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Abstract

A viscous fluid is confined between two smooth horizontal walls, in a vertical channel.
The upper wall may move with constant speed, but the lower wall is stationary and
a portion of it is heated. A plume of heated fluid develops, and may also be swept
downstream by the motion of the upper wall. When the heating effect is small and
the upper plate does not move, a closed-form solution for the temperature profile is
presented. A numerical spectral method is then presented, and allows highly accurate
nonlinear solutions to be obtained, for the temperature and the fluid motion. These
are compared against the closed-form solution in the linearized case, and the effects
of nonlinearity on temperature and velocity are revealed. The results also show that
periodic plume shedding from the heated region can occur in the nonlinear case.

2020 Mathematics subject classification: primary 76E05; secondary 76M22.

Keywords and phrases: Couette flow, heated lower wall, temperature plume, urban heat
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This paper is part of a Special Issue to honour the contributions of Professor
Graeme Hocking to the ANZIAM Society in particular and applied and industrial
mathematics more generally. For decades, Graeme has been a loyal supporter of the
ANZIAM annual conference, and has organized several of them. He has recently served
as the chair of ANZIAM, and with Andrew Bassom has been a joint chief editor of
the ANZIAM Journal. He has also had a very long-standing relationship with the
Mathematics in Industry Study Group, and has made significant contributions to a
number of practical industrial technologies, such as the use of “air knives” to remove
molten metal during galvanizing. In the past decade or two, Graeme has become
increasingly involved with industrial mathematics worldwide, and has established
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extensive collaborative links with colleagues in Ireland, Europe, the UK and South
Africa.

Both authors of this article have been privileged to know Graeme and work with
him. Larry Forbes has been particularly fortunate to have known Graeme as both
a colleague and a close friend for the past 35 years, visiting each other regularly
and having written about 40 papers together. Graeme’s professional life has been
characterized by the two properties of great generosity and unimpeachable integrity.
He has often gone to extraordinary lengths to help students, particularly in cases
where their circumstances have become difficult. His research is uncompromisingly
honest and accurate; in addition, his commitment to honesty and to student welfare has
seen him act in the role of whistle-blower, to his own considerable cost. It is therefore
an honour to have been invited to contribute this article to this Special Issue.

1. Introduction

For many of the viscous fluids encountered in everyday experience, the Navier–Stokes
equations are generally regarded as providing an accurate description of their flow
behaviour. However, relatively few exact solutions to these equations are known,
for situations of practical interest. The simplest of all these closed-form solutions
describes Couette flow (see [5, pp. 13–15]), in which the viscous fluid is confined
between flat parallel plates. One plate is stationary and is located on the plane y = −H,
and the second plate is at y = H and moves with some speed Up in the x-direction.
Then the Navier–Stokes equations admit an incompressible solution in which the flow
occurs only in the single direction of the x-axis, with speed u(y) = Up(y + H)/(2H)
in the channel −H < y < H. Since the fluid is viscous, it must adhere to the two
plates and therefore have the same velocity as each plate, and this is the reason why
u(y) adopts this profile that simply varies linearly with y. Nevertheless, in spite of its
simplicity, this Couette flow is of industrial interest, and occurs in lubrication theory
(see Batchelor [2]).

Because so few exact solutions to the Navier–Stokes equations are known,
researchers in the first half of the twentieth century became particularly adroit at
making full use of them to solve closely related problems of interest; this point is
argued eloquently in Van Dyke’s text on perturbation methods [19, p. 9]. Stewartson
[17] extended Prandtl boundary-layer theory to consider viscous flow near a horizontal
plate that is heated. He considered steady-state boundary-layer flow, but evidently
made an error in the sign of a heat-flux term, leading to mistaken conclusions about
the well-posedness of the problem, as was pointed out later by Gill et al. [8]. These
solutions were then generalized by Chao and Cheema [4] to allow for steady flow of
the fluid but an unsteady temperature response at a semi-infinite lower plate. A similar
type of analysis had been carried out by Riley [16], who likewise assumed that the
fluid flow would not be affected significantly by changes in temperature at the plate,
and so could be regarded as being in a steady state, but that the temperature imposed
on a semi-infinite lower plate would jump impulsively to some new constant value
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[3] 2D Couette flow over an isolated heat island 5

along the plate. He carried out a similarity-solution analysis in the boundary layer
close to the plate, and solved the resulting equations both for very small and very large
values of the similarity variable. A brief review of the literature on convective cooling
from a hot plate in a fluid-filled channel is presented by Nair et al. [15], and these
authors indicate the importance of such heat-transfer and flow problems in a variety of
industrial applications, and in some geophysical flow situations. There are also several
works on convective heat transfer from plates oriented at some angle other than purely
horizontal, and an example of these is the analysis by Merkin [14] of convection due to
a heated vertical plate. He carries out an asymptotic analysis, and shows that there are
a number of different regions in the boundary layer, characterized by different flow and
heat-transfer behaviour. Umemura and Law [18] allowed heat transfer to occur from
a semi-infinite plate at arbitrary angle to the horizontal and used similarity solutions
to characterize the flow near the leading edge of the plate, where the behaviour was
similar to that for a pure horizontal plate, and further downstream, where the flow
behaviour was more characteristic of a vertical plate. Mellado [13] solved equations
for the fluid velocity and a buoyancy variable using a pseudo-spectral method, and
introduced random perturbations to the initial buoyancy so as to create highly mixed
convective regions above the plate.

A viscous fluid flow over a semi-infinite plate, in which the entire plate is
impulsively switched to a higher temperature at some initial time, possibly represents
a situation of limited practical interest, although it has provided interesting insights
into the structure of thermal boundary layers. The mathematical advantage of studying
such problems in unbounded geometries is that they often offer the prospect of
finding similarity solutions, which reduce the complexity of the calculations very
considerably. Nevertheless, Lewandowski [12] has pointed out that these models
involving semi-infinite plates do not accord with experimental observations, and this
discrepancy becomes worse as the plate moves from being oriented vertically to fully
horizontal. The major reason is that such models assume that a boundary layer exists
along the entire plate, whereas experiments often show that a plume of hot fluid forms
instead, moving away from the plate and into the fluid. Lewandowski proposes an
alternative simplified model with horizontal plates of finite dimensions with different
regimes of flow within the fluid, and also presents photographs of plumes rising
abruptly from heated plates.

