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1. Introduction

Let V and W be finite dimensional real vector spaces, k^.0 an integer. We write
Uy, W) for the space of all linear maps V-* W and Lk(V, W) for the subspace of maps
with kernel of dimension k; in particular, Lo( V, W) is the open subspace of injective
linear maps. Thus Lk(W, W) is the space of n x n-matrices of rank n — k in the title. We
also need the notation Gk(V) for the Grassmann manifold of fe-dimensional subspaces
of V.

In this note we shall investigate the homotopy theory of the smooth fibre bundle

n:Lk(V, W)-*Gk(V)

obtained by mapping an element of Lk( V, W) to its kernel. The basic structure of the
bundle is recalled in Section 2. In Section 3 we study the stable homotopy type and
establish a stable splitting theorem as a consequence of Miller's results [5] on Stiefel
manifolds. To state a special case of the theorem we introduce the notation: Lk( V, W) +

for the pointed space obtained by adjoining a disjoint basepoint to Lk(V, W), Gkl(W) for
the flag manifold O(n)/O(k) x 0(1) x O(n-(k + l)) (for k,l^0, n^k + l). We think of a
point of Gkl(W) as a pair of orthogonal subspaces of W of dimension k, I respectively,
and write C», Vi f° r t n e canonical k- and /-plane bundles. Then we have:

Proposition 1.1. For O^fc^n, the space Lk(U", W)+ splits stably as a wedge of Thorn
spaces:

V Gk,(Rn)A2l"®(C''e'").
0£lgn-k

In Section 4 we ask when the fibre bundle n is fibre homotopy trivial. Our answer is
only partial, but includes:

Proposition 1.2. For 0<k<n, the bundle n: Lk(W,W)^rGk(W) is fibre homotopy
trivial if and only if

either (a) (n, k) = (2,1), (4, 3) or (8,7),

or (b) fe=l and n>2.

In case (a), but not in case (b), the bundle is trivial as smooth fibre bundle.
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2. The fibre bundle

To understand the structure of the bundle n, we write ( (or sometimes £») for the
canonical fe-plane bundle over Gk(V) naturally embedded as a sub-bundle C s F of the
trivial bundle V. (It is often convenient to use the same notation for a vector space V
and the trivial vector bundle B x V->B over a space B.) Then we can identify
n:Lk(V, W)->Gk(V) with the bundle L0(V/£, W)^Gk(V) whose fibre at a point KeGk(V)
is the space L0(V/K, W) of vector space monomorphisms V/K-*W. An element
feLk(V, W) is identified with the induced quotient map: K/ker(/)->W at K = ker(/).

Next we want to replace the bundle n by a homotopy equivalent bundle with
compact fibres. To that end we now assume that the vector spaces V and W are
equipped with (positive-definite) inner products. Write O( V, W) for the Stiefel manifold
of isometric linear maps V->W. As is well known, O(V, W) is homotopy equivalent to
Lo( V, W). More precisely, we have:

Proposition 2.1. Write p(V) for the vector space of self-adjoint operators V-*V. Then
there is a natural diffeomorphism:

O(V,W)xp(V)^L0(V,W)

given by

For V=W this is the standard factorization of an invertible matrix as a product of an
orthogonal and a positive-definite matrix. The general proof is the same. Notice that
(2.1) gives a natural tubular neighbourhood of the submanifold O(V, W) of L(V, W) and
natural stable trivialization xO{V, W) @ p(K) = L(K WO of the tangent bundle.

From now on we shall abbreviate Gk(V) to B and identify V/( with the orthogonal
complement C1 of ( in V. Functors on vector spaces are extended to vector bundles in
the usual way. Then the naturality of (2.1) gives a diffeomorphism over B:

. (2.2)

We write:

E = LO(CX,W),' E = O(t;\W).

Thus E-*B is our original fibre bundle n, and this is fibre homotopy equivalent to the
compact fibre bundle E->B.

Remark 23. Under the diffeomorphisms (2.2) 0(CX, WO corresponds to the subspace
of Lk(V, W) consisting of elements / whose adjoint / * satisfies: f=ff*f

Lemma 2.4. The bundle E-*B admits a cross-section if and only i/dim Fgdim W.

