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Introduction

We consider 27r-periodic functions on the line and give simple and complete
characterizations, in terms of Fourier coefficients, of functions which belong to
various Lipschitz classes and whose Fourier series are lacunary. Such characteri-
sations seem to be missing from the literature, though there are various well-
known partial characterisations valid for functions with arbitrary spectra; cf.
the remarks following Theorem 1. The results given below form complements
to and sharpenings of some of the standard results valid for the special case of
lacunary series.(1)

In general, we use the notation and terminology of [1]. In particular, we
define copf as in [1], 8.5. If 0 < a < 1, we write Aa for the set of continuous
periodic / such that co^f^a) = 0( | a j") for real a, or equivalently for real a
satisfying | a | ^ n. Similarly, if 1 ^ p < oo, A£ denotes the set of periodic
fell = If (0, 2K) such that (opf(a) = 0 (| a |a). If £ is a subset of Z, and if F is a
set of periodic integrable functions (or of equivalence classes of such functions),
we write FE for the set of £-spectral elements of F, i.e., the set of / e F such that

/(n) = (In)-1 \ 2* f(x)e-inxdx
Jo

is zero for every neZ n £'.

1. Sidon-spectral functions in Aa

THEOREM 1. Let E be a Sidon subset of Z and let f e CE. Then
(i) if 0 < a < 1, / 6 Aa if and only if

(1)

In connection with Hadamard lacunarity, see [4], pp. 110-111, Exercises 1 and 2.
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[2] Lipschitz conditions and lacunarity 273

(ii) / e A t if and only if

(2) 2 n e Z |n / (n ) |<oo .

PROOF, (a) Since £ is a Sidon set, geCE implies ([1]), Section 15.1) that

£„ e z | S{n) \^ A- max [ g \,

where A is independent ofg.lffeCt O A^, we can apply this with g: x t->/(x + a)
- / ( x ) to conclude that

(3) Z . . z | / ( n ) | | e ' 1 " - l | g , 4 I | « | '

where Ax is independent o. a. In applying (3), we consider separately the cases
0 < a < 1 and a = 1.

In case 0 < a < 1, we note that

| e i M - l | ^ 2*

whenever a = n/2R and 0 < R :S [ n | < 2R, and so infer from (3) that

2 R g H < 2 R | / ( « ) | SA2R~\

where Az is independent of R. Hence

£|n|gR | / (") | = £?=0 ^"RSliK^"*^ |/(M)|

^ A2T.?=0 (2kR)~*

showing that (1) holds.
If a = 1, (3) gives for any finite subset F of Z and a ^ 0:

where X3 is independent of a and F. Letting a ^ 0 tend to zero, this entails

Since A3 is independent of F, this implies (2).
(b) If 0 < a < 1, / e C and (1) holds, then, if AA denotes the left hand side

of(D,
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Supposing, as we clearly may, that | a | S n, choose the nonnegative integer j so
that

(5) n2-J~l <\a\^n2~J;

then (4) yields

where As is independent of x and a, showing that / e \ x .
Again, if a = 1, fe C and (2) holds, it is evident that

|/(x + fl)-/(x)| = XneZ\f(n)\\e'na-l

which indicates that

REMARKS, (i) Part (b) of the proof of Theorem 1 does not use the fact
that / is E-spectral: it gives sufficient conditions for an arbitrary fe C to belong
to Aa. For results in the reverse direction applying to arbitrary /eA,,, see [1],
10.6.2; [2], Chapter VI; [3], Vol. 1, pp. 215-217.

(ii) If 0 < a < 1, the relation feAx,E does not imply that

a counterexample is ([2], Vol. I, p. 47)

/(*)= Er=12-

However, it follows readily from Theorem 1 (i) that fe \X,E implies

whenever £ is a Sidon subset of Z and (A(m))"=0 is positive, decreasing and such
that

(iii) For a general / e Aa (or even a general fe A*) it is true that

for every P < a - \ (see [2], Vol. I, p. 251, Example 9(i)). The conclusion is
false for a = 1 and ft = \, since otherwise we should have

for every geC, which is known to be false (loc. cit., p. 225, Theorem (10.1);
alternatively, [1], Exercise 14.14).
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2. Functions in A£ with lacunary Fourier series

We begin by noting that the Parseval formula shows that

(6) co 2 / ( a ) 2 =4 l n e Z | s i n ina | 2 | / ( n ) | 2

for any feL2. From this we deduce the following criterion.

LEMMA. In order that / e A 2 , it is necessary and sufficient that feL1 and
that

(7) S U P J I > 0 R 2 « I | ( I I M | / ( I I ) | 2 < « , if 0 < a < l ,

(8) I n e z | n / ( n ) | 2 < * > , if a = 1.

