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SOME HOMOGENEOUS EINSTEIN MANIFOLDS
ARTHUR A. SAGLE*

1. Introduction. Let G be a connected Lie group and H a closed
subgroup with Lie algebra § such that in the Lie algebra g of G there
exists a subspace m with g = m } 5 (subspace direct sum) and [mjlcm. In
this case the corresponding manifold M = G/H is called a reductive homo-
geneous space and (g,§) (or (G, H)) a reductive pair. In this paper we shall
show how to construct invariant pseudo-Riemannian connections on suitable
reductive homogeneous spaces M which make M into an Einstein manifold.
Thus from the formula for the connection at the point HeM we compute
the Ricci tensor, Ric (X,Y) for X,Yem, and show —4Ric(X,Y) =1C(X,Y)
where C(X,Y) is the pseudo-Riemannian metric inducing the connection and
n is a suitable real number.

In the second section we shall review the algebra necessary to compute
various formulas concerning Ric(X,Y). Also we shall note that up to a
scalar multiple the pseudo-Riemannian connections are in one-to-one cor-
respondence with elements of a certain symmetric space 9% which is a subset
of a Jordan algebra, and a connection of the first kind is obtained from
the identity of the Jordan algebra (which is in 0).

In the third section we consider reductive pairs (g,5) with g simple and
§ semi-simple and develop a new decomposition of the subspace m into ad
h-invariant subspace by a process of ‘taking centralizers”. Using this
decomposition we construct pseudo-Riemannian connections on M = G/H
which are holonomy irreducible provided the connection of the first kind is
holonomy irreducible on M (which is the case). Thus we have found a
solution to the following type of deformation problem in the symmetric
space N: Let M = G/H be a suitable reductive homogeneous space such that
the connection of the first kind is a holonomy irreducible pseudo-Rieman-

nian connection given by the identity /&M, Then how can I be deformed
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in a continuous manner to an element SeM such that the corresponding
pseudo-Riemannian connection is irreducible? We also give a construction
of the corresponding simply connected reductive homogeneous space with
this connection.

Next in section three we develop the general equations for the above
reductive homogeneous space to be Einstein. Then in section four we give
general examples e.g. SO(n)/SO(k) with k<#n —1 which are irreducible
Einstein manifolds. Also we give a general test to see if the connection is
of the first kind—usually it is not. These and other examples lead to the
following conjecture: Let G/H be a simply connected reductive homogene-
ous space with G simple and H semi-simple. Then there exists an invariant
pseudo-Riemannian connection on G/H which makes it into a holonomy
irreducible Einstein manifold.

2. Algebraic preliminaries.

Let M = G/H be a reductive homogeneous space with the corresponding
reductive pair (g,5). In the decomposition g = m 1§ the subspace m is
related to invariant connections on G/H by the following result of Nomizu

[5].

THEOREM. Let G/H be a reductive homogeneous space with a fixed Lie algebra
decomposition g = m + Y such that 1) mlcm. Then there exists a one-to-one cor-
respondence between the set of all G-invariant connections 7 on G/H and the set of
all bilinear functions « : mXm —m such that for X,Yem (Ad h)a(X,Y)=a((Ad h)X,
(Ad h)Y) for all heH.

Thus if we let (m,«) denote the algebra with vector space m and
multiplication «(X,Y) for X,Yem, then for every he} the mappings
D(h) :m—m:Z—[h Z] are derivations of the algebra (m,a). Using the
notation in [3,8] let a¢(X) :m >m:Y > «(X,Y) and b(X) :m—>m:Y = Y, X)
and L(X):m—m:Y > XY where XY = [X Y], is the projection of [X Y] in
g into m. Then from [5] we have the curvature and torsion formulas for
the corresponding connection ¥ given by

(2. 1) R(X,Y) = [a(X), a(Y)] —a(XY)— D(h(X,Y))
(2. 2) Tor (X,Y) = [a(X) — b(X) — L(X)IY

where h(X,Y) =[X,Y]y is the projection of [X,Y] in g into §.
Let (m,XY) denote the algebra with vector space m and multiplication
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XY =[X Yl as above. This algebra is related to connections on G/H as
follows [5].

THEOREM. Let G/H be a reductive homogeneous space with corresponding de-
composition ¢ =m + 9§, then there exists one and only one G-invariant connection
which has zero torsion and such that a one-parameter subgroup ax(t) generated by
Xem projects by = : G—G|H : x(t) — x*(¢) into a geodesic x*(t) in G/H. In this
case a(X,Y)=1/2X Y and the connection is called the canonical connection of the
Jfirst kind on G|H.

In [3,8] general pseudo-Riemannian connections given by the algebras
(m,a) are compared with pseudo-Riemannian connections of the first kind.
Thus let C(X,Y) be a nondegenerate symmetric bilinear form on m which

satisfies
(2. 3) C(Dh)X,Y) = —C(X,D(h)Y) and
(2' 4) C(OI(Z,X), Y) = - C(X9 a(Zy Y))

for all X,Y, Zem and hel., Then the algebra (m,e) induces pseudo-
Riemannian connection on G/H and from [4] we have

alX,Y) = 7;5 XY + UX,Y)

where U(X,Y) is a commutative multiplication on m. In the case of
pseudo-Riemannian connections we summarize the results on holonomy
[3, 7, 8, 91

THEOREM 1.  Let G/H be a simply connected reductive homogeneous space with
fixed decomposition g =m + Y. Let B(X,Y) (resp. C(X,Y)) be a nondegenerate form
which induces an invariant pseudo-Riemannian connection of the first kind (resp.
arbitrary kind) and let (m,XY) (resp. (m,«)) denote the corresponding algebras. Then

(1) the holonomy algebra (= Lie algebra of the holonomy group) of the connec-
tion determined by C(X,Y) ts generated by all the maps a(X) and D(h).  Denote
this holonomy algebra by hol (C).