An important application of viscous flows over horizontal plates, on which the
heat exchange occurs over a patch of finite width, is to the creation of models of the
phenomenon of urban heat islands. This is the situation in which large cities act as
heat sources on a patch of the landscape, potentially generating plumes that move
through the lower atmosphere, and a general overview was given by Kanda [11].
A computational fluid mechanics (CFD) simulation has been used by Gagliano
et al. [7] to study temperature rise within cities, and the effects of air recirculating
in “urban canyons”. Huo et al. [10] have recently given a detailed overview of the
CFD techniques currently in use, including the various ways of modelling fluid
turbulence near the urban heat island, and another recent review of experimental and
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computational approaches to mesoscale urban meteorology has been given by Wu
et al. [22], with particular focus on the Chinese experience of ventilation within urban
valleys.

The present paper considers an idealized model of flow over an isolated heat island,
notionally located over some interval −q < x < q on a horizontal bottom plate of
bilaterally infinite extent, located on the plane y = −H. We note that while the heat
island is of finite extent in the x-direction, we are considering it to extend indefinitely
in the z-direction, thus allowing us to consider a two-dimensional model. The fluid
motion is caused by a top plate, at y = H, moving at some constant speed Up and
so this would simply be a Couette flow in the absence of the heat island. A brief
description of this model is presented in Section 2. For simplicity, the Boussinesq
approximation [3, p. 16] for the flow of the viscous fluid is adopted, and is described
in Section 3, and a semianalytical spectral method for solving the resulting equations
is discussed in detail. Section 4 then presents a linearized solution for this Boussinesq
viscous problem, and discusses in detail a closed-form solution in the special case
where the top plate is stationary (Up = 0), since this provides a valuable independent
check on the reliability of the numerical spectral solution. Results of the computation
are presented in Section 5; to begin, a careful validation of the spectral solution method
is made, by comparing temperature profiles at early times with those obtained from
the linearized solution in Section 4 for small input heat flux on the heat island. Highly
nonlinear solutions are then presented, for large heating events and Couette fluid flow,
and they show plume formation with overturning sections at their heads. The powerful
computing resources available to us allow highly accurate long-term calculations to
be made, and these indicate that periodic plume shedding from the heat island can
evidently occur. Some final remarks in Section 6 conclude the paper.

2. Theoretical framework

In this work, we examine flow between two plates in relative motion. There is a
linear velocity profile between the plates in the undisturbed steady solution. We take
the bottom plate at y = −H to be stationary, and the flow is driven by the fixed speed
Up of the top plate at y = H. We assume that the fluid is incompressible, and the task
is to solve equation (2.1) which expresses the conservation of mass, combined with the
incompressible Navier–Stokes equation (2.2). This results in the system

∇ · q = 0 (2.1)

∂q
∂t
+ (q · ∇)q − μ

ρ
∇2q = g − ∇p

ρ
(2.2)

of nonlinear partial differential equations. Here, q denotes the velocity vector field, μ
is the dynamic viscosity, ρ is the density, p is the pressure and g is the acceleration due
to gravity.

We assume the fluid and both the upper and lower plates have initial temperature
T0 throughout. Additional heat energy is then introduced in some notional region
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FIGURE 1. A definition sketch of the base Couette velocity profile, which varies linearly with height in
the channel. The lower wall at y = −H is stationary and the upper wall at y = H moves to the right with
speed Up.

−q < x < q at the heat island on the lower plate. This is done in a continuous manner,
so as to avoid a discontinuity in temperature at t = 0. The bottom plate is therefore
assigned temperature TB, and perhaps the simplest such function would take the form

TB(x, t) =

⎧⎪⎪⎨⎪⎪⎩T0 + ε[1 + cos(πx/q)] f (t), |x| < q,
T0, |x| ≥ q,

(2.3)

for some q : 0 < q < L, in which L is a convenient length scale along the x-axis (it
will only be used in the numerical scheme of Section 3. The function f (t) defines
the way in which heating is added to the system, over the heat island on the lower
wall, and we set f (0) = 0 to ensure continuity. In the course of this study, we have
investigated a number of different heat input functions TB. These need not all have
compact support over −q < x < q as (2.3) does, provided that TB drops rapidly to zero
outside this interval, in which case the results are not greatly affected by this choice of
function.

In this model, the perturbation to the background density is assumed to vary
oppositely to the temperature change, that is,

ρ = −(T − T0). (2.4)

The reference temperature T0 does not appear in any of the equations governing the
fluid flow, so without loss of generality, we set it to zero.

Figure 1 gives a sketch of the system at the initial time t = 0. The flow between the
plates, in the channel −H < y < H has a linear profile in height and is thus simply a
viscous Couette flow. The bottom plate is stationary, but the upper plate may move
horizontally with speed u = Up.
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3. Boussinesq viscous model

The incompressibility condition equation (2.1) is satisfied immediately through the
use of a streamfunction ψ to define the velocities. In vector form, this relationship
can be written q = ∇ × (ψk), in which k represents the unit vector pointing out of
the x–y flow plane. After nondimensionalizing using an arbitrary length scale and
the acceleration of gravity to scale the time variable, the fluid vorticity ζ = ∇ × q
is introduced as usual, and found to have only the single component ζ = Ωk. In the
Boussinesq approximation, the density is assumed to be constant everywhere, except in
the buoyancy term where the perturbation ρ to the base density is retained. The vector
curl of the momentum equation (2.2) is taken, and yields a scalar vorticity equation

∂Ω

∂t
= ν∇2Ω −

(
u
∂Ω

∂x
+ v

∂Ω

∂y

)
− ∂ρ
∂x

. (3.1)

Here, the symbol ν represents the dimensionless kinematic viscosity, and can be
regarded as an inverse Reynolds number. In this investigation, the variation ρ of density
comes about through temperature variations, according to the effective equation of
state (2.4). We choose here to fix the temperatures on the top and bottom plates, but
note that other boundary conditions may also be considered. The temperature and
velocity are free to vary at x = ±L, apart from at y = ±H.

