles accounting for both accuracy and
computational speed. A preliminary grid convergence study at ReD = 150 identified this
as sufficient resolution for errors of up to 3 % in the free case and ≈4 % in the actuated
case in terms of drag and lift.

2.3. The control approach
The aim of the control is to achieve a reduction in the overall drag coefficient of the fluidic
pinball, while also controlling the lift coefficient so that the latter has reduced oscillations
with a zero average value. The vector of target features is therefore composed only of the
total lift and drag coefficients, c = (Cd, Cl)

′. The target vector is thus composed of null
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components c∗ = (0, 0)′. Since the cost function in (2.2) is quadratic, a null target vector
will penalize both mean values of Cl and Cd and their oscillations.

To this purpose, the tangential velocities of the three cylinders are tuned respecting
the implementation limits, here chosen equal to bi ∈ [−1, 1] and �bi ∈ [−4, 4], for
all i = 1, 2, 3. The model plant has a state vector composed by Cd and Cl and their
time derivatives, respectively Ċd and Ċl (i.e. a = (Cd, Cl, Ċd, Ċl)

′). A state vector based
solely on global variables does not require adding intrusive probes for flow estimation.
Similar state vector choices that incorporate aerodynamic force coefficients and temporal
derivatives are made in Nair et al. (2019) and Loiseau, Noack & Brunton (2018). While
this approach is often effective in separated flows, it might be challenged at higher Re
flows and of unfeasible application in other flow configurations.

Feedback to the control involves measurement of drag and lift forces, so at each
time instant tj, it is considered sj = cj. This approach also facilitates a reduction in the
complexity of the predictive model, thereby speeding up the control process. Indeed,
a compact state vector is particularly desirable to reduce the computational cost of the
iterative optimization problem over receding horizons of MPC.

In the present work, noise in lift and drag measurement is also considered. Under this
assumption, the model in (2.10) is applied. The noise intensity σ is assumed to be constant
over time and given as a percentage of the full-scale measured drag and lift coefficients in
conditions without actuation. Therefore, in the case of measurement noise in the sensors,
the response variable to which the LPR is applied corresponds to the measurements of the
drag and lift coefficients of the fluidic pinball. The LPR enables us to obtain estimates
of their regression function in output from the sensors but also of their time derivatives,
allowing us to use this information as control feedback.

The MPC-optimization problem is solved every control time step (so every Ts) to update
the exogenous control input. During the time between two consecutive samples, the control
input to the system remains constant. Thus, the sampling time step should be chosen small
enough to ensure a good closed-loop performance, but not too small to avoid an excessive
computational cost. In this work, it is set at Ts = 0.5 c.u., i.e. sufficiently small compared
with the shedding period of the fluidic pinball wake (denoted as Tsh) and not too high
to affect control performance. The reason why Ts was not included in the control tuning
concerns the difficulty of defining the search domain for realistic applications. Imposing
bounds on this parameter requires an estimate of the computational cost of the MPC,
and this procedure is postponed to future experimental applications. The method used to
optimize the control action in the MPC framework is sequential quadratic programming
with constraints. The optimization was carried out with a built-in function of MATLAB.
The stop criteria are set at a maximum number of iterations of 500 and a step tolerance of
1 × 10−6.

At each measurement taken during the control process, in the presence of noise in the
Cl and Cd sensors, the LPR technique is applied to a time series of outputs of length
corresponding to the characteristic shedding period of the fluidic pinball wake, as observed
in § 3. Local polynomial regression acts asymmetrically, i.e. only past output sensor data
are available.

Parameter tuning is performed by evaluating the cost function JBO over a time history of
the controlled variables of one shedding period of the fluidic pinball. The transient phase
is excluded. Finally, as a stopping criterion for the search for the optimal hyperparameter
vector, a maximum number of 100 iterations in BO was set. This proved sufficient to reach
convergence in the tuning process, as shown in § 3.2.
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3. Results

In this section the results of the current work are presented. Section 3.1 outlines the
prediction performance of the SINDYc-based force model. Furthermore, the prediction
performance enhancement when using LPR in the presence of measurement noise is
illustrated. In § 3.2 the effectiveness of hyperparameters tuning in the different control
scenarios is examined. Lastly, in § 3.3 the outcomes of applying the MPC algorithm to
the fluidic pinball wake for drag reduction purposes under ideal measurement conditions
and in the presence of sensor noise are presented. An additional discussion is provided to
justify the choice of symmetry in the parameters of the rear cylinders of the fluidic pinball.