PROOF, (a) The case 0 < a < 1. Suppose first that (7) holds. Then it is clear
that / e L 2 . Also, if Ab denotes the supremum on the left of (7), (6) yields

co2f(a)2 = 4 l | n | 5 1 | s

Choosing the nonnegative integer j as in (5), we infer that

co2f(a) S A11 a \"

for | a | ^ n, where An is independent of a, showing that fe A2.
Conversely, suppose that / e A2. Then / e L 2 and, by (6),

S n 6 Z | s i n i n a | 2 | / ( « ) | 2 ^ / I 8 | a | 2 « ,

where A8 is independent of a. On taking a = nj2R, it follows that

where Ag is independent of R. Replacing R by 2kR and then summing over all
nonnegative integers k, it appears that

so that (7) is satisfied.
(b) The case a = 1. If (8) holds, then feL2 and (6) shows that

o ; 2 / ( f l )
2 =4 l n , z | s i n ina | 2 | / ( n ) | 2

^ £ n . z n 2 a 2 | / (n ) | 2

showing that fe A2. Conversely, if fe A2, then feL2 and (6) yields

https://doi.org/10.1017/S1446788700015032 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015032


276 R. E. Edwards [5]

where A10 is independent of a. Hence, for any R > 0,

2in |gK Ja"1 sin^na |2 | / (n)] 2 ^ A10.

Letting a tend to zero,

Z^Rn2\f(n)\^4A10.

Since A10 is independent of .R, (8) follows.

THEOREM 2. Lei E be a subset of Z.

(i) Suppose that E is of type A(2) and that 1 ̂  /> ̂  2. T/ien A^ £ = A^£,
so ?/zaf feAfE if and only if feLl

E and (7) or (8) holds according as 0 < a < 1
or a = 1.

(ii) Suppose that E is of type A(j>) and that 2 < p < oo. T/ien A ^ = A2
 E,

so that fe A££ if and only if f eLE
l and (7) or (8) /JOWS according as 0 < a < 1

or a = 1.

PROOF. It will suffice to prove (i), the proof of (2) being very similar. Also, in
view of the lemma, it suffices to show that A£E = A2, E. The inclusion A2

 E £ A£ E

is trivial, since p g 2. The reverse inclusion holds because £ is of type A(2) and
p ̂  2, so that L | = L£ and the norms | • | 2 and | • | p are equivalent on L2

E

([1], Section 15.5).

COROLLARY. If E ̂ Z is of type \(q) for every q > 0 (in particular, if E is
Sidon), then A£,£ = hliEfor 1 ̂  p < oo and 0 < a ̂  1.

In view of this corollary, it seems natural to consider conditions under which
every feAJ,E is equal a.e. to an element of Aa.

THEOREM 3. Let 0 < a < 1 and let E be a subset of Z such that

(9) B = s u p R > 0 c a r d { n e E : R ^ \n\ < 2R} < oo.

If fe Aa
2

£, then f is equal a.e. to a function in A a , £ .

PROOF. By the lemma

for every R > 0, where Alt is independent of R. Hence, by (9) and the Cauchy-
Schwarz inequality

^ BiAllR-x

Replacing Rby 2kR and summing over nonnegative integers k, it follows that
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(10) Z H S « | / (») | ^ ( l - 2 - ) - 1 B ^ i i * - -

Let g e C£ be the function

^ 2 , e z / ( n K B 1

Then g(n) = f(n) for every neZ, so that f = g a.e.; and (10) shows (see Remark
(i) following Theorem 1) that geAx. Hence geAx-E and the proof is complete.

When a = 1, the situation is different, as the following theorem shows.

THEOREM 4. Let E be an infinite Sidon subset of Z. There exist functions f
which belong to AE<1 for every p e [I, oo) and which are equal a.e. to no function
in At.

PROOF. Enumerate E as n0,nun2,•••, where nk ^ 0 for fee{1,2,•••}. Take
complex numbers ck such that

(11) 2"=i|<*|2<«>

and

(12) Z?=i|c*| = oo.

Let / be the L2-sum of the series

By (11) and the lemma, fe A2
E1. By Theorem 2 and the fact ([1], 15.5.3) that E

is of type A(p) for every p < oo, / belongs to A^ t for every p e [1, oo). Were /
to be equal a.e. to some geAu then f(n) would agree with g(n) for every neZ
and so Theorem 1 would entail that

£ n e Z |n / (n) | < c o ;

but this contradicts (12) and completes the proof.

REMARK. An infinite Sidon subset E of Z may or may not satisfy (9); see
[1], Exercise 15.3.
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