The dimensionless temperature throughout the fluid is therefore represented
spectrally as

T(x, y) = TB(x, t)
H − y

2H
+

M∑
m=1

N∑
n=1

Bm,n(t) cos[αm(x + L)] sin[αn(y + H)]. (3.2)

With an appropriate choice of αn, this form for T ensures that temperatures are fixed
at the top and bottom plates so that T = 0 at y = H, and T = TB at y = −H, but are free
to take any values elsewhere in the channel −H < y < H and in some computational
window −L < x < L in the horizontal direction. In Boussinesq theory, the density
variation ρ is assumed to obey a transport equation, or equivalently, since density and
temperature T are related through the equation of state (2.4), the temperature can be
regarded as satisfying the temperature transport equation

∂T
∂t
+ (q · ∇)T = σ∇2T (3.3)

with temperature diffusion constant σ. In terms of temperature variation, the vorticity
equation (3.1) now becomes

∂Ω

∂t
= ν∇2Ω −

(
u
∂Ω

∂x
+ v

∂Ω

∂y

)
+
∂T
∂x

. (3.4)

3.1. Velocity components The constant-shear base flow,

q = Up
y + H

2H
î, (3.5)
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[7] 2D Couette flow over an isolated heat island 9

depicted in Figure 1 must be enforced on the upper and lower boundaries of the
computational region, −L < x < L, −H < y < H, through the use of appropriate basis
functions. We therefore choose a spectral representation of the streamfunction ψ that
meets the boundary conditions on the top and bottom plate, but otherwise allows any
velocity within the computational region. This requires basis functions which, along
with their first derivatives in y, are zero on the top and bottom boundaries. The basis
functions must not all be zero at any other point, and must not all be symmetric or all
antisymmetric. We therefore choose

ψ(x, y, t) =
M∑

m=1

N∑
n=1

Am,n(t) cos[αm(x + L)]Fn(y) + Up
(y + H)2

4H
, (3.6)

in which we have defined the functions

Fn(y) = sin[αn(y + H)] − 1 − cos(nπ)
2

n
N + 1

sin
[N + 1

2H
π(y + H)

]
− 1 + cos(nπ)

2
n

N + 2
sin
[N + 2

2H
π(y + H)

]
. (3.7)

Here, Up is the speed of the top plate in the positive x-direction. The sets of constants

αm =
(m − 1)π

2L
,

αn =
nπ
2H

(3.8)

have been introduced for convenience of notation.
The functions Fn(y), n = 1, 2, . . . , N, in equation (3.7) have been designed to allow

the streamfunction ψ in (3.6) to satisfy the required boundary conditions on the walls
y = ±H. Since both velocity components u and v must vanish on these two walls,
it follows that the functions Fn(y) in (3.6) and their first derivatives F′n(y) are both
zero there. This is enforced here using a rearrangement of the inner series in (3.6)
suggested by Forbes and Brideson [6]. Although the numerical method will ultimately
seek to find only the N sets of coefficients Am,1, Am,2, . . . , Am,N for each value of
m = 1, 2, . . . , M, we nevertheless introduce the next two sets Am,N+1 and Am,N+2 in a
standard Fourier series expression in the y-variable, so that the inner sum in (3.6)
would take the form

N∑
n=1

Am,n(t) sin[αn(y + H)] + Am,N+1(t) sin[αN+1(y + H)] + Am,N+2(t) sin[αN+2(y + H)].

The requirement that this function and its first derivative must both vanish at y = ±H
permits the additional coefficients Am,N+1 and Am,N+2 to be eliminated in favour of
the first N coefficients, giving rise to a series involving the functions Fn(y) presented
in (3.7).

This form (3.6) of the streamfunction allows the horizontal and vertical components
u and v of the velocity vector to vary arbitrarily in the channel −H < y < H, except at
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the top and bottom where they are both zero. They are obtained from (3.6) by direct
differentiation, giving

u =
∂ψ

∂y

=

M∑
m=1

N∑
n=1

Am,n(t) cos[αm(x + L)]F′n(y) + Up
y + H

2H
,

v = −∂ψ
∂x

=

M∑
m=1

N∑
n=1

αmAm,n(t) sin[αm(x + L)]Fn(y),

where the prime on Fn(y) denotes differentiation with respect to y.

3.2. Vorticity component The single vorticity component Ω is

Ω(x, y, t) =
∂v
∂x
− ∂u
∂y
= −∇2ψ

= −
Up

2H
+

M∑
m=1

N∑
n=1

Am,n(t) cos[αm(x + L)](α2
mFn(y) − F′′n (y)). (3.9)

The x and y derivatives of the vorticity and its Laplacian, required for equation (3.4),
are obtained by direct differentiation of (3.9).

3.3. Initial conditions Let ψ(x, y, 0) = ψ1 be the initial value of the streamfunction.
For convenience, we will write ψ0 ≡ ψ0(y) = Up(y + H)2/(4H). Thus,

ψ1 = ψ0 +

M∑
m=1

N∑
n=1

Am,n(0) cos[αm(x + L)]Fn(y).

To compute the initial values Am,n(0) of the coefficients, we multiply by cos[αk(x + L)]
and sin[αp(y + H)], in which αk and αp are obtained from the definitions (3.8), and
integrate over the spatial domain. This results in∫ L

−L

∫ H

−H

M∑
m=1

N∑
n=1

Am,n(0) cos[αm(x + L)]Fn(y) cos[αk(x + L)] sin[αp(y + H)] dy dx

=

∫ L

−L

∫ H

−H
(ψ1 − ψ0) cos[αk(x + L)] sin[αp(y + H)] dy dx.

It follows from the usual orthogonality relations for trigonometric functions that

Ak,p(0) =
1

(1 + δk
1)LH

∫ L

−L

∫ H

−H
(ψ1 − ψ0) cos[αk(x + L)] sin[αp(y + H)] dy dx.
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[9] 2D Couette flow over an isolated heat island 11

We now have the Fourier coefficients Ak,p(0) for the initial conditions. The Kronecker
delta symbol δk

1 takes the value one if k = 1, but zero otherwise.

3.4. Finding the Fourier coefficients Incorporating the Fourier series representa-
tion (3.9) for Ω, the vorticity equation (3.4) becomes

M∑
m=1

N∑
n=1

Ȧm,n(t) cos[αm(x + L)](α2
mFn(y) − F′′n (y))

= ν

M∑
m=1

N∑
n=1

Am,n(t) cos[αm(x + L)](−α4
mFn(y) + 2α2

mF′′n − F′′′′n (y))

−
(
u
∂Ω

∂x
+ v

∂Ω

∂y

)
+
∂T
∂x

,

where Ȧm,n denotes the time derivative of Am,n(t). To calculate the Ȧm,n, we multiply
through by basis functions cos[αk(x + L)] sin[αp(y + H)] and integrate over the spatial
domain. Orthogonality of the trigonometric functions reduces this to

Ȧk,p(t) = −νAk,p(t)Δ2
k,p −

1
Δ2

k,p(1 + δ1
k)LH

×
∫ L

−L

∫ H

−H

(
u
∂Ω

∂x
+ v

∂Ω

∂y
− ∂T
∂x

)
cos[αk(x + L)] sin[αp(y + H)] dx dy.