2) If G/H is not a symmetric space and is holonomy irreducible, then (m,ea) is
a stmple algebra and hol (C) is contained in the Lie algebra generated by all the
maps a(X) and b(Y) for all X,Yem. Furthermore (m,e) has no left ideals which
are D(§)-invariant (i.e. m ts hol (C)-irreductible).

(3)  Suppose G/H is not a symmetric space and suppose the algebra (m,XY)
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together with the form B(X,Y) determine a pseudo-Riemannian connection of the first
kind. If G/H is holonomy irreducible relative to this conmection, then (m,XY) is a
simple algebra. The converse holds if G|H is simply connected. In this case hol (B)
equals the Lie algebra generated by all the maps L(X) for Xem.

(4) If G/H is not a symmetric space and the corresponding reductive pair (a,9)
is such that g is simple and § is semi-simple, then g = m + B where m = L relative
to the Killing form of a.  Furthermore (m,XY) is a simple algebra which has
nondegenerate invariant form B(X,Y) equal to the Killing form of g restricted to
mxmnt,

Thus Theorem 1(4) indicates it is natural to start with a pseudo-
Riemannian connection of the first kind on G/H and try to compare other
pseudo-Riemannian connections to this one. Some results of this nature are
obtained in [3,8] and we need the following. From [4] the algebra (m,XY)
and the form C(X,Y) determine the algebra (m,e) by
(2. 5) 2C(Z,a(X,Y)) = C(Z,XY) + C(ZX,Y) + C(X, ZY)

= —2C(a(X, 2),Y).
Next suppose B(X,Y) induces a connection of the first kind and C(X,Y)

induces another connection, then since these forms are nondegenerate there
exists SeGL(m) such that

(2. 6) C(X,Y) = B(SX,Y).

Since C and B are D(fj)-invariant symmetric forms S also satisfies
2.7 [S,D(h)] =0 all heh and

(2. 8) S§*=S(= 5.

where b and ¢ denote adjoints relative to B and C. Conversely if S=S’eGL(m)
satisfies (2. 7), then we can define a pseudo-Riemannian metric and con-
nection by the formulas (2. 5) and (2. 6). Note that from (2. 5) and (2. 6)
we obtain an exact formula for (m,«) in terms of (m, XY) and S[3,8]:

(2. 9) 2a(X,Y) = XY + ST[X(SY) — (SX)Y] or
(2. 10) 2a(X) = L(X) + ST[L(X)S — L(SX)].

Also note that the set of S’s in Hom (m,m) satisfying (2. 7) and (2. 8) form a
Jordan algebra (%, +) relative to the usual multiplication 2S,.S,= S,S,+ S,S..
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Thus the set 9t = ANGL(m) which yield connections is a manifold which is
actually a symmetric space [4] and the connection of the first kind is given
by S =2l

We now compute the various formulas needed. For X, Y, Zem let
(2. 11) X, Y)Z=DZY)X
where D(U,V) = D(h(U,V)), then from [6,9] we have for
B(X,Y) = Killing form |mxm=Kill (X,Y) that

(2. 12) Kill (X,Y) = tr LIX)L(Y) + 2 tr o(X, Y).

Also from [6,7] other identities for the algebra (m,XY) are

(2. 13) XY = —YX (bilinear)

(2. 14) D(X,Y) = —D(Y,X) (bilinear)

(2. 15) D(X,Y)Z + D(Y,Z)X + D(Z,X)Y = X(YZ) + Y (ZX) + Z(XY)
(2. 16) D(XY,Z) + D(YZ,X) + D(ZX,Y) = 0

(2. 17) [D(k), D(X,Y)] = D(D(h)X,Y) + D(X, D(h)Y)

(2. 18) D(k) (XY) = (D(WX)Y + X(D(R)Y).

We use some of these to compute Ric(X,¥). Thus if we set
(2. 19) SNU,VIW = R(W, VU

we have from (2. 1), that

(U, V) = bla(V,U)) — a(V)b(U) + bU)LV) — o(U, V).

In particular when Tor (X,Y) =0 we have from (2. 2) that 5(X) = a(X)—L(X)
and from (2. 4) we have a(X)* = —a(X) and LX)’ = — L(X). Thus traeX)=
tr L(X) =0 so that trp(X) =0. Consequently the Ricci tensor is given by

Ric (U,V) = tr 3}(U,V)
=tr b(a(V,U)) — tr b(U)a(V) + tr b(U)L(V) — tr o(U, V)
= — tr (U)aV) — LV)] — tr¢(U,V)
= —tr 5(U)b(V) — tr o(U, V).

Next, using 5(X) = a(X) — L(X) and (2. 10) we recompute Ric (U,V) in terms
of S as follows. First we note
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26(X) = — L(X) + ST [L(X)S — L(SX)]

so that

(2. 20) —4Ric(U,V)=tr(—L(U)+ S [LU)S—L(XU)]) « (—L(V)+STLLV)S—L(SV)])
+ 4tr o(U, V)
= 2tr L{U)L(V) + tr ST'L(SU)S™'L(SV)
—tr L{U)SIL(V)S — tr L(V)S™'L(U)S + 4tr ¢(U,V)
=2Kill (U, V) — 2tr L{U)ST'L(V)S
+ tr STLL(SU)SIL(SV)
using (2. 12) and
tr L(V)S™'L(U)S = tr [L(V)S~'L(U) ST
= tr S"L(U)*(S™)"L(V)"
=trS L(U)S™'L(V)
=tr L(U)S'L(V)S.
3. Equations for an Einstein manifold.
If we want G/H to be an Einstein manifold relative to the connection
induced by some nondegenerate form C(X,Y), we want a real number 7z

so that —4Ric(X,Y) =9C(X,Y). So we consider the form symmetric and
bilinear in X,Yem given by

3. 1) f(X,Y,S,n) =9C(X,Y) + 4Ric (X,Y)
and attempt to solve the following equation for S and 5 for all X,Yem:

(3. 2) 0= f(X, Y’ 5977)
= 7B(SX,Y) + 4 Ric (X, 7).