3.1. Predictive model
This subsection presents the performance evaluation of the predictive model employed
in the control framework. SINDYc is applied on a training dataset consisting of a
time series of the system state, along with predetermined actuation laws. The chosen
open-loop laws are composed of step signals for the three-cylinder velocities bi,
encompassing combinations of the velocities of the three cylinders within control
constraints. Specifically, velocities ranging from −1 to 1 with an increment of 0.5 are
explored, resulting in a total of 53 combinations. For each explored velocity combination,
the actuation steps are long enough (≈55 c.u.) to allow reaching the respective steady
state. The total length of the generated dataset is 6950 c.u.. The actuation time series
is subsequently smoothed to include the transient dynamics in the force model. It must
be noted that this approach is effective for this test case whose dynamics evolve on a
clearly defined low-dimensional attractor. Open-loop training for plant identification has
been shown effective in separated flows (see e.g. Kaiser et al. 2017; Bieker et al. 2020).
More complex nonlinear dynamical systems might require different strategies for adequate
training of the modelling plant.

Additionally, a library of polynomial functions up to the second order is chosen for the
sparse regression with SINDYc.

Figure 4 shows the prediction performance of the plant model. The presented results
were generated by performing predictions on a testing dataset with a preassigned smooth
law of the rotational speeds of the three cylinders. Predictions of 4 c.u. using initial
conditions at random points of the validation dataset, and for a statistically significant
number of times were performed. The resulting time series of each prediction were then
used to calculate their respective errors (êCd for Cd and êCl for Cl). The plot illustrates the
trend of the average and the confidence region for σ of the prediction errors, respectively
normalized with respect to the standard deviation of Cd and Cl in the free response, here
denoted as sd(Cd0) and sd(Cl0), respectively.

Figure 4(a,c) shows the prediction performance calculated from an initial condition
obtained in the absence of measurement noise in the sensors. The average value of
the normalized error distribution maintains values close to zero for any length of the
prediction window analysed. Furthermore, for short prediction lengths (up to ≈ 3 c.u.),
the confidence bounds for σ are still confined within a narrow region. In this context,
as they are not directly measurable, the time derivatives of the aerodynamic coefficients
are calculated using finite differences. This approach, however, is highly sensitive to
measurement noise. The non-parametric smoothing technique LPR allows joint estimation
of the output data from the sensors and their respective time derivatives. Figure 4(b,d)
shows the benefits brought by initial-condition setting with LPR to the prediction
performance in the presence of a sensor measurement noise of 1 %. These plots show
a comparison of the statistical error distributions for two distinct cases: in one the initial
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Figure 4. Prediction performance of the force model obtained using SINDYc. The plots display the average
value and the confidence region for σ of the probability distribution of the normalized Cd and Cl prediction
errors with respect to their standard deviation under unforced conditions. Panels (a,c) show the results in
absence of measurement noise of the initial condition while (b,d) show the results with 1 % of measurement
noise. In the presence of noise, a comparison is shown with the results of predictions obtained using LPR
estimation as an initial condition.

condition corresponds to the LPR estimation of the data with noise, in the other, it is
not used. It is of considerable interest to observe that the prediction with LPR performs
similarly to the case without noise. The figure discussed above could be used to choose the
MPC prediction window length as it provides an idea of the uncertainty propagation in the
prediction horizon. However, since this parameter has a significant effect on control results
in terms of performance and computational cost, it is left to automatic selection through
BO, so as to also take into account the effects of measurement noise in its selection.

In addition, figure 5 provides further insights into the advantages of LPR. In this case the
estimation of Cd and Ċd is tested on a case with external forcing and under increasing noise
level. The trend in the LPR estimation error of both Cd and Ċd is illustrated as the noise
increases. The estimation errors are evaluated using a root-mean-square error (RMSE) of
the estimate compared with the ideal data without noise.