In this expression, it is convenient to introduce the extra constants

Δ2
k,p = α

2
k + α

2
p (3.10)

and utilize parameters defined previously in (3.8).
The Fourier coefficients Bm,n(t) for the temperature are obtained in the same way,

by analysing the temperature transport equation (3.3). The orthogonality conditions
similarly generate the system of differential equations

Ḃk,p(t) = −σBk,p(t)Δ2
k,p −

1
(1 + δ1

k)LH

×
∫ L

−L

∫ H

−H

(
u
∂T
∂x
+ v

∂T
∂y
− σ∇2T

)
cos[αk(x + L)] sin[αp(y + H)] dx dy,

in which Ḃk,p(t) denotes the time derivative of these coefficients, and the constants Δ2
k,p

are as defined in (3.10). This system of differential equations is now integrated forward
in time, from the initial coefficients calculated in Section 3.3.

4. Linearized model

Here, a linearized approximation to the full Boussinesq theory of Section 3 is
discussed. Since variations from the underlying Couette flow (3.5) are caused by the
heating on the bottom plate, this will be assumed to be a small effect, governed by
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12 L. K. Forbes and S. J. Walters [10]

a small parameter ε. On the bottom wall, condition (2.3) will be generalized in this
section to take the form

TB(x, t) = εg(x)f (t), (4.1)

in which the shape function g(x) is left arbitrary for now. The velocity components,
vorticity, temperature and streamfunction are next expanded in the series

u(x, y, t) = Up
y + H

2H
+ εu1(x, y, t) + O(ε2),

v(x, y, t) = 0 + εv1(x, y, t) + O(ε2),

Ω(x, y, t) = −
Up

2H
+ εΩ1(x, y, t) + O(ε2), (4.2)

T(x, y, t) = 0 + εT1(x, y, t) + O(ε2),

ψ(x, y, t) = Up
(y + H)2

4H
+ εΨ1(x, y, t) + O(ε2),

and substituted into the full governing equations. Only terms of first order in ε
are retained. In terms of the perturbed velocity components, the linearized vorticity
becomes

Ω1 =
∂v1

∂x
− ∂u1

∂y
= −∇2Ψ1, (4.3)

and (3.4) shows that it satisfies the linearized momentum equation

∂Ω1

∂t
+ Up

y + H
2H

∂Ω1

∂x
=
∂T1

∂x
+ ν∇2Ω1. (4.4)

The linearized temperature transport equation (3.3) becomes

∂T1

∂t
+ Up

y + H
2H

∂T1

∂x
= σ∇2T1. (4.5)

The boundary conditions are that the two perturbation velocity components u1 and v1
must both be zero at the top and bottom plates y = ±H. The perturbation temperature
T1 must also be zero at the top plate y = H, but on the bottom plate y = −H it takes the
value T1(x,−H, t) = g(x)f (t) so as to satisfy (4.1).

Although this system of partial differential equations (4.4)–(4.5) is now linear, it
is nevertheless not straightforward to solve. When the top plate is in motion, Up � 0,
Fourier transforms in x followed by Laplace transforms in t yield an Airy equation
for the transformed linearized temperature function T1 (which can equivalently be
represented in terms of Bessel functions of order 1/3). However, the result is of
little practical value as the transforms are not readily invertible. Since the aim of this
section is to provide a linearized solution that can be compared with the fully nonlinear
numerical results, we have therefore opted to consider the simpler case Up = 0 in this
section.
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The linearized temperature equation (4.5) with a stationary upper plate becomes a
classical heat equation

∂T1

∂t
= σ
(
∂2T1

∂x2 +
∂2T1

∂y2

)
, (4.6)

and can be solved separately for T1. We allow the plates to extend indefinitely in the
positive and negative x-directions and define the Fourier transform

T̂1(ω; y, t) ≡ F{T1(x, y, t)}

=
1
√

2π

∫ ∞
−∞

T1(x, y, t)e−iωx dx. (4.7)

The Fourier transform of the shape function g(x) for the heat input (4.1) on the bottom
plate is

Ĝ(ω) = F{g(x)}. (4.8)

The Laplace transform of the quantity T̂1 in (4.7) is

T̃1(ω; y; s) ≡ L{T̂1(ω; y, t)}

=

∫ ∞
0

T̂1(ω; y, t)e−st dt,

and similarly it is convenient to define a Laplace transform

F̃(s) = L{f (t)}

of the function f (t) in (4.1) that describes how the heat input on the bottom plate
is activated. It is assumed here that f (0) = 0 so that, initially, the temperature in the
channel is everywhere constant.

The Fourier–Laplace transform of the heat equation (4.6) now yields the ordinary
differential equation

(s + σω2)T̃1 = σ
d2T̃1

dy2 ,

subject to the two boundary conditions

T̃1 = 0 on y = H,

T̃1 = Ĝ(ω)F̃(s) on y = H.

This boundary-value problem can be solved at once to give

T̃1(ω; y; s) = Ĝ(ω)F̃(s)H̃(ω; y; s), (4.9)

in which we have defined Green’s function

H̃(ω; y; s) =
sinh[(H − y)

√
ω2 + s/σ ]

sinh[2H
√
ω2 + s/σ ]

. (4.10)
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14 L. K. Forbes and S. J. Walters [12]

The presence of the square-root radical in (4.10) suggests that branch cuts in the
complex s-plane will be needed, to confine the function H̃ to some domain in which
it remains analytic. However, this turns out not to be correct, since expanding the
sinh functions in both the numerator and denominator in Taylor series shows that
the square-root radical cancels from the numerator and denominator. As a result,
Green’s function in (4.10) is meromorphic, possessing only simple poles at values of
s for which the denominator vanishes. There is a countably infinite set of such poles
distributed along the negative real s-axis, at points

sk = −σ
[
ω2 +

( kπ
2H

)2]
, k = 0, 1, 2, . . . . (4.11)

Furthermore, the simple pole at s0 for which k = 0 in (4.11) can be discounted, since it
gives only a removable singularity in the expression (4.10).