In particular if B(X,Y) = Kill (X,Y) is an admissible nondegenerate form
on m, we must solve the equation

(3. °3) Ff(X,Y,S,7) = Kill (S —20)X,Y) + 2 tr L(X)S™'L(Y)S
—tr L(SX)ST'L(SY)S™* =0

In theory these equations can be expressed by equations in the Jordan algebra
A as follows. We note that the three symmetric bilinear forms
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9:(X,Y) = Kill (X,Y), 9,(X,Y) = tr L(X)S™'L(YS)
and g¢,(X,Y) = tr L(SX)S™'L(SY)S!

are related to B(X,Y) by
9:(X,Y) = B(T . X,Y)
where T, = T,(S)eHom (m,m). But since
[S,Dlh)]1=0 and L(D(k)X) = [D(h), L(X)]
(using (2. 18)), we obtain
9:(D(M)X,Y) = —g.(X, D(R)Y).
This yields [T, D(h)] =0 as follows:
B(DT.X,Y) = — B(T;X, DY)
= — g,(X, DY)
= g,(DX,Y)
= B(T\DX,Y).

Also T, =T, so that T,€%. Thus equation (3.2) is equivalent to the
following equation in A:

7S — 2T4(S) + 2T5(S) — Ts(S) = 0

Unfortunately the functions 7'; are difficult to find so we now proceed
using equation (3. 3) directly. We are starting with a nonsymmetric pair
(g,9) with g simple and § semi-simple. This yields that the representation
ady in g is faithful so that by [2, p. 69-70] the trace form Kill [pHx§ is
nondegenerate on §. Thus we may decompose

g=m+ b (subspace direct sum)

where m = §L relative to the Killing form. From this we see [§ m]Jcm so
relative to this decomposition (g,5) is a reductive pair and Kill [mxm is a
nondegenerate form with Kill (XY, Z) = Kill(X, YZ) and Kill(D(h)X,Y) =
—Kill (X,D(#)Y). Now let K= {Xem: Dh)X =0 for all ne}}, then using
(2. 18) and (2. 15) we see that K is a Lie subalgebra of (m,XY). Next we

note

(3. 4) h(K,m) =0,
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for if WeK, zem we have [W Z]=WZ + h(W,Z) and for he)

0 = Kill,([(» W1,Z)
= Kill,(h,[W Z])
= Kill,(h, h(W, Z)), using m = §L,

Thus since Kill [§x} is nondegenerate, kA(W,Z)=0. This yields [K m] =
K mcm so that m is K-module relative to ad,K and also relative to multipli-
cation in (m,XY). To see this let V,WeK, Zem then from (3. 4) and (2. 15)
we have

VW)Z+ (WZ)WV 4+ (ZVIW =0

so that L(K) = {L(V):VeK} is a Lie algebra of linear transformations on
m. Thus m is an L(K)-module and ad,V = L(V) for VeK.

Next we recall some facts on centralizers [2, p. 102]. Let 7 be a
subset of a Lie algebra L of linear transformations on a finite dimensional
vector space V over the reals. Then the centralizer C,(T)={WeL :[W,h]=0
for all 2T}, We have the following result.

TueoREM. Let L be a completely reductble Lie algebra of linear transforma-
tions in the finite dimensional vector space V and let L, be a completely reducible
subalgebra of L, then the centralizer CL(L,) is completely reducible subalgebra of L
acting on V.

For our applications, let V=g, L=ad ¢ and L, =ad §. Then since
g and ) are semi-simple, L and L, are completely reducible on g and
therefore C,(L,) is completely reducible on g. But

C (L) ={ad Wead g :[ad ¥, ad W] =0}
= {ad Wead g : adlhy W] = 0}.

But since g is simple, and ad[§) W] = 0 yields [§) W]=0. Nextlet W =W,+W,
where W,em, W,eb, then 0 =[§ W,]+[§ W,] which implies by the direct
sum g =m 4+ § that [§ W,1=0. But since § is semi-simple [§ W,] = 0 implies
W, =0; thus W = W,em. This gives

C.(L,) = ad K

is completely reducible in g and consequently completely reducible on
adjK-submodules. Thus, writing g =5 + m we have for WeK the matrix
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0 0
ad,W =
0 Wy

using [K m]cm., From this we see that the action of ad,K and L(K) on
m are the same (given by W,,). Thus since ad;K is completely reducible
on m, so is L(K). Thus from [2, p. 47] we may write L(K)=L(c)®L(K")
where the center L(c) = {L(A)eL(K) :[L(A), L(K)]=0} and L(K") ={L(V)e
L(K):VeK'} is a semi-simple ideal or zero. Thus since K— L(K) is an
isomorphism (because L(K) = ady(K) and ad, X =0 implies X =0) we may

conclude

K=c®K

where K’ is zero or semi-simple and ¢ is the center of K.

Next we show that Kill |[Kx K is nondegenerate. Since § is semi-simple
and §— D) : ~— D(h) is a homomorphism (actually an isomorphism using
(2. 17) and the simplicity of g, we have D() is semi-simple. Thus D(§) is
completely reducible on m and since K is D(f)-invariant we may write
m = K + b where b is D(f)-invariant complement. Now D(§)b = b as follows:
if p = D(h)b is properly contained in b then p is a porper D(p)-invariant
submodule of b (because pcbd yields D())pcD(H)b = p). But D(h) is completely
reducible on b therefore there exists a D(h)-invariant complement p’ with
b=p+p. But DOH)p'cp’'nDHb=p'Np =0; thus we must have p'CK.
This contradiction shows D(§)b = b and m = K + D(%)b.

Using this result we assume there is Ue K with Kill (U, K) = 0 then

Kill (U, m) = Kill (U, D(9)b)
= Kill (D(H)U, b) = 0.
Thus since Kill [mxm is nondegenerate we have U =0. In particular
Kill [¢xc¢ and Kill |[K’X K’ are nondegenerate forms and Kill (¢, K’) = 0. For
this we just note
Kill (¢, K”) = Kill (¢, K'K’)
= Kill (¢K',K') = 0.
We can now decompose m = K J- b where we can now assume b = KL

relative to the Killing form and & is D(f)-invariant (using Kill (DX,Y) =
— Kill (X, DY)) and Kill |pxb is nondegenerate. Next let
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K, ={Yeb: LWU)Y =0 for all UeK}.
Then noting from (2. 15) that for WeK and X,Yem,
W(XY)=WX)Y + X(WY)

we see that L(K) is a Lie subalgebra of the derivation algebra of (m,XY).
In particular this gives K, is a subalgebra of (m, XY) which is L(K) and
D(§)-invariant (using (2. 18)).