The results demonstrate the effectiveness of LPR in estimating Cd and Ċd with high
accuracy even in the presence of high levels of noise. Thus, the benefits brought by LPR
enable the control feasibility even in high noise scenarios.

3.2. Bayesian optimization for tuning control parameters
This subsection presents the results of the hyperparameters tuning using the BO algorithm.
Various control scenarios are analysed, including clean, low and high noise level cases.

The set of hyperparameters to be optimized is composed of the elements of the weight
matrices in (2.3) and the length of the control/prediction window, used in the definition
of the cost functional in (2.2). Specifically, the components of the matrix Q are optimized
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Figure 5. Local polynomial regression applied to a Cd time series within a time period of 60c.u. This case
corresponds to forced fluidic pinball dynamics. Panels (a–c) display Cd estimation in the presence of increasing
noise levels (1 %, 3 %, 5 %). Panels (d– f ) show the LPR estimation of Ċd . Each plot includes the ideal and
noisy time series, also including the RMSE of the LPR estimation.

100 101 102

Iteration

2
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6
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JBO
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Figure 6. Minimum observed JBO sampling history during MPC hyperparameter tuning. The x axis of the plot
is in logarithmic scale. The results of some control scenarios in the presence and absence of measurement noise
(and symmetry in the parameters) are presented.

within the interval [0.1, 5], the terms of Rb and R�b in [0.1, 10] and wp is optimized within
[1, 4].

Figure 6 displays the trend of the minimum observed JBO samplings as the tuning
process iterations progress for some of the analysed control cases. The results indicate
that the optimization function (JBO) reaches convergence in less than 30 iterations for
almost all cases. The tuned control parameters of each case are presented in table 1.
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Figure 7. Representation of the cost functional JBO in (2.18), the component due to Cl control (J 2
BO) and the

component due to Cd control (J 1
BO). Contour plots are presented as functions of Q1 and Q2 (a–c) and Rb1

and Rb2 = Rb3 = Rb2,3 (d– f ). The control case considers a 1 % measurement noise and symmetric weighting
coefficients for the rear cylinders of the fluidic pinball. In the graphs, the remaining components of the
hyperparameter vector η are fixed at their optimal values.

The table also provides the average values of Cd and Cl (C̄d and C̄l), as well as their
corresponding standard deviations (sd(Cd) and sd(Cl)), during the control phase. These
values are computed over a shedding time interval.

It must be remarked that the final set of hyperparameters for each case is run dependent.
This is mostly to be ascribed to the weak dependence of JBO to some of the imposed
constraints in the MPC loss function. Nonetheless, the differences in terms of drag
reduction have been observed to be smaller than ±1.1 % in different runs.

Figure 7 presents a plot of the cost function JBO and its contributions due to the control
of Cd (denoted as J 1

BO) and Cl (denoted as J 2
BO), varying Q1 and Q2, and then Rb1 and

Rb2 = Rb3 = Rb2,3 under 1 % measurement noise. The two contributions of JBO can be
obtained by considering the cost functional in (2.18) and selecting only the component for
k = 1 (to obtain J 1

BO) and, for k = 2, to obtain J 2
BO. The presented cost function plot is

useful for interpreting the convergence parameters of the optimization process according to
BO. The term J 2

BO has a minor influence on the optimization process, being approximately
two orders of magnitude smaller than J 1

BO. Therefore, the optimization process is mainly
driven by the influence of the control parameters on reducing the Cd of the fluidic pinball.

As Q1 increases, both JBO and J 1
BO functions decrease sharply at first and then reach

a plateau. Conversely, J 2
BO shows the opposite behaviour. A good Cl control would be

achieved with a low Q1 and high Q2, but this would lead to a poor drag reduction. On the
other hand, the choice of Q2 has little impact on control performance, as the cost function
JBO remains nearly constant with its variation.

By observing table 1 and considering the behaviour of the cost function, it is justified
why almost all proposed control cases have Q1 very close to the maximum achievable
value, while there is greater variability in the selection of Q2.