By the convolution theorem for Laplace transforms, the inverse Laplace transform
of the function in (4.9) gives

T̂1(ω; y, t) = Ĝ(ω)
∫ t

0
f (t − τ)̂h(ω; y, τ) dτ, (4.12)

thus returning to the Fourier-transformed ω-plane of the solution in the expression
(4.7). Here, ĥ is the inverse Laplace transform of Green’s function H̃ defined in (4.10),
and for positive t it can be shown to be the sum of the residues at the simple poles in
(4.11). After some algebra, we obtain

ĥ(ω; y, t) = −σ
H

∞∑
k=1

γk cos(kπ) sin[γk(H − y)] exp[−σt(ω2 + γ2
k)], (4.13)

in which we have defined constants

γk =
kπ
2H

, k = 1, 2, 3, . . . . (4.14)

The function in (4.13) is again an entity that exists in the Fourier-transformed ω-plane,
and a further inversion of transforms is required to obtain the final solution for the
temperature perturbation T1 in physical variables.

Finally, the two expressions (4.12) and (4.13) are combined to yield

T̂1(ω; y, t) = −σ
H

∞∑
k=1

γk cos(kπ) sin[γk(H − y)]

×
∫ t

0
f (t − τ) exp[−στγ2

k ]Ĝ(ω)e−στω
2

dτ. (4.15)

It follows from the convolution theorem for Fourier transforms that the two remaining
terms in (4.15) that involve the Fourier wavenumber variable ω may be written
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Ĝ(ω)e−στω
2
= F

{ 1
√

2π

∫ ∞
−∞

g(ξ)
1
√

2στ
exp
[
− (x − ξ)2

4στ

]
dξ
}
.

Consequently, the inverse Fourier transform applied to expression (4.15) gives the
temperature perturbation function

T1(x, y, t) = −σ
H

∞∑
k=1

γk cos(kπ) sin[γk(H − y)]

×
∫ t

0

f (t − τ)

2
√
πστ

exp[−στγ2
k]
∫ ∞
−∞

g(ξ) exp
[
− (x − ξ)2

4στ

]
dξ dτ. (4.16)

This is the general linearized solution for a stationary upper wall, and with arbitrary
heat shape function g(x) and switching function f (t) and an initial condition T1 = 0
throughout the channel. It is strictly valid in the domain −H < y ≤ H, and does not
formally hold on the lower wall y = −H due to the presence of removable singularities
there.

4.1. A test example A particularly simple choice for the heat shape function g(x)
on the lower wall is the Gaussian profile

g(x) = exp
(
− x2

β2

)
. (4.17)

This has the advantage that the inner integration in (4.16) can be carried out in closed
form. The result is

T1(x, y, t) = −σβ
H

∞∑
k=1

γk cos(kπ) sin[γk(H − y)]

×
∫ t

0

f (t − τ)√
4στ + β2

exp[−στγ2
k] exp

[
− x2

4στ + β2

]
dτ. (4.18)

Likewise, a simple choice is also made here for the function f (t) in the bottom
boundary condition (4.1). An example is the function

f (t) = 1 − e−λt (4.19)

which satisfies the condition f (0) = 0 and moves monotonically towards its limit 1
as t → ∞. This function (4.19) can be substituted into (4.18) and it turns out that
the integration can be carried out in closed form, and involves complementary error
functions. However, the result is extremely difficult to evaluate numerically, because
of large errors due to loss of significance caused by very large terms multiplying very
small ones. Instead, the integrals in (4.18) are evaluated far more accurately by direct
numerical quadrature. We make the change of variable τ = tw and incorporate the
special choice (4.19) to give
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16 L. K. Forbes and S. J. Walters [14]

T1(x, y, t) = −βσt
H

∞∑
k=1

γk cos(kπ) sin[γk(H − y)]

×
∫ 1

0
[1 − e−λt(1−w)]

1
D(w; t)

exp[−σtγ2
kw] exp

[
− x2

D2(w; t)

]
dw, (4.20)

in which

D(w; t) =
√

4σtw + β2.

The integrals in equation (4.20) are evaluated readily, and to very high precision,
using up to 20 000 points and Gauss–Legendre quadrature as made available in the
MATLAB code lgwt written by von Winckel [20].

4.2. Linearized vorticity and streamfunction Calculating the linearized vorticity
Ω1 and streamfunctionΨ1 using Fourier and Laplace transforms is no longer a straight-
forward affair, even in the case of a stationary top plate, and in all likelihood advanced
numerical techniques would be needed to invert these transforms. Nevertheless, there
are some interesting analytical features of the flow that are revealed by this analytical
approach, and these are now investigated briefly here.

When Up = 0, the linearized vorticity equation (4.4) becomes simply

∂Ω1

∂t
=
∂T1

∂x
+ ν
(
∂2Ω1

∂x2 +
∂2Ω1

∂y2

)
.

This shows that, at least in the linearized approximation (4.2), the flow is driven by
the temperature profile (4.16). Applying the Fourier transform followed by the Laplace
transform results in the ordinary differential equation

ν
d2Ω̃1

dy2 − (s + ω2ν)Ω̃1 = −iωT̃1 (4.21)

for the doubly transformed linearized vorticity function Ω̃1(ω; y; s). The transformed
temperature perturbation function T̃1 is as determined previously in (4.9)–(4.10).
Similarly applying transforms to (4.3) yields a further differential equation

ν
d2Ψ̃1

dy2 − ω
2Ψ̃1 = −Ω̃1 (4.22)

for the transformed streamfunction.
It is straightforward to see that the differential equation (4.21) has a general solution

which is convenient to express in the form

Ω̃1(ω; y; s) = −ν
s

(α̃2 + ω2)[K̃(ω, s) cosh(α̃(y − H)) + L̃(ω, s) sinh(α̃(y − H))]

− Γ̃(ω, s) sinh[β̃(H − y)], (4.23)
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in which

α̃ =
√
ω2 + s/ν, β̃ =

√
ω2 + s/σ

are constants in the space of the transform variables, and the coefficient of the
particular integral term is

Γ̃(ω, s) =
iσωĜ(ω)F̃(s)

s(ν − σ) sinh(2Hβ̃)
. (4.24)

The quantities K̃(ω, s) and L̃(ω, s) are constants of integration in the transform plane.
The differential equation (4.22) for the transformed streamfunction can now also be
solved without difficulty, and gives

Ψ̃1(ω; y; s) = M̃(ω, s) cosh(ω(y − H)) + Ñ(ω, s) sinh(ω(y − H))

− ν
s

[K̃(ω, s) cosh(α̃(y − H)) + L̃(ω, s) sinh(α̃(y − H))]

+
σ

s
Γ̃(ω, s) sinh[β̃(H − y)]. (4.25)

This expression involves a further two arbitrary integration constants M̃(ω, s) and
Ñ(ω, s).