We shall now show Kill |K,x K, is nondegenerate. Since m is L(K)-
completely reducible the L(K)-submodule 5 is L(K)-completely reducible.
Thus we decompose b = K, + K, into L(K)-submodules. Now in a manner
similar to the proof of » = D(§)b6 we can show K, = L(K)K,. Consequently
if we assume for PeK, that Kill (P, K,) =0 then

Kill (P, K;) = Kill (P, L(K)K,) = Kill (L(K)P, K,) = 0.

Thus Kill (P,5) =0 so that P=0 since Kill [6x5 is nondegenerate.

Thus we can decompose b= K; + K, where K, = KL relative to the
Killing form and K, is L(K) and D(§)-invariant and Kill |K,x K, is non-
degenerate. Due to the lack of more identities, which lead to Lie modules,
this process of taking centralizers appears to stop at this point; we sum-
marize some of the results.

ProrosiTioN 2. (a) Let g be a simple Lie algebra and § a semi-simple
Lie subalgebra, then g can be decomposed ¢ =m +9 where m =YL relative to the
Killing form and (g,%) ts a reductive pair.

(b) If (a,B) us not a symmetric pair then the algebra (m,XY) is simple [9]
and m has the orthogonal decomposition (relative to the Killing form) m=c + K’ + K, + K,
where the subspaces are all D(9)-invariant and satisfy the multiplicative relations
cc=cK' =cK, =0, cK,CK,
K'K'=K', K'K, =0, K'K,CK,
K K,.cK,, K. K,CcK,, K,K,cm
(c) Furthermore K = c@® K’ is a Lie subalgebra of (m,XY) such that D(h)K=0
and K' is semi-simple or zero.

(d) 94+ K is a Lie subalgebra of g such that m is an ad(§ + K)-module and
ad(y + K) are derivations of (m,XY). Also DK, =K, for i=1,2 and L(K)K,=K,
and K, is ad(h + K + K,)-invariant.
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We have shown all but the last part of (d) and this follows from
MK, K,) =0. To see this note

0= Kill([§ K], K;), using K, = KL
= Kill (b, [K, K,])
= Kill (§, #(K,, K,)), using m = §L,

We now use this decomposition to make a guess for a matrix of the linear
transformation S which determines a connection via an algebra (m,a). If
in practice some of the above spaces are zero, then the corresponding
elements of the matrix are just omitted. When K’ is semi-simple, let
K=K'®--- DK/ and let S have matrix given by:

Sle = s;I, S|Ky = s,;1
S]KIZS'g[, S[K2=S4[

where I denotes the identity matrix of appropriate size and s;, s,;# 0.

Now recall that if K’ = K/ ® -+ - K,/ is a semi-simple Lie algebra with
Ky = Ky K/ a simple ideal, then for a derivation D of K’ we have DK; =
D(K/K/) = (DK/)K{ + K;/(DK;)cK;. Thus since the above spaces in the
decomposition are all D(§)-invariant we have

[D(),S]=0 and S"=S

where b denotes the adjoint relative to B(X,Y) = Kill(X,Y). Thus by (2. 9)
we can define an algebra (m,«) which gives a pseudo-Riemannian connec-
tion relative to C(X,Y) = Kill (SX,Y). We compute the multiplication for
(m, a) relative to the above decomposition for m,

Let A, Bec¢, P;, Q;€K/, U,VEK,, X,Y<K,, then

a(A,B) =0 (A, P) = 0

(A, U) =0 2a(A, X) = ﬁi—% AXeK,
a(PyA) =0 2e(P;, Q) = PQ,EK/NK,’
a(P,U) =0 2a(P;, X) = 35475521; PXeK,
(U, 4) =0 (U, P) =0

2a(U,V) = UVEK, 2a(U, X) = —2—5%?3” UXeKk,
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2a(X, A) = — : AXeK, 2a(X,P)= —%PleKg’
4
2e(X, U) = — j“ UXeK, 2aX,Y)=XYVem.
4

ProposttioN 3. Let (g,9) be a nonsymmetric reductive pair with g simple, B
semi-simple and g=wm 1Y with wm =YL relative to the Killing form. Let
m=c+ K + K, + K, be the decomposition previously discussed and let S:m—m
be as above where 2s, — s, 50, 2s,— $,;7 0 and 2s,— s3+0.  Then the algebra
(m, @) determined by S has no proper D(Y)-invariant left ideals. Thus by (8] if the
corresponding space G[H is simple connected, then G/H is holonomy irreducible relative
to the pseudo-Riemannian connection induced by C(X,Y) = Kil(SX,Y) and the
algebra (m, ).

Progf. Let n be a proper D(§)-invariant left ideal of (m,a) and let
u(c), n'(f), n(l) and n(2) be the projection of n into ¢, K/, K, and K,
respectively. Thus, for example, n(c) is the set of Bec¢ such that there
exist Q;€K;/, VeK,, YeK, with B+ 3Q;+V +Yeun. We shall show that
all the subspaces (of m) u(c), - + -, n(2) are in u and use this to show (1, XY)
is a proper ideal of (m,XY) which contradicts the results in Proposition 2
(b).

First we note that the subspaces u(c), n/(j), n(1), n(2) are all D(§)-invariant
since n is D(f)-invariant. Next we shall show

Dn(s) = un(i) for i = 1,2 and u(2) = L(K) n(2)cu.