983 A26-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.47


Self-tuning model predictive control for wake flows

–0.4

–0.2

0

0.2

0.4

Cl

0 0.2 0.4 0.6 0.8

StD

10–8

10–6

10–4

10–2

100

P
S

D

t (c.u.)

3.0
0 100 200 300 400 500

0 100 200 300 400 500

3.2

3.4

3.6

3.8

4.0

Cd

3.0

Cl(t – τ)

3.5

0
.4

0
.2

–
0
.2

–
0
.4

–
0
.4

–
0
.2

0 0
.2

0
.40

Cl(t)

4.0

C
d

(t)

(a)

(b)

(c)

(d )

Figure 8. Characteristics of the flow field around the fluidic pinball in undisturbed conditions. Panels (a,b)
show the global lift and drag coefficients of the fluidic pinball. Plot (c) shows a PSD of the lift coefficient while
(d) provides a representation of the trajectory in the time-delayed embedding space of the force coefficients
Cd(t), Cl(t) and Cl(t − τ), where τ is a quarter of the shedding period of the fluidic pinball wake. The peak in
the PSD is at a Strouhal number StD = 0.148.

Similarly, due to the fact that the drag reduction drives the optimization process, the
parameter that has the greatest influence on JBO is Rb2,3 . A lower value of Rb2,3 would
assign less weight to the actuation cost of the rear cylinders of the fluidic pinball, allowing
for greater rotation intensity. As will be explained in § 3.3.1, the main contributors to drag
reduction are indeed the rear cylinders. On the other hand, the parameter Rb1 has little
impact on the overall control performance since the front cylinder is responsible for the
stabilization of the lift coefficient. These latter considerations justify that the optimum
Rb2,3 is achieved at low values, close to the lower possible limit, while greater variability
is observed in the optimization of the Rb1 parameter.

3.3. Application of the control algorithm
This subsection shows the results of applying the control algorithm to the wake of the
fluidic pinball. It is specified that all results reported from now on are obtained by imposing
symmetry in the parameters of the rear cylinders.

3.3.1. Control simulations without measurement noise
Before discussing the effects of MPC, a brief description of the behaviour of the unforced
wake of the fluidic pinball in the laminar chaotic regime, characteristic of the chosen
Reynolds number (ReD = 150), is presented.

Time histories of lift (plot a) and drag (plot b) coefficients for 500 c.u. are reported in
figure 8. The figure also includes a power spectral density (PSD) of the lift coefficient (plot
c), with the Strouhal number StD = f D/U∞ related to the diameter of the three cylinders,
and a representation of the trajectory in the time-delayed embedding space of the force
coefficients (plot d). In the chaotic regime of the fluidic pinball, the main peak in the
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Figure 9. Results of the control application in the absence of measurement noise in the sensors. Graphics
(a,c,e) show the time histories of the Cd , Cl and input vector b during an initial unforced phase and then during
an active control phase. Graphics (b,d, f ) show the mean value of the streamwise component of the velocity
(u) in the time frames denoted A, B and C, respectively. Black arrows indicate the direction of rotation of the
cylinders.

PSD of Cl is notably broad. However, a predominant one is found corresponding to StD =
0.148, associated with vortex shedding (with a shedding period Tsh = 6.76 c.u.). The curve
also shows a second peak associated with a lower Strouhal number (StD = 0.013) due to
resonance in the flow field related to the finite size of the domain, as also observed in Deng
et al. (2020).

The condition of flow symmetry (C̄l ≈ 0) is recovered in the chaotic regime, unlike the
lower-Reynolds-number regimes that exhibit non-symmetric wakes (Deng et al. 2020). In
addition, Cl standard deviation is sd(Cl) = 0.112. As for the Cd, its free dynamics exhibits
C̄d = 3.46 and sd(Cd) = 0.0658.

Figure 9 shows the controlled case in ideal measurement conditions (i.e. no noise), with
the control parameters automatically selected using the BO algorithm. The simulations
presented from now on include an initial unforced phase before activating the control
at time instant Tc = 50 c.u.. Figure 9(a,c,e) shows the time histories of the controlled
aerodynamic coefficients and the exogenous input provided to the system according
to the control algorithm. Figure 9(b,d, f ), instead, displays the streamwise velocity
component u averaged over time windows of one shedding period of the fluidic pinball, in
correspondence of the unforced, transient and steady control phases, respectively.