The four arbitrary constants K̃, L̃, M̃ and Ñ in these transformed solutions (4.23)
and (4.25) are finally determined by making the two Fourier–Laplace transformed
velocity components u and v both zero on the two walls at y = ±H. This is necessary
to satisfy the no-slip boundary conditions there. The process is straightforward, but
the expressions for K̃, and so on, are very complicated. This appears to prevent
any possibility of inverting the Laplace transforms in analytical form, and so we do
not pursue this closed-form solution any further. Nevertheless, these solutions have
revealed that there is a resonance in the linearized solution when ν = σ. This is at
once evident from the fact that the denominator in the constant Γ̃(ω, s) in equation
(4.24) possesses a zero divisor at ν = σ. This is also true of the constants K̃, and so
on, since these all involve Γ̃ too.

4.3. Steady-state linearized temperature profile When the series (4.16) for the
temperature perturbation function T1(x, y, t) is evaluated on the computer, it is evident
that it approaches a steady form as t → ∞. However, it is not straightforward to
take this formal limit in the solution (4.16). For completeness, we briefly derive the
steady-state temperature profile here, working directly from the time-independent form
of the heat equation (4.6).

The steady form of (4.6) reduces to Laplace’s equation for the perturbed tempera-
ture. This must be solved subject to boundary conditions that T1 is zero at the top plate
y = H, and on the bottom plate y = −H it must take the value T1(x,−H, t) = g(x) so
as to satisfy (4.1) in the steady limit. The Fourier transforms (4.7)–(4.8) of this steady
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problem are taken and the resulting boundary-value problem solved in the Fourier
space. The convolution theorem is used to invert the transform, yielding the solution

T1(x, y) =
1
√

2π

∫ ∞
−∞

g(x − ξ)h(ξ, y) dξ, (4.26)

in which Green’s function in the Fourier space is

Ĥ(ω; y) =
sinh(ω(H − y))

sinh(2ωH)

and has inverse Fourier transform

h(x, y) =
1
√

2π

∫ ∞
−∞

sinh(ω(H − y))
sinh(2ωH)

eiωx dω. (4.27)

The integral in this expression can be evaluated using complex residue theory, since the
integrand has simple pole singularities on the imaginary ω-axis, at the infinite set of
pointsωk = ±kπi/(2H), k = 0,±1,±2,±3, . . . . (The singularity atω0 = 0 is removable,
and so can be ignored.) The integral in (4.27) along the real ω-axis is closed with a
semicircle either in the upper half plane if x > 0 or in the lower half-plane if x < 0, and
after some calculation, the function h(x, y) in (4.27) becomes

h(x, y) = − 1
H

√
π

2

∞∑
k=1

cos(kπ) sin[γk(H − y)] exp[−γk |x|],

where the constants γk are as defined in (4.14). It follows from (4.26) that

T1(x, y) = − 1
2H

∞∑
k=1

cos(kπ) sin[γk(H − y)]

×
∫ ∞
−∞

g(x − ξ) exp[−γk |ξ|] dξ. (4.28)

With the example heat energy function g(x) given in (4.17), the integral term in the
solution (4.28) can be evaluated in closed form, and gives exponentials multiplied
by complementary error functions. However, these are extremely difficult to evaluate,
since as the index k increases, they represent a product of extremely large numbers with
very small ones, and as a result, loss-of-precision errors render the expressions useless.
It is therefore better simply to evaluate the integrals in (4.28) by direct numerical
quadrature, since this can be done easily and with very high precision.

5. Numerical results

We begin this presentation of numerical results by comparing the predictions of
the numerical spectral method in Section 3 with the linearized solution in Section 4.
In order to compare exactly, the bottom heating function TB(x, t) = εg(x)f (t) makes
direct use of the same functions g(x) and f (t) given in (4.17) and (4.19), respectively.
The diffusion coefficient σ is set to 0.0001 in the numerical algorithm, unless
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FIGURE 2. Comparison of the linearized and nonlinear solutions at early times, in the absence of gravity.
The nonlinear solution is shown in the top panels and the linear solution is shown below. The half-channel
height is H = 2 and results are shown for the four early (dimensionless) times t = 7.5, 15, 22.5 and 30.
For clarity, only the bottom twentieth of the computational region is shown. At all times shown there is
good agreement between the two methods.

stated otherwise. This value is somewhat arbitrary, but having a small value keeps
the “interface” from becoming overly blurred. The dimensionless dynamic viscosity
coefficient ν is taken to be 0.001. Again, this choice is arbitrary. We note that different
values of this coefficient will have a significant effect on the flow.

5.1. Stationary upper plate The first case considered here is for a stationary top
plate, Up = 0. This allows direct comparison with the linearized solution (4.20) from
Section 4. In this linearized theory, it turns out that the temperature equation decouples
from the others, so that the temperature function T1 could be found without reference
to the fluid velocity and streamfunction. For this reason, the linearized temperature
is not affected by buoyancy, since this only appears in the momentum equations. In
Figure 2, we have therefore compared the linearized solution (4.20) with the results
of the nonlinear solution scheme in which the gravitational term has been removed.
Here, the channel-height parameter is H = 2, so that the fluid lies within the interval
−2 < y < 2, and the horizontal computational window −L < x < L has taken L = 5. At
these early dimensionless times, the plume has not yet developed greatly, and so only
the bottom twentieth −2 < y < −1.8 of the channel is shown, for ease of viewing. The
top panel of results shows the nonlinear solution at the four times t = 7.5, 15, 22.5 and
30 and the lower panel shows the linearized solution at these same four times. The
agreement between these two sets of results is excellent, which confirms the reliability
of the nonlinear spectral solution scheme. This is as expected, particularly since in the
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FIGURE 3. Comparison of the linearized and nonlinear solutions at early times. Gravity effects are now
included. The nonlinear solution is shown in the top panels and the linear solution is shown beneath. The
channel-height parameter is H = 2, but for clarity, only the bottom twentieth of the computational region
is shown. At very early times there is good agreement between the two methods. At later times, however,
nonlinear effects may be seen in the upper panels with the beginnings of a plume visible by t = 30.

absence of any gravitational force, there is no fluid flow and the temperature transport
equation (3.3) reduces simply to the heat equation (4.6).