For suppose D(§) n(l)cun(l) properly, then » = D(§) u(l) is a proper D(b)-
submodule. Since D(§) is completely reducible in n(1) we have n(1) = p+p’
where p’ is a D(§)-invariant complement. Thus D(§)p’ cp’ND(§) n(1)=p'Np=0;
that is, p’c K which is a contradicition unless p’ =0. This gives n(l)=p=
D(b) n(1) and similarly for n(2). Next from Proposition 2 (d) we see that
L(K) = ad(K) maps K, onto K, and is completely reducible in K,. From
the preceding let N, = 31D,N,,en(2) = D(§) n(2) where the N;,;en(2), then we
can find elements Noz-eln(c), Nj,ew(j) and N;;en(l) such that ¢ = N, +
21N, + Ny + N en. But then ¢ =3D;q; = 2D,;N;; + X2D;N;; = N, + N;en
Vi/here N,en(1). Thus for any Aec and P,=K/ we have

2a(4, q) = LS;:-& AN,ennkK, and

4
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28

20:(Pj, q) = —%&le\’zennl{z.
4

Using the hypothesis, these imply L(K) n(2)cnnK,cn(2) and of course
L(K) n(2)cu. Thus we shall now show u(2) = L(K) n(2). For n(2)+0
implies p = L(K) u(2) is a nonzero L(K)-submodule of n(2) and if p is a
proper submodule, then since L(K) is completely reducible in n(2) we can
write n(2) = p + p’ where p’ is L(K)-invariant. Thus L(K)p’cp’n L(Kn(2) =
p'Np =0 so that p’cn(l) i.e. p’ =0 and n(2) = L(K) u(2).

Next let N, = 3ID;N;;en(l) = D(h) n(l) where N,en(l) and let N,en(c),
Nj,en'(j) and N,en(2) be such that p, = N, + 3IN}, + N+ N,en.  Then
p = D;p; = 3ID,N;; + 3AD;N;, = N, + N,en where kfgen(z). But uw(2)cn yields
N, = p — N,en i.e. n(l)cn. Note if K=0, K,=0 so just use the above
argument.

Finally let Njen'(j) # 0, then since (1) and n(2) are in 1, we can find
N,ew(c) and Njew(i) with {#j so that » = N+ Nj}+ 3IN/en. Then
2a(Pj,r) = PiNjenn Kjcn/(j), which shows u/(j) is a nonzero ideal of the
simple Lie algebra Kj. Thus Kj =u'(j) and using the preceding compu-
tation we obtain since K; = K/K;'

w(j) = K/n'(j)cnn Ky cu.

Therefore since w/(j), n(1) and w(2) are in un so is n(c). We use this to
obtain 1 = n(c) + X'(4) + w(1) + n(2) as a subspace decomposition, the multi-
plicative relations preceding Proposition 3, and the hypothesis to obtain
mnCa(m,n)cn. Thus n is proper ideal of (m, XY), a contradiction.

Remark. Starting with the pair (G,H) where G is a connected Lie
group and H is a closed Lie subgroup, we obtain the reductive pair of Lie
algebras (g,5) so that conditions on the algebras give algebraic results on
connections. But to easily translate these conditions—in particular, holonomy
irreducibility—back to M= G/H we need that M 1is simple connected. If
this is not the case, we shall construct a connected Lie group G with Lie
algebra g and a closed connected subgroup A with Lie algebra § so that
M= G/H is simple connected. Furthermore, since the pair (G, H) yields the
corresponding reductive pair of Lie algebras (g,5), M is a reductive homo-
geneous space to which the algebraic conditions can be applied. Thus let
G be the connected simply connected universal covering Lie group of G and
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let ¢ : G— G be the corresponding covering epimorphism. Then G has Lie
algebra g and K = ¢~(H) is a closed Lie subgroup of G and the Lie algebra
of Kis 9, using ¢ as a local isomorphism. Now let H= (K),=the connected
component of K in K. Then H is closed in K and since K is closed in
G, H'is closed in G. Thus since the Lie algebra of A is §, the pair (G, H)
has the corresponding reductive pair of Lie algebras (g,§) so that M= G/H
is a reductive homogeneous space.

Next M is simply connected. First, M is connected since it is the image
of the continuous map #: G —G/H of the connected space G. Thus since
M is a connected manifold, it is also path-connected. Now regard G/H as
a fiber bundle where the total space is E =G, the base space is
B = G/H, the fiber is F= H, and the projection is #: G >G/H. Then from
the last few terms of the homotopy exact sequence of a fiber map extended
to z, [1, p. 8; 9, p. 3771 we have for the identity & of G,

B 0 -
= (G, &) —> n,(G/H, H) —> ny(H, &) = .
But since G is simply connected, ,(G,é) =0 and since H is connected,
7(H,&) = 0. Thus by the exactness of the sequences,

=Im 74, = Ker 9 = n,(G/H, H).

Thus since M is path-connected, it is simply connected.

Next using (3. 3) we shall derive the equations so that the connection
discussed in Proposition 3 makes G/H into an Einstein manifold; that is, we
have an Einstein connection. First we compute the matrices for the left
multiplications L(Z) for Zem. From Proposition 2 (b) we have for A, Bec

0 0 0 0

0 0 0 0
(3.5) L(A) =

0 0 0 0

0 0 0 Ay

and iKill (4, B) = tr LLA)L(B). For P, Q;eK;

0 0 0 0

0 Py, O 0
(3. 6) L(Py) =

0 0 0 0

0 0 0 P,
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and Kill (P, Q) = tr L(P)L(Q;). For U,VeKk,

0 0 0 0

0 0 0 0
(3. 7) L) =

0 0 Uy 0

0 0 0 Uy

and Kill(U,V) = tr LWU)L(V) + 2 tro(U,V). For X,YEK,
0 0 0 X
0 0 0 X4
0 0 0 Xy
Xy X Xio Xy

(3. 8) LX) =

and Kill (X,Y) = tr L(X)L(Y) + 2tre(X,Y). Note that the matrices P, X,
and X,, can be put into block form according to the decomposition
K=K ®--- DK,

Now we note that the orthogonality of ¢, K, K, and K, relative to the
Killing form give corresponding solutions to (3. 3) as follows.