983 A26-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.47


Self-tuning model predictive control for wake flows

The control automatically selects an implementation law with the two rear cylinders
in counter-rotation. The upper cylinder rotates clockwise (b2 = −b3 < 0) with nearly
constant rotational speed equal to the maximum values set in the optimization problem.
This actuation mechanism corresponds to boat tailing, which has been previously observed
and studied in various works on control of the wake of a fluidic pinball (Raibaudo et al.
2020; Li et al. 2022).

This mechanism primarily aims to reduce the pressure drag of the fluidic pinball. Under
unactuated conditions, as observed in Figure 9(b), an extended recirculation region with
low pressure and velocity forms behind the rear cylinders. The boat tailing redirects the
shear layers of the top and bottom cylinder toward the pinball axis. This streamlining
process of the wake increases the pressure behind the cylinders, delays the separation
and energizes the wake. Furthermore, the gap jet between the cylinders is substantially
weakened. A detailed description of this mechanism can be found in Geropp & Odenthal
(2000). A full wake stabilization is not achieved, i.e. the vortex shedding is not suppressed,
due to the imposed constraints of

∣∣bi
∣∣ ≤ 1. This is in line with the study of Cornejo Maceda

et al. (2021), where wake stabilization in boat tailing is achieved with rotation of the rear
cylinder of 2.375 or larger.

A condition of global optimum in terms of minimizing the drag coefficient would be
achieved with an actuation that involves the rear cylinders in boat tailing and the front
cylinder in a constant non-zero rotation, as observed in simulations (Li et al. 2022) and
also experiments (Raibaudo et al. 2020). The rotation of the front cylinder helps to reduce
the low-velocity areas in the region behind the cylinders of the fluidic pinball, allowing
for a slight reduction in drag. However, this condition is not achieved in the present
case since the control target includes a condition of null Cl, with the consequence that
any asymmetric flow actuation is penalized in the optimization process. Model predictive
control, on the other hand, focuses its strategy towards reducing Cl oscillations. Cornejo
Maceda et al. (2021) document oscillating lift coefficient with amplitude increasing with
increasing b2, −b3 in the range 0–2 if solely the rear cylinders are put in rotation. The
self-tuned MPC converges to an actuation strategy to reduce Cl oscillations based on
phasor control with the front cylinder.

An examination of the behaviour of the drag coefficient (Cd) resulting from the
implementation of the MPC shows a decrease in its mean value, reducing it by 43.3 %
compared with the unforced case. Moreover, the standard deviation of the drag coefficient
is reduced as well, by 85.8 % during forced conditions compared with the unforced ones.

Figure 10 shows the out-of-plane vorticity in three different phases: uncontrolled,
transient and post-transient. The MPC actuation is able to reduce the interaction between
the upper and lower shear layers. In addition, the wake behind the fluidic pinball exhibits
a more regular pattern in the post-transient phase. The wake meandering is strongly
reduced, possibly due to the front stagnation point control with the front cylinder. The
wake streamlining due to the boat tailing effect might also be contributing in this direction.
This is also observed in the oscillating behaviour of the Cl, which becomes more regular
and with less intense peaks once the control is activated. Indeed, in the controlled phase,
the PSD of the Cl presents a single very narrow peak concentrated at a Strouhal number
of StD ≈ 0.14, resulting in a shedding period of 7.16 c.u., very similar to the predominant
shedding frequency in the free response.