This is easy. We include the proof because it introduces notation required later. The
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Grassmann manifold Gy[V) will usually be written as the projective space P(V) and Ci
as the Hopf bundle H. There are two embeddings:

P(W-"+1)-LGk(M
n)J-P(nk+1) (2.5)

(for 0<k<ri) given as follows. A 1-dimensional subspace L of R"~*+1 is mapped by i to
L S R ^ ' c R " , and a 1-dimensional subspace L of Uk+l by ; to the orthogonal
complement of L® R""*"1 in R". Note that:

i*C = H®Uk-\ ;*C-L = / /©[ r -* - 1 . (2.6)

Proof of (2.4). Take V=W and suppose that E-*B has a section, which we can
regard as a bundle monomorphism: ^L-*W. The pull-back via j is a monomorphism
H@W~k~x-*W over P(Uk+1) with orthogonal complement a, say. Since wko±0,

For the remainder of the paper we shall assume that dim Kg dim W and write W as
an orthogonal direct sum U@V with diml/ = m, dimK=n. This splitting gives an
obvious section of E-*B.

3. A stable splitting

We consider the stable homotopy type of the fibrewise one-point compactifications
Eg-^B and Eg-+B obtained by adjoining a point at infinity to each fibre. (See, for
example, [4].) Recall first that Miller in [5] established a stable splitting

) + ̂  V G,(F)0(!;')®(t/®Cl). (3.1)

Here the superscript " + " again denotes one-point compactification, and o((,) is the
vector bundle with fibre at a point KeG,(V) the Lie algebra of the orthogonal group
O(K) of the vector space K. Miller's constructions can be performed equivariantly with
respect to the action of the orthogonal groups 0{U) and O(V), as in [1]. The result thus
extends directly to a splitting theorem for a bundle of Stiefel manifolds by replacing U
and V by vector bundles. We apply this to E-*B to conclude:

Proposition 3.2. There is a natural stable splitting over B:

F+~ \/ c, /r-i-vO
£fl — \JB ul(S, )B

O g l *

as a wedge over B of Thorn spaces over B.

For clarity we have here used n, for the canonical /-plane bundle over the Grassmann
bundle G^C1). The concept of "Thom space over B" should be self-explanatory: the fibre
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over K e B is the Thorn space

G (xi)0('"'®(l'e'C)<8'"

By collapsing the section B at infinity in Eg to a point we obtain Eg/B = E+ and (3.2)
gives a splitting of £ + . Now £ + is homotopy equivalent to the space Lk(V,U®V)+
obtained by adjoining a disjoint basepoint to E (rather than compactifying).

Corollary 3.3. There is a natural stable splitting:

Lk(V,U®V)+^ V GM(F)0('»)e(i;eCl')®*.
OSlZn-k

As in the special case (1.1), Gkl(V) is the space of pairs (K, L) of orthogonal subspaces
of V of dimension k, I respectively. The case k = 0 is Miller's original theorem.

4. The question of triviality

In this section we ask when the bundle E-*B is fibre homotopy trivial, or, more
restrictively, trivial as smooth fibre bundle. Notice that, if E-*B is fibre homotopy
trivial, then so is E-*B, and Eg-*B is certainly stably fibre homotopy trivial. If E-*B is
trivial in the strong sense, then so is Eg-*B, and both Eg~->B and Eg~->B are stably
fibre homotopy trivial. It is stable triviality that we investigate first.

Proposition 4.1.

(i) / / Eg-yB is stably fibre homotopy trivial, then the sphere-bundle
(o(CJ")©(t/©0®Cx)B is stably fibre homotopy trivial.

(ii) If Eg -*B is stably fibre homotopy trivial, then so is ((t/@

Proof of (i). Write F for a fibre of E->B; it is a Stiefel manifold of dimension N, say.
Since F is connected and admits a framing, there is a stable map e:SN->F+ which
induces an isomorphism of integral homology groups in dimension N. Writing t, for the
vector bundle o(C1)©(l/©C)®C1 over B, let p: Eg-^^g be the projection onto the top
factor, l = n — k, in the decomposition (3.2).