f(A, P, S, ) = (s, — 2) Kill (4, P;) + 2tr L(A)S™'L(P,)S
— 5,55 tr L(A)S™L(P;)S™
=0
using the block matrices for L(4) and L(P;) and 0= Kill (4, P) = tr Ay Py.
Similarly f(A4, U, S, ) = f(4, X, S, 7)) =0. Also for i =j, f(Pj, Qs S, 7) =

f(PyU,S,m) = f(Py, X,S,9) = f(U,X,S,7) =0. For the last equation we must
also use

tr o(K, K,) =0

which yields 0 = Kill (U, X) = tr L({U)L(X) + 2 tr o(U, X) = tr L{U)L(X) = tr Uy Xy
To see tro(K,,K,) =0 we note from Proposition 2 (d) that D(K,, K,) = 0.
Thus oK, Ky))c = D(c, K,)K, = 0; oK, K,)K' = D(K',K,)K, = 0; ¢(K,, K,)K, =
D(K,, Ky)K, = 0; o(K,, K;)K, = D(K,, K,)K; K, which vyields tra(K,, K,) = 0.
Next we consider the nonorthogonal equations. For A, Bec we have
f(A,B,S,9) = (gs, — 2) Kill (4, B) + 2 tr L(A)S™'L(B)S
— 5;2tr L(A)S™'L(B)S™!

https://doi.org/10.1017/50027763000013702 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013702

96 ARTHUR A. SAGLE

= (98, — 2) tr AyBy + 2tr AyBy,
— s;%(s, 72 tr Ay Byy)
= s;(n — s, 8,77 tr Ay By,
and since Kill (4, B) = tr A;,B,, is nondegenerate on ¢ we must have
3.9 7 =25 8§72
For P;, Q,=K; we have
f(Ps, Qi S, 1) = (7553 — 2) Kill (P;, Q)
+2tr L(P;)S™L(Q,)S
— (825)% tr L(P)S™L(Q;)S™
= (95q5 — 2) tr L(P})L(Q;)
0 0
Pyys,i— 1 Q2255
+ 2tr
Pys,™t Q4454
0

(=)

(st Pyys,57! (O
Pys™? Qs
= (9535 — 1) tr PpyQqy + (15, — Sp5%5,7%) tr PyyQ
= (9555 — 1) Killy(Pj, Q) + 5251 — 5258,7) tr 0(P;)0(Q;)

where Kill; denotes the Killing form of the simple Lie algebra K; and
o : K/ -Hom (K,, K,) : P;— po(P;) denotes the representation of K, given by
o(P)X = P;X. But since tr p(P;)p(Q;) is an invariant form i.e. B(XY,Z) =
B(X,YZ), there exists a self-adjoint linear transformation 7=7,€ Hom (K;, K;)
with tr p(P)p(Q;,) = Kill(TP;,Q,) and T is in the centroid I'(K/), see [2, p.
290; 7]. To see this we note

Kill(TL(P)Q;, R;) = tr p(P;Q;) p(R))
= tr p(P))p(Q;R)
= Kill(TP;, Q;R;)
= Kill,(L(TP)Q;, R))
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so that TL(P) = L(TP;). This yields [T,L(P)]=0 and therefore TeI'(K;).
But I'(K;) is a field which is at worst isomorphic to the complex numbers
(2. Thus T =a;/+b;] where J24+I=0 and @, b are real. Combining
this with the equation involving S we must have

Kiuj([nszj — DI + 5350 — 5558, 3)T1P;, Q;) =0
which yields
(3. 10) (S5 — 1) + @js2;(n — $555,7%) =0 and
biSyi(n — 8255, = 0.

In particular if Kill(P;,Q,) or Kill(P;,@,) or tr p(P;)p(Q, are definite (posi-
tive or negative), then T; has a real eigenvalue which implies b; =0. For
U,Ve K, we must have

fU,V,S,n) = (3s; — 2) Kill (U, V) +

0 0
0 0
+ 2tr
U33$3_1 Vaass
Uysi™? ViiSs
0 0
0 0
— (s3)% tr
Usss;™! Visss™!
U4454_1 V44S4_1
= 2(ps; — 2) tro(U, V) + (983 — 1) tr UssViys
(3. 11) + (pss — s32s,” ) tr UV
= 0.

Finally for X,YeK, we first note that in the matrix (3.8) for L(X) the
blocks X,, and X,, are block matrices since K'=K/® -+ ®K,’. Thus
write X, = [X,,(1) « + - X;o(#)] and similarly for X,,, Now we must have

f(X,Y,S,y) = (ys, —2) Kill (X, Y) + 2 tr L(X)S™'L(Y)S
— (spr L(X)S"L(Y)S™!
= 2(psy — 2) tro(X,Y)
+ (s, — 2+ 28,5, — 5,5, tr X, Y,
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+ (987% -+ 575y tr XYy,
(3. 12) + (5s — 2+ 2535,71 — 848,71 tr Xy, Vg
+ (9572 54537 tr XYy + (95, — 1) tr XYy,
t
+ E (084 — 2 + 2577835 — $453)) tr Xpu(7)Y 15(4)
t

+ (9S4 — 2+ $480571) tr X45(5)Y 54(4)

j=1

=0.

Remarks. (1) In the next section we shall make various irreducibility
assumptions on the spaces K, and K, which makes the computation of the
“trace forms” in (3. 11) and (3. 12) more reasonable.

(2) The classification of holonomy irreducible Einstein manifolds relative
to the connection of the first kind (i.e. S=a/) appears to be an open
problem. Some progress has been made for low dimensions by G. Hensen
in his thesis at the University of California at Berkely. Also if § acts
irreducibly on m, then one obtains an Einstein connection [11]. For in
this case let B(X,Y) be a metric inducing the connection, then there exists
Se with Ric(X,Y) = B(SX;Y) where ¥ is the Jordan algebra previously
discussed. But since B(X,Y) is positive definite, S is symmetric and has a
real eigenvalue 2.  Thus if Ric(X,Y)=0, then {Xem:SX=21X} is a
nonzero Y-invariant subspace of m which therefore must equal m. Thus
S=1I so B(X,Y) =3 Ric(X, V).