An analysis of the total power trend is required to assess if the MPC is able to achieve a
net energy saving. The total power (Ptot) is characterized by the sum of two contributions:
the first is directly related to the drag of the fluidic pinball (Pd), the second one is
associated with the power required for actuation (Pa). Thus, the total power can be defined
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Figure 10. Contour plot of the out-of-plane vorticity component of the flow around the fluidic pinball. Several
instants corresponding to the phases of control onset, transient and post-transient phase are presented. Here Tsh
refers to the characteristic shedding period of the fluidic pinball in unforced conditions.

as

Ptot = Pd + Pa = FdU∞ +
3∑

i=1

τ ibi

R
, (3.1)

where τ i is the torque acting on the ith cylinder of the fluidic pinball. The time history
of power during the free and forced phases is given in figure 11. It can be observed
that under undisturbed conditions, the total power remains around an average value of
1.75, with oscillations related only to the drag of the fluidic pinball. When moving to
the controlled solution, the total power undergoes a sharp decrease in the transient phase
thanks to the boat tailing. The total power stabilizes at about 1.12, experiencing a reduction
of 36.31 % compared with the unforced phase. It is also observed that the average actuation
power corresponds only to 12.13 % of the total power in the controlled phase. The average
value of the actuation power is mainly related to the rear cylinders in boat tailing, while
its oscillations are due to the front cylinder aiming to control the shedding, in order to
reduce the lift fluctuations. It must be remarked though that this does not take into account
possible inefficiencies that would arise in an implementation in a real environment.

A comparison between the proper orthogonal decomposition (POD) of the flow fields
with and without control according to the control algorithm is also shown in figure 12. It is
specified that the POD has been performed on a dataset including both the transient and the
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Figure 11. Time histories of the power associated with drag, actuation and total power during the free and
forced stages. Simulation of the fluidic pinball wake control in the absence of measurement noise.
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Figure 12. Results of a POD applied to the flow field of the wake past the fluidic pinball. Panels (a–c),
from top to bottom, depict the representation of out-of-plane vorticity for the spatial modes 1, 3 and 5 under
both free and forced conditions in accordance with the control architecture. Every plot also presents velocity
vectors corresponding to each spatial mode. Plot (d) shows the squared singular values (λi) of the POD,
normalized with respect to the sum of the squared singular values for the free case (λi,free). Proper orthogonal
decomposition performed on a dataset consisting of l = 1200 snapshots of the fluidic pinball wake, including
the transient in the forced case.
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stationary part of the control. On the left side of the figure, the spatial distributions of the
first, third and fifth out-of-plane vorticity modes are shown for both free and controlled
cases. The plots on the right side of the figure show the eigenvalues of the first 100
temporal modes. The eigenvalues are normalized with respect to their sum for the case
without actuation. This allows a direct comparison of the mode energy in unforced and
forced cases.

By observing the graphs related to the POD of the wake dataset under controlled
conditions, it is noted that shedding inception is shifted upstream if compared with the
unforced condition and is also more regular in the presence of boat tailing of the rear
cylinders. Furthermore, the modes of the controlled case, compared with the free case,
are characterized by lower energy, with the exception of the first two modes. This is
ascribed to a partial wake stabilization, with reduced meandering. Mode 1 spotlights
indeed more defined vortical structures, with the crosswise width practically constant
throughout the wake development. The fluidic boat tailing of the wake has indeed the
effect of re-energizing the outer shear layers, redirecting them towards the pinball axis.
The wake dynamics shift towards a less chaotic behaviour, as also observed in the
more regular oscillations of the Cl after activation of the control (figure 9). A less rich
dynamics results in a more compact POD eigenspectrum for the controlled case, with
higher energy in the first two modes. The reduced crosswise oscillations are observed also
in the structure of higher-order modes. Modes 3–6 for the uncontrolled case embed the
energy of higher-order harmonics and model the crosswise wake oscillations. In addition
to the fluidic boat tailing due the rotation of the rear cylinders, the stagnation point control
enforced by the front cylinder has the effect of weakening such oscillations. This results in
lower energy for the corresponding POD modes in the controlled case, and a more compact
structure of their vortical features.