The effects of gravity are reintroduced in Figure 3, by reinstating the buoyancy
term ∂T/∂x in equation (3.4). There is again close agreement between the linearized
and nonlinear solutions at the first two times t = 7.5 and t = 15 in Figure 3, just as in
the buoyancy-free case shown in Figure 2. However, the nonlinear temperature profile
at the later two times t = 22.5 and t = 30 in the top panel is beginning to be affected
by the fluid flow (which is driven by the temperature profile). Such effects are absent
in the linearized results in the lower panel of profiles in Figure 3. By time t = 30, early
plume formation is clearly visible, as the temperature develops a sharply peaked profile
due to the effects of fluid convection. This coupling of the temperature with the fluid
flow is absent from the linearized theory, but will drive formation of more complex
structures at later times in the full nonlinear model.

The solutions shown in Figure 3 over the early (dimensionless) time interval
0 < t < 30 have been extended to considerably later times in Figure 4, where we now
present temperature profiles at the four times t = 30, 60, 90 and 120. The top panel of
results again corresponds to nonlinear theory, and in the bottom panel are the results
at the same four times obtained from the linearized theory of Section 4. For the first
column on the left of Figure 4, these results for t = 30 are identical to those on the
rightmost column in Figure 3; the only difference now is in the scale on the vertical
axes, since here we show the complete channel height −H < y < H for the nonlinear
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FIGURE 4. Comparison of the linearized and nonlinear solutions at later times, for the same case
illustrated in Figure 3. The nonlinear solution is shown in the top panels, and exhibits a rapidly rising
plume, starting at about t = 30, rolling over by t = 60 and striking the top plate by t = 120. In contrast,
the linear solution only continues slow diffusion. Note that for clarity the y-axes differ between the upper
(nonlinear) and lower (linearized) panels. The top panels show the entire channel, −2 < y < 2, but the
lower panels show only the lower eighth (−2 < y < −1.5) of the channel height.

results in the upper panel, with the same channel half-height H = 2. The pointed
temperature profile that was so evident at time t = 30 in Figure 3 is still visible at t = 30
in the leftmost upper panel of Figure 4, and it is clear that the plume which began to
be visible near t = 30 now develops rapidly into a fast moving stream, accelerating
up to the top wall by t = 120 as shown in the top panel of Figure 4. The formation
of an overturning mushroom-shaped structure is evident in the frames at t = 60 and
t = 90. The narrow connecting stem of hotter (lighter-density) fluid between the heat
island at the bottom and the broad overturning head at the top is typical of a lazy
plume, and closely resembles the nonlinear plume structures computed by Allwright
et al. [1]. A “lazy plume” is one in which the flow is driven only by buoyancy terms
(for this categorization of plumes, see Hunt and Kaye [9]). By the last time t = 120
illustrated in Figure 4 the rising plume has struck the top wall y = 2 of the channel and
has begun to spread laterally across this wall. By contrast, the linearized solution at
these same four later times, depicted in the lower panel of results, merely predicts a
slowly rising temperature profile, since the only physical phenomenon accounted for
in that approximation is the slow diffusion of heat energy through a stationary fluid.
By t = 120 the plume in the nonlinear numerical solution has reached the upper wall,
while the bubble of hot fluid in the linearized solution has not traversed one tenth of
that distance. Thus, Figures 3 and 4 have confirmed the agreement between linearized

https://doi.org/10.1017/S1446181123000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000032


22 L. K. Forbes and S. J. Walters [20]

FIGURE 5. Nonlinear plume development in a higher channel, with half-height H = 8. The computational
region horizontally is −L < x < L with L = 4. Temperature profiles are shown at the three times t = 120,
208 and 240. The scale on the horizontal and vertical axes is the same, so that the plumes are shown as
they would actually appear.

and nonlinear theory at early times, validating the numerical solution scheme, but also
show the importance of nonlinearity at later times.

In order to see pure plume evolution, free from the effects both of background
fluid movement and interference from the upper wall, we have computed a solution
with half-height parameter H = 8. The horizontal computational domain is set as
−L < x < L with L = 4, and temperature profiles are presented in Figure 5 at
the three later times t = 120, 208 and 240. This solution required considerable
computational resources in order to maintain accuracy, and was obtained here using
(M, N) = (384, 768) coefficients in the spectral representation (3.2), with five times
that number of points in x and y. Even with these formidable computing resources,
however, a small amount of numerical error related to Gibbs’s phenomenon in the
Fourier series is still present in the solution, and this may be visible as small-amplitude
oscillations in a couple of the temperature contours in the solution at (dimensionless)
time t = 208.

At the first time t = 120 shown in Figure 5, a vertical plume has formed, and is
similar to those shown in Figure 4. There is a bulbous overturning head, connected to
the heat island on the bottom plate by a long thin vertical neck. The plume accelerates
upward against gravity, forming a large nearly circular overturning region at its head.
The neck region becomes narrower at the second time t = 208 shown, so that the head
almost detaches from the heated region on the bottom plate. This is again reminiscent
of the lazy plumes calculated by Allwright et al. [1]. Eventually, the top of the plume
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FIGURE 6. Comparison of the linearized steady solution at t = ∞ with the nonsteady solution evaluated
at time t = 12 000 000. The two sets of temperature profiles are indistinguishable.

strikes the upper plate at y = H = 8 and then begins to spread across this upper wall,
as is evident in the temperature profile at the last time t = 240. Once the plume has
reached the upper boundary, the choice of boundary conditions for both temperature
and flow will play a significant role in determining the flow. In the present study, we
have chosen an upper boundary that absorbs all temperature variation, thereby cooling
the fluid. Presumably, this will encourage the fluid to flow downwards to a greater
extent that would happen with an insulating upper boundary. The no-slip condition
will have a drag-like effect on the motion, reducing its horizontal speed near the upper
boundary.

Alternatively, if the upper boundary were moved to a much higher location, the
plume would not spread as in Figure 5, but continue to rise and overturn, perhaps
eventually pinching off and detaching.