In the next section we shall give an easy test to see if a given reductive
pair (g,9) induces an Einstein connection of the first kind.

4. Some examples.

We now compute some general examples which yield holonomy irreducible
Einstein manifolds as previously discussed. Thus using the decomposition
m=c+ K + K, + K, we shall show that the corresponding S:m—>m exists
i.e. the equations (3. 9)-(3. 12) have solutions. Then we shall note that S
can be chosen to satisfy Proposition 3 i.e. the algebra (m,e) has no §-
invariant left ideals.

For the first example let g be the nxn real skew-symmetric matrices
so(n) and let § be the kxk real skew-symmetric matrices where 3 <<k < n—2;
thus we are essentially considering the ;algebra of the non-symmetric Stiefel
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manifold SO(x)/SO(k) which is simply connected [1, p. 83]. We let g be
represented by the skew-symmetric matrices

{F“ Fm}
“‘Flzt hzz

where the hy, is kxk skew-symmetric. We identify § with the set

o
0 Iy
and note that m = §L equals the set

{Fu Fm]
—Fy' 0 )
Next let n =k+7» so that K is identified with the rx7r skew-symmetric

matrices where » =3, Thus K= K’ is simple except when » =4. In this
case K = K’ ® K,’ and we let s,y = s, = s,.  Thus K equals the set

[F 1 0}
0 0

Furthermore, K, =0 so that b = KL = K, which equals the set

{o Fm}
—F,t 0 J

Now by Proposition 2 (d), ady(h + K) acts on b and this action is ir-
reducible. This can be seen by noting ad(f + K) is isomorphic to 8o(k)+3o(r)
where £+ 7 >4 and the symmetric pair (3o(x), 3o(k) + 3o(»)) is irreducible.
This means that in the decomposition g =9+ K+ b ad(h + K) acts irredu-
cibly on b; this can also be shown by straight forward matrix computations.

We now determine S relative to the decomposition m = K’ + K, and
use the various irreducibility conditions to help solve equations (3. 10) and
(3. 12).

A straight forward computation shows that we always have for PeK’

tr o(P)o(P) = —*_ Kille(P, P)

so a=Fk/r —2 and (3. 10) becomes
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(4. 1) (r —2) (s, — 1) + ksy(n — $,5,%) =0

where k+7» =n, Next equation (3. 12) becomes
2ps, — 2)tro(X,Y) + (9s, — 1) tr X,,Y,
+ (pss— 2+ 25718, — sy STNr XV + (954 — 2 4 845,71 tr XYy,
=0

noting X,, = X;,=0 in (3. 8). We can further simplify as follows. First
note that [K,, K,JcK + 5 so that K,K,cK which gives X,,=0. Next note
that L(X) is skew-symmetric so that X,, = — X,,’; thus we obtain tr L(X)L(Y)
= —2tr X,,Y,,/ and consequently

(4. 2) 20psy— 2)tra(X,Y) + (95, — 2 + s,5,7) tr L(X)L(Y) = 0.

Next we use the ad(h + K)-irreducibility of K, =5 as follows. Since
D(K,m) =0, we see that ad(h+ K) acts like derivations on the algebra
(m, XY) by Proposition 2 (d). Thus for Dead(h + K) we have

L(DX) = [D, L(X)]

which yields tr L(DX)L(Y) = — tr L(X)L(DY).  Thus the form tr L(X)L(Y) is
ad(h + K)-invariant. Since Kill(X,Y) is also ad(§ J K)-invariant and
Kill (X,Y) = tr LX)L(Y) + 2tr o(X,Y) we have tro(X,Y) is ad(h + K)-invariant.

Using this we can write

tr LX)L(Y) = Kill (T, X,Y)
tro(X,Y) = Kill (T,X,Y)

where T; are self-adjoint relative to Kill (X,Y) and [T;,ad(§ + K)] = 0. Thus
since Kill (X,Y) is positive definite the 7, have eigenvalues. But since K,
is ad(y + K)-irreducible this gives T; = b,J. Thus from (4. 2) we obtain

4. 3) bi(nss — 2+ 5,8,71) + 2b,(9s4 — 2) = 0
where a straightforward calculation shows
b, = (r —1)/(n —2) and b, = (k — 1)/2(n — 2).
Thus after simplification we must solve the two equations
4. 4) r—2)u*+kv*— (n —2uv =20

(4. 5) m—=2u*—2m—2u+(r—1v =0
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where k+7r=un, u =175s, v=75s,, From (4. 5) we obtain

v=<7:___127 (2—u)u

which substituted into (4. 4) gives
(n—2%n—1u*—2n—2*n+k—1Lu
+dkn =2+ (r—2)(r—12=0
and a solution exists. Thus a mapping S exists which yields an Einstein

space which is furthermore irreducible. For this last we must only show
2s; % S,. Thus assume 2u = v, then substituting into (4. 4) we obtain

u = ¥Zl;+‘3]7€”_‘72¥
2n—2) °

But substituting 2z = v into (4. 5) we obtain

= 2k—=1)
u n—2
which leads to the contradiction » = — 2.

Remarks. (1) For the case § =3o(n —1) we obtain a symmetric pair
(a,5) which is irreducible and Einstein. This follows from XY =0 and
therefore — 2 Ric (X,Y) =2tre¢(X,Y) = Kill (X,Y)

For the case § = 30(n — 2) we obtain an irreducible reductive pair (g,5)
but in this case K = ¢ is abelian. Thus in the notation of [6, p. 122] we
have ¢ is spanned by the element uem. Using the explicit computations
in [6], one can easily see that an S exists which yields an irreducible
Einstein connection.