3.3.2. The effects of measurements noise in the sensors
The self-tuned control strategy with online LPR of the sensor signal is assessed in the
presence of noise. The control results in terms of Cd and Cl and actuation are given in
figure 13. We include as a reference the case of MPC without hyperparameter tuning,
i.e. the control parameters are manually selected and all set to unity (except for the
prediction/control window set to 3c.u.). The outcomes when the parameter selection
is automatically performed using BO is reported for different noise levels. Without
hyperparameter tuning, the performance of the control is quite poor for both Cd and
Cl. In this case, the mean drag coefficient is 3.0598, i.e. significantly larger than the
value of ≈ 1.97 achieved after hyperparameter tuning. Furthermore, MPC converges to
an asymmetric controlled state, with a negative average lift coefficient. Quite surprisingly,
this is achieved even if Rb2 = Rb3 = 1, i.e. forcing symmetry in the hyperparameters does
not necessarily lead to symmetric actuation. After hyperparameter tuning, the penalty
weight of actuation (and actuation variability) on the rear cylinder is decreased with
respect to the front cylinder (see table 1). This allows stronger actuation on the rear
cylinders, thus fostering strong fluidic boat tailing, with consequent strong drag reduction,
accompanied by a weak action of the front cylinder to improve wake stability.

The cases analysed above are reproduced also in figure 14 in terms of trajectories of
Cd(t), Cl(t) and Cl(t − τ), where τ corresponds to a quarter of the shedding period Tsh
of the fluidic pinball wake. The plots offer a description of the attractor onto which the
wake dynamics of the fluidic pinball evolves, including the transitional phase from free
to forced conditions. When the parameter tuning is performed, during the control Cd
experiences a remarkable reduction, whereas Cl evolves on a dynamics similar to the
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Figure 13. Time series of Cd , Cl and exogenous input bi (from top to bottom row, respectively) at free and
forced conditions according to the MPC framework applied to the fluidic pinball. The panels in (a) show the
results when the cost function parameters are hand selected and equal to the unity (with the exception of the
prediction control window, set to 3c.u.). The panels in (b) show the results when BO is used for hyperparameter
tuning. Local polynomial regression is included in the MPC framework in all cases where measurement noise
is present.

unforced case, although less chaotic. Nevertheless, it is worth noting that the control of
Cl is not perfectly attained, as the model uncertainties hinder a complete description of
the shedding dynamics of the fluidic pinball. Without hyperparameter tuning, in the first
part of the transient the system transitions initially towards a state with a lower average Cd
(around 2.5) and Cl oscillations of slightly lower intensity. The relatively high penalty on
the actuation of the rear cylinders with respect to the front one, however, forces the system
to avoid strong boat tailing and starts leveraging asymmetric actuation based on the front
cylinder in the attempt to stabilize the wake through stagnation point control. The system
finally converges to a limit cycle with a higher average Cd and with large oscillations of
the Cl around a negative average.

In terms of the Cd, the control remains nearly unaffected by variations in measurement
noise in the sensors. Regardless of the noise intensity, the posterior cylinders consistently
maintain their boat tailing configuration, exhibiting maximum rotational velocity limited
by the actuation constraints. On the other hand, the control of the lift coefficient
demonstrates higher sensitivity to measurement noise. This is attributed to the increased
susceptibility of the predictive model to disturbances in the initial conditions of online
predictions. As the measurement noise intensifies, the frontal cylinder displays larger
oscillations in the selected actuation law prescribed by MPC.

Nevertheless, LPR provides advantages to the algorithm, resulting in only marginal
degradation of control performance. This increases the robustness of the application in
realistic control scenarios characterized by high sensor noise.
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Figure 14. Trajectories in the time-delayed embedding space of the force coefficients Cd(t), Cl(t) and Cl(t −
τ), where τ is a quarter of the shedding period of the fluidic pinball wake. Panel (a) shows the results when
the cost function parameters are hand selected and equal to unity, while (b–d) show the result when BO is used
for hyperparameter tuning. Cases (a,b) relate to ideal measurement conditions while cases (c,d) have noise of
1 % and 5 %, respectively. Local polynomial regression is included in the MPC control framework in all cases
where measurement noise is present.

3.3.3. Symmetry in rear cylinder parameters
This part is intended to provide more details about the choice of symmetry in the control
parameters. Specifically, it concerns the components of the weight matrices that penalize
the input expenditures and input variability of the rear cylinders during control, already
introduced in § 2.1.4.