The nonlinear results shown in Figures 4 and 5 highlight the way in which nonlinear
effects are responsible for the development of plumes. By contrast, the linearized
theory of Section 4 causes the heat behaviour to decouple from the effects of fluid
motion, so that nonlinear convection cannot occur. As a result, linearized theory
predicts that a heated region of fluid will develop near the heat island on the bottom
plate. Eventually, it is to be expected that, in linearized theory, heat energy put into
the system at the heat island would diffuse isotropically into the surrounding fluid, so
that a steady-state temperature profile would then be formed. This is difficult to prove
directly from the time-dependent linearized solution (4.16). However, linearized theory
does permit a steady-state temperature profile to be calculated directly, as discussed in
Section 4.3, and the result is given in equation (4.28).

It is interesting to calculate and compare the steady solution (4.28) with the
unsteady linearized solution (4.16) evaluated at a very large time, and this is done
in Figure 6. Here, contours of the temperature have been plotted for the nonsteady
linearized solution at a very late time (t = 12 000 000), and overlaid on these are
contours computed from the steady solution (4.28). These linearized formulae were
evaluated in a window −4 < x < 4,−2 < y < 2 using 200 points in x and 300 in y.
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FIGURE 7. Evolution of the plume for top plate moving with dimensionless speed Up = 0.1. Nonlinear
temperature profiles are shown for eight different times as indicated. The initial plume forms over the
centre x = 0 of the heated region on the bottom plate. The plume detaches, and a new plume forms at the
downwind end of the hot region.

The nonsteady solution (4.16) is not trivial to calculate at very large times, and here
it required 32 000 modes and 19 200 integration points for convergence. The steady
solution (4.28) required 2000 modes and 20 000 integration points over an interval
−10 < ξ < 10 to evaluate the inner quadratures. This does indeed demonstrate that
the linearized solution achieves a steady-state temperature profile as t → ∞, unlike its
nonlinear counterpart that also experiences the effects of convection. It also shows the
level of precision required to evaluate even this linearized solution accurately.

5.2. Moving top plate To study the effects of background fluid motion, the top
plate is now given dimensionless velocity Up = 0.1 to the right. The horizontal
computational domain −L < x < L is expanded to the value L = 10, in order to see
the evolution of the flow. For definiteness, the channel half-height parameter will be
set to the value H = 2.

Figure 7 illustrates eight different temperature profiles, computed at the eight dif-
ferent times t = 40, 60, . . . , 180 indicated on the figure. These solutions again required
substantial computer resources, and we used (M, N) = (720, 144) Fourier modes in the
spectral solution, with five times that number of points in x and y. Incipient plume
formation is evident in the first image at time t = 40, and an asymmetric plume is
clearly visible by time t = 60. As time evolves, the plume accelerates upward, similarly
to the results in Figure 4, except that now the plume is also distorted to the right as a
result of the moving upper plate and the background Couette flow that it establishes.

https://doi.org/10.1017/S1446181123000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000032


[23] 2D Couette flow over an isolated heat island 25

FIGURE 8. Temperature profiles for the same case as shown in Figure 7, but at eight significantly later
times indicated on the diagrams. The figure shows the ongoing development of plumes from the heated
region, and their subsequent detachment due to the movement of the top plate. This process appears to
repeat approximately every 40 units of dimensionless time.

The plume continues to rise and has hit the upper wall by about time t = 140. By
time t = 160, the plume detaches altogether from the heat island on the bottom plate,
and a second plume has begun to form at the downwind edge of the hot zone. It also
continues to grow and move to the right, and another plume structure also begins to
form at time t = 180.

The same flow as in Figure 7 was modelled out to time t = 960. Eight sample
solutions are shown in Figure 8, starting at time t = 820 and with a new solution shown
every 20 time units until t = 960. These diagrams illustrate the process of plumes
forming and detaching, without any suggestion of a steady state ever being reached.
Instead, there appears to be a repeating cycle of plumes forming above the heat island,
moving away to the right under the influence of the background Couette flow and
eventually detaching as a new plume forms. From the numerical results, it appears that
the process repeats approximately every 40 time units.

For interest, we show in Figure 9 a solution obtained with the diffusion coefficient
σ = 0.001, ten times as large as used for previous solutions, and with all other
parameters unchanged. Four different nonlinear results are shown, at the four times
t = 60, 100, 300 and 500. At this higher diffusion, plumes continue to develop, but the
initial plume shown at time t = 40 maintains its shape for considerably longer, before
also detaching and being swept downstream by the underlying Couette flow. Further
numerical results (not shown) indicate that the cyclic pattern of plume development
and detachment continues.
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FIGURE 9. Later times showing the development of plumes from the heat island, with the higher diffusion
coefficient σ = 0.001.

6. Conclusions

This paper has considered the behaviour of viscous fluid forced to move over a heat
island on the bottom wall of a channel in two-dimensional (planar) flow. A simple
model has been adopted, in which the fluid density decreases linearly in proportion
to the amount by which the temperature increases. As a result, the heated region
on the fluid bottom causes a patch of low-density fluid to form, and this then rises
buoyantly against gravity, effectively forming an unstable interface, similar to that
in Rayleigh–Taylor flow, for example. Nonlinear convective effects cause plumes to
develop above the heat island, and these accelerate upwards. When the top plate is
in motion and a background Couette flow is established, these plumes are also swept
downstream. Ultimately, they detach from the heated region on the bottom plate, and
a new plume forms and the process repeats.

A linearized theory was also studied here, and while it agrees very well with
the nonlinear results at early times, it ultimately ceases to be of relevance, because
it cannot account for convection, which is crucial to the formation of plumes. The
linearized theory is also available in the case when a Couette flow is established by
the movement of the upper plate, but has not been discussed here because the algebra
required appears to be overwhelmingly complicated, involving Airy functions and their
roots. Our principal interest in the linearized theory was as an important check on the
reliability of the algorithm for the nonlinear solution, but it may prove possible to
extend the linearized theory to account for fluid motion.

The model used here involves Boussinesq theory, in which the fluid density is
assumed to vary only very slightly from some constant background value. Here, the
temperature served as a proxy for density, but in any event, variations in the density
or temperature only appear in the buoyancy term in the fluid momentum equation,
consistently with the Boussinesq approximation. In a recent paper, however, Walters
et al. [21] developed what they referred to as a “completed Boussinesq theory”,
which retains the exact form of the Navier–Stokes equation and does not make this
approximation concerning the fluid density. They found that Boussinesq theory could
lead to exaggerated predictions about the degree to which the head of the plume
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overturns and rolls up, whereas their completed Boussinesq theory did not share
that defect, instead agreeing closely with more accurate models. It is possible that
Boussinesq theory may have exaggerated the extent of plume overturning here too,
although that remains for future investigation to determine.
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