Now suppose that we have a stable trivialization t:BxF+-*Eg~ over B. Then
poto(l xe):BxSN->i;B~ is a (stable) fibre homotopy equivalence, by Dold's lemma, since
it induces a homology isomorphism in each fibre.

This completes the proof of (i). The proof of (ii) is similar, using the equivalence:
E+^E* AB(p(Cx))B

+ given by (2.2). Observe that (o (C 1 )0 ( l / e00{ 1 )0p(C 1 ) is
isomorphic to {U@V)@iL.

Remark 4.2. It is, of course, unnecessary to use the strength of (3.2) to obtain the
projection p "onto the top cell" of E. We simply take a tubular neighbourhood (over B)
of the standard section B-*E. The normal bundle is <!;, and the Pontrjagin-Thom
construction gives the required projection p.
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Recall that E->B is the bundle Lk(V, U@V)->Gk(V) and that dim U = m, dimK=n.
We shall discuss the triviality problem under three headings: (a) l<fc<n— 1, (b)
k = n — 1, (c) fc=l. Standard facts about vector and sphere-bundles over real projective
space will be used without comment; they can be found in texts such as [2], [3].

(a) 1 <k<n-1

Proposition 4.3. / / \<k<n — 1, then E-*B is not fibre homotopy trivial.

This is an easy corollary of (4.1) (i). Indeed, we shall show that if Eg -*B is stably fibre
homotopy trivial, 0 < k < n, then

-m-k+l=0(moda(n-k + l))
(4.4)

m + k+1 =0 (moda(k+ 1)),

where a(r) is the Hurwitz-Radon number, the order of [ H ] - l in KO°(P(Ur)). The
proposition then follows; for, if k> 1 and n — fe> 1, then both a(k+ 1) and a(n — k +1) are
divisible by 4.

Proof of (4.4). As above set £ = 0 ( ^ ) 0 ( 0 T 0 0 ® C 1 . Then, by (4.1)(i), £+ is stably
fibre homotopy trivial. The congruences (4.4) are just the conditions that the restriction
of & to each of the subspaces P(U"-k + 1) and P(R*+1) as in (2.5) is stably fibre
homotopy trivial.

We give the details in the first case; the second is similar. It is convenient to think of
o(C1) as the exterior square A2(CX). Then we have, by (2.6),

in K00{P(U"-k+1)). Using the identity k\x + y) = X2x + xy + l2y we obtain:

[!-•{] - dim £ = ( - m - k + 1)([H] - 1 ) .

So the sphere-bundle associated to i*£, is stably fibre homotopy trivial if and only if
a{n — k+ 1) divides —m — k+1.

(b) k = n-\

In this case, by taking orthogonal complements we can identify B = Gn-l(V) with
G1(V) = P(V) and £x with the Hopf line bundle H. The bundles E-+B and E^B become
L0(H, U®V)->P(V) and O(H, U® V)-+P(V), or, equivalently, the complement of the
zero-section in the vector bundle L(H, U@V)-*P(V) and the unit sphere bundle. If the
sphere-bundle is stably fibre homotopy trivial then a(n) must divide m + n. Conversely, if
m + n = 0 (moda(n)), then the vector bundle (m + n)H is trivial.

Proposition 4.5. / / l<k = n— 1, then E-*B is fibre homotopy trivial if and only if
m + n = 0 (mod a(n)). When this condition holds, both E-*B and E-*B are trivial as smooth
bundles.
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(c) k = \

The final case is the most difficult. We are considering the bundles
L0(H

L, U®V)->P(V) and O(HX, U@V)->P(V), where H 1 is the orthogonal
complement of H in V.

Proposition 4.6. For k=l<n, E-*B is trivial as bundle if and only ifn = 2,4orS and
m = 0 (mod a(n)). In these cases E->B is also trivial.

Proof. We first establish the necessity of the condition. If E-*B is trivial, then it is
certainly fibre homotopy trivial and (4.4) gives the restriction: m=0 (moda(n)). But now
both clauses (i) and (ii) of (4.1) apply, so that p(HL)£ must be stably fibre homotopy
trivial, that is: n=0 (mod a(ri)).