The results of the control simulations with and without imposed symmetry conditions
are presented in figure 15. A certain bias is observed in the control of Cl in the case without
imposing symmetry conditions. This is related to an asymmetry in the rotation of the rear
cylinders. However, under imposed symmetry, the control of the drag coefficient improves
slightly, as the tangential speeds of rotation of the rear cylinders are both at the actuation
limits, creating a stronger boat tailing. This lower effectiveness of the optimization in the
case without imposed symmetry can be explained by the relatively low importance of the
Cl fluctuations in the functional of BO in (2.18), as discussed in § 3.2. The implementation
of a law that binds the parameters of the rear cylinders reduces the total number of
parameters to be tuned, leading to a less computationally expensive offline phase of the
control.
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Figure 15. Results of the application of MPC in terms of Cd , Cl and input vector b, without (a,c,e) and
with (b,d, f ) the imposition of symmetry in the parameters related to the rear cylinders. In both cases, all
the parameters are tuned using the BO algorithm. Results of control in the absence of measurement noise in
the sensors.

4. Discussion and conclusion

In this work a noise-robust MPC algorithm that does not require user intervention neither
for the plant modelling nor for the hyperparameters selection is proposed. The model used
in the MPC optimization is selected from input–output data of the system under control
using nonlinear system identification. The control parameters are automatically selected
using a black-box optimization based on Bayesian methods. Additionally, the robustness
of the algorithm is enhanced by the non-parametric smoothing technique LPR, which acts
on the output data from the control sensors to address the presence of measurement noise.

The proposed control algorithm is successfully applied to the control of the wake of the
fluidic pinball for drag reduction in a chaotic regime (specifically, for ReD = 150) using
solely aerodynamic forces to guide the control strategy. The methodology achieves good
success in controlling a nonlinear, chaotic and high-dimensional system. Being based on
the MPC technique, the algorithm easily allows for the inclusion of nonlinear constraints
in the control and is very promising for applications where the control target is not a simple
set-point stabilization.

The proposed technique has shown to be highly robust to sensor measurement
uncertainty, performing excellently even in realistic control scenarios characterized by
a high level of noise. It must be remarked that, although rather realistic for force
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measurements, the Gaussian noise model might not be adequate if other sensing techniques
are used. This may have an impact on plant model identification and LPR performance.
However, the most attractive feature is that the method requires minimal user interaction,
as the control parameters are automatically tuned by the BO algorithm according to the
control target, taking into account also different fidelity levels for the plant predictions.
The automatic procedure identified the most rewarding directions to optimize parameters
with the aid only of a few numerical experiments. To control Cd and Cl of the fluidic
pinball around a zero set point, the MPC algorithm used a combination of two control
mechanisms that have been previously considered in fluidic pinball control works: the
boat tailing of the rear cylinders for drag reduction and the stagnation point control of the
front cylinder for shedding control. This corresponded to a stronger penalty on the Cd and
a low penalty on the actuation cost of the rear cylinders. Without the framework proposed
in this work, this process would have required parametric studies or suboptimal analysis,
with the inherent difficulty of choosing relative weights between heterogeneous quantities.

It is worth highlighting that the control algorithm is currently being tested on a control
case with relatively simple dynamics (Deng et al. 2020, 2022). This streamlines the
process of coordinate selection and nonlinear system identification using the SINDYc
technique. On the one hand, the aerodynamic force coefficients in separated wake flows
exhibit features that render them suitable for plant modelling. On the other hand, the
dynamics of the flow, although chaotic, evolve clearly on a low-dimensional attractor,
thus simplifying the library selection for the application of SINDYc. For more complex
flows (higher Reynolds number or with less clear features for straightforward coordinate
identification), we envision that the challenge of MPC application will reside mostly in
the coordinate selection and in the plant identification. Fast-paced advancements in grey-
and black-box modelling are paving the way to interesting research pathways in these
directions. The approach proposed here, however, will still be applicable and will benefit
from such advancements. The offline optimization of the hyperparameters of the cost
function can be applied independently of the method for coordinate selection or plant
identification. Furthermore, the outcome will automatically adapt to the fidelity of the
model plant when compared with the uncertainty of the measurements used to feed it.
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