(2) We shall now give a general test which shows that the above con-
nection cannot be a connection of the first kind. Thus let (g,§) be a re-
ductive pair with m = §L relative to the Killing form where Kill [mxm is
nondegenerate. The Ricci curvature for a connection of the first kind (i.e.
S = 2iI) is given by

—4Ric,(X,Y) = 2Kill (X,Y) — tr L(X)L(Y)
=tr LX)LY )+ 4tro(X,Y).
for X,Yem. Thus —4Ric,(X,Y)=7Kill(X,Y) yields

(4. 6) (1= tr LX)LY) =2(n—2)tre(X,Y).
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Now in the above example we have for all P,QeK that tr¢(P, Q) = 0 while
tr L(P)L(Q) = 0 for some P,QeK; e.g. P=Q +0. Thus from (4. 6) we must
have 7 = 1. But this gives tro(X,Y) = 0 for all X,Yem which is impossible.
This process generalizes when one considers linear combinations of tr L(X)L(Y)
and tre(X,Y) for an admissible pseudo-Riemannian metric i.e. by demanding

2tr LX)LYY) + ptro(X,Y) = 9 Kill (X, 7).

(3) In the preceding example if we let §, =9 & Kcg, then (g,5,) is a
symmetric pair. Thus [K,K,]c}, so that X,,=0 so that one of the “trace
forms” is zero. However more important for computing the trace forms is
that (g,9,) is an irreducible pair i.e. ad §, acts irreducibly on K,. Thus in
an attempt to classify the reductive pairs (g,9) one could start with those
pairs for which (g,5;) is an irreducible symmetric pair.

(4) More complicated computations show that the pair (g,5) with
g = 8o(n) and § = 30(p) @ 3o(g) yields an irreducible Einstein space (3<<p <
p+g=<n-—2). We consider g as the set of skew-symmetric matrices

Fn F, Fyu
- 125 h22 Fzs

t t
—Fy' —Fy' hy

and Y as the set of matrices

0 0 2%

where h,, is pxp and kg is gXg.  In m=3HL we note that

F,, 0 0
K is the set 0 0 0
\ O 0 0
0 0 0

K, is the set 0 0 F,;
0 —Fy' 0
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O F12 F13
and K, is the set —F,t 0 0
_F13t 0 0

But note in this case (g,5;) is not irreducible or even a symmetric pair.
However, if we let p+g+7r=#n and let b, =9 + K, + K= 3o(p + ¢) + 8o(r),
then (g,9,) is irreducible symmetric which simplifies computations and yields
another possibility for a general classification process of reductive pairs (g, §).

Finally we give an example where the restricition of the Killing form is
only nondegenerate and the algebra K is not simple—actually K= ¢ is
abelian. Thus let g be the n + 1x#n + 1 matrices of trace zero i.e. type A,
and let § be the nxn matrices of trace zero imbedded as follows [6, p.121].
Let e;; denote the usual matrix basis where ¢,7=1, --+,n+1 and let

hy= e — €nt1ne1, k=1, «++, n which is a basis of a Cartan subalgebra.
Let § have basis

e; for i,7=2,-+-+-,n+1 and
h, for k=2, -+, n.

Then noting that since Killy(X,Y) = 2(n + 1) tr XY for all X,Yeg we see that

Kill |§x§ is nondegenerate so we let m =3§L, Thus m has a basis
e, ¢ for j=2,.-., n+1 and
u=-—nh +hy+ -+ +h,
and we have the multiplication relations [6]
uey = — (n+ Dewy, uey = (n+ ey
€1,61q = €pep =0, €,y = i— 0 pqlh.
We note that K= Ru ie. K'=0, K, =0 and K, =L, + L, where L, (resp.
L,) is spanned by the ¢,; (resp. ¢;) and the L, are ad Y,-itreducible where

h,=5+ K=09,. Thus (g,9,) is a reducible symmetric space but we can
still compute the various trace forms.

Next we compute the equations (3. 9)-(3. 12). Thus since K’ = K, =0,
we have

4.7 7= 5,847
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which uses tr L(u)L(x) 0, (see (4. 9)).

Next note for XK, that in (3. 8) we have Xy = X3 = 0= X, = X = Xuse

Thus from (3. 12) we have

(4. 8) 2098, tro(X,Y) + (9572 + 5,780 tr XYy
+ (952 4 250570 — 5,5, tr X Yy,
=0

But a straight forward computation shows that for
Z = 2ou + epen T 22hen €M,

0 (n+ 1)z —(n+1)2’

P RV
L0 (n + 1)zl

where z = (2, * * * 21 as1)y 2’ = 231+ + - 2441;) and ‘z denotes transpose.

for U,Vem we obtain

tr LW)L(V) = — —Zlﬁ*”[u(w + o(tu’)]
+ 2n(n + 1)2u4,
(4. 9)

— 201 sy + o)

+ 2n(n + 1)2uy,.

Thus

In particular for X,YeK, we have since X, =®+1)(x, —2’) and X, =

}; t(— x’, 1) that

tr XV = tr X,Y,

= % tr LIX)L{Y).

Next using tr L(X)L(Y) + 2tro(X,Y) = Kill (X,Y) =2(n + 1) tr XY

= —ntr LX)L(Y) we obtain

tro(X,Y) = — % (n 4+ 1) tr LX) L(Y).

Thus equation (4. 8) becomes
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0=[=(+ D sy —2) + L (s, — 245,750
+ %- (751 — 24 28,507 — 545,7) ] tr L(X)L(Y)
Which yields
nysd—2n s;— s; =0,
Using this and (4. 7) we obtain the solution

—1

From this 2s, = s, is impossible so we obtain irreducibility.

Remarks. (1) Using the previous remark and (4. 6) we see the above
connection cannot be of the first kind since tr o(u, #) = 0 while tr L(x)L(x)#0.

(2) If pis of type A, with » <»n — 2 and imbedded in g similar to the
above example, then we also obtain an irreducible Einstein connection. In
this case K =c¢® K’ where ¢ = Ru is one dimensional and K’ is simple of
type An-r-;.

These and other examples led to the conjecture in the Introduction. It
appears that the solution to (3. 3) will have to be done by other methods
than used above but that irreduciblity can be done algebraically.
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