For the converse, observe that L0(H
L, U © V) is naturally identified with

L0(H
L<g)H, (U® V)®H) by taking the tensor product with the identity on the line

bundle H. But HL® H is the tangent bundle of P(V) and this is trivial if n = 2, 4 or 8. If
m + n = 0 (mod a(ri)), then (U®V)®H is trivial. This establishes the triviality of £->B,
and the same argument shows that E-*B is also trivial.

We complete the proof of (1.2) by verifying:

Proposition 4.7. If k=l and m = 0, then E-*B is trivial as bundle.

Proof. We can give an explicit trivialization: P{V) x SO{V)^O{HL, V) of the bundle
E-*B by mapping (K,g), where K is a 1-dimensional subspace of V and g is an element
of the special orthogonal group of V, to the composition KL £ V-* V of g with the
inclusion.

It remains to examine the question of the triviality or fibre homotopy triviality of
E-*B for k=l and m>0. We have been unable to give an answer even in the first
interesting case n = 3. Our present knowledge is collected in the final proposition. Part
(i) is based on a suggestion of D. Hacon.

Proposition 4.8. For k = 1, m > 0, n = 3:

(i) the bundle E->B is trivial ifm = A;
(ii) the bundle E-+B is not fibre homotopy trivial ifm + 4 is not a power of 2;
(iii) the bundle E^^B is stably fibre homotopy trivial if and only i/msO(mod4).

Proof of (i). We take U to be the space H of quaternions, V the space of pure
quaternions, and regard U © V (or V © U) as the space of pure Cayley numbers. Then
the group G2 of automorphisms of the Cayley numbers acts orthogonally on {/© V. The
action is transitive on the Stiefel manifold of orthonormal 2-frames in U © V, and the
stabilizer of any 2-frame in V is the subgroup Sp(l) which fixes the whole of V.

We obtain an explicit trivialization: P(V) x G2/Sp(l)^O(H-L, I/© V), along the lines of
(4.7), by sending (K,gSp(l)) to the composition KX^V^U@ V-+U® V of g and the
inclusion.
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Proof of (ii). Suppose that the bundle 0{HL, Rm+3)-»P(R3) is fibre homotopy trivial.
Then so is its restriction to the subspace P(U2). This restricted bundle can be identified
with O(U@H, Rm+3)-»P(R2), because 2H is trivial, or with the mapping torus of the
involution T of the Stiefel manifold of 2-frames in Um+3 which changes the sign of the
second vector. Since the bundle is fibre homotopy trivial, T must be homotopic to the
identity. The condition on m now follows from a theorem of James ([3, (23.10)]. (The
same theorem implies that E-*B is never fibre homotopy trivial in the cases k = 1, m>0,
n = 5or9 . )

Proof of (iii). We show that each of the components in the decomposition (3.2) is
stably trivial if 4|m. Only the middle term P(H±)^em<s\ where r\ is the Hopf line bundle
over the projective bundle P(HX), causes difficulty. Observe first that P(HX) can be
embedded in the trivial bundle BxP(V) by inclusion of H 1 in V; the bundle t/®f/ over
P(HX) is the restriction of the bundle U®H over BxP(V), and this is trivial because m
is divisible by a(ri). So we must show that P(Hl)g<s"' is stably trivial.

Now the cofibre sequence over B:

P(H)B ^PiH1 @ H)B

given by the inclusion of H in HL@H, is split by the projection P(H1®H)^B =
But the bundle P(HL®H)£ is trivial, since HL@H=V. By splitting the trivial bundle
we obtain a stable equivalence:

P(tfx)£®" vB(B x S°) ~ ( B x P(K"-1)H) v , ( B x S°).
B

Inclusion and projection gives a stable map P(H1)%<s"'-*BxP(W~1)H which is an
equivalence on fibres and hence a stable fibre homotopy equivalence. (Alternatively,
decompose both sides of the equivalence:

O(HL, U3) ~ B x O(U2, U3), (4.7).)
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