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C* -ALGEBRAS OF REAL RANK ZERO 
WHOSE £o'S ARE NOT RIESZ GROUPS 

K. R. GOODEARL 

ABSTRACT. Examples are constructed of stably finite, imitai, separable C* -algebras 
A of real rank zero such that the partially ordered abelian groups K0(A) do not satisfy the 
Riesz decomposition property. This contrasts with the result of Zhang that projections 
in C* -algebras of real rank zero satisfy Riesz decomposition. The construction method 
also produces a stably finite, unital, separable C* -algebra of real rank zero which has 
the same ^-theory as an approximately finite dimensional C*-algebra, but is not itself 
approximately finite dimensional. 

1. Introduction. The Riesz decomposition property has long been an important 
tool in the A -̂theory of C*-algebras. We recall the definition of this property for a par
tially ordered abelian group G: whenever x,y\,y2 € G+ with x < y\ + yi, there is a 
decomposition x — x\ + X2 with je,- E G* such that jcf- < yt for / = 1,2. A directed, 
partially ordered abelian group satisfying Riesz decomposition is called a Riesz group 
for short. For example, Riesz decomposition was the key to the Efïros-Handelman-Shen 
theorem [7] determining precisely which ordered groups appear as AT0-groups in Elliott's 
classification of AF (approximately finite dimensional) C* -algebras [8]. It was also the 
fundamental property used by Handelman, Lawrence, and the author in building a struc
ture theory for K0 of finite Rickart C*-algebras [15]. More recently, Riesz decomposition 
has played an important role in the analysis and classification of C*-algebras of real rank 
zero. Zhang proved in [26, Corollary 1.3] that the projections in any C*-algebra A of 
real rank zero satisfy Riesz decomposition with respect to Murray-von Neumann equiv
alence, that is, wheneverp, q\, q2 are projections in A with/7 < q\ 0 q2, there is an 
orthogonal decomposition/? = p\ ®/?2 for some projections/?; E A such that/?/ < qt for 
/ = 1,2. This result was a key tool in his investigations of the structure of such algebras 
and their corona and multiplier algebras (e.g., [26,27]). In Elliott's recent classification of 
certain C*-algebras of real rank zero [10], the Riesz decomposition property again made 
possible an axiomatic characterization of the range of the invariant: namely, every count
able, weakly unperforated, graded Riesz group appears as K*(A) = Ko(A) © K\(A) for a 
separable, nuclear C*-algebra A of real rank zero and stable rank one [9, Theorem 8.2]. 

If A is a C*-algebra of real rank zero, Zhang's result implies that the monoid V(A) 
of Murray-von Neumann equivalence classes of projections from M^iA) (cf. [1, 5.1.2]) 
has Riesz decomposition. In case the projections in A have cancellation (in particular, 
in case A has stable rank 1), it follows that K0(A) has Riesz decomposition. A priori, 
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however, the Riesz decomposition property can be lost in the passage from the monoid 
V(A) to the ordered group Ko(A). This phenomenon was exhibited in the context of von 
Neumann regular rings by Moncasi [19, Example], who constructed examples of stably 
finite, unital regular rings whose Ko 's are not Riesz groups. We show that a C*-analog of 
Moncasi's construction produces stably finite, unital C* -algebras which have the same 
ordered KQ'S as his examples. However, the algebras thus constructed do not have real 
rank zero. One final construction step is necessary to produce the examples announced 
in our title. 

As an unexpected byproduct, our construction also produces an example of a stably 
finite, unital C*-algebra of real rank zero which has the same K0- and K\ -groups as an 
AF C*-algebra, yet is not AF itself. This algebra is in a sense 'just outside' the class 
addressed by Elliott's classification — it is an extension of a Bunce-Deddens algebra by 
a direct sum of two copies of the algebra of compact operators, but it has stable rank 2 
and so cannot be an inductive limit of direct sums of Elliott's building block algebras. In 
fact, it is not an approximately homogeneous algebra. The first example of such a 'bad' 
extension was constructed by Putnam (see [16, 2]). Our example may be an indication 
that the class of all stably finite, separable, nuclear C*-algebras with real rank zero is 
too large to be classified by AT-theory. In particular, stable finiteness may be too weak 
a finiteness condition (outside the class of simple C*-algebras), and so for classification 
purposes a stronger condition should be imposed. One obvious candidate is stable rank 
one; another, suggested by Loring, is the 'extremal richness' property studied in [4]. 
However, S. Eilers and N. Larsen have put a dent in the latter suggestion by showing 
that the example constructed here is extremally rich [personal communication]. 

It should be emphasized that the question whether Riesz decomposition holds in Ko 
is most natural in the setting of stably finite algebras, because for such algebras the nat
ural pre-order relation on K0 is a partial ordering [1, Proposition 6.3.3]. Failure of Riesz 
decomposition would be less surprising in a ̂ o -group which is not partially ordered. 

For notation and definitions of unexplained terms, we refer the reader to [1] and [12]. 
Following a suggestion of the referee, we write n • e rather than n. e for the orthogonal 
sum of « copies of a projection e (that is, the n x n diagonal matrix diag(e, e , . . . , e)). 

We thank M. Dâdarlàt and T. Loring for their comments on an earlier version of this 
paper. 

2. Construction. 
2.1. Fix a positive integer n, and let un denote the «-fold right shift on the Hilbert space 
£2, that is, the «-th power of the unilateral shift (a\, a2 , . . . ) •—* (0, a\ ,a2,...). Then un 

is an isometry in #(£2) and 1 — unu*n is a rank n projection. Set T„ equal to the (separable, 
unital) sub-C*-algebra of (B(£2) generated by un together with the ideal % of compact 
operators on I2. In case n— 1, we have the standard Toeplitz algebra; as is well known, 
T\ I *K — C(J) by an isomorphism that links the coset u\ + 9C with the standard unitary 
z G C(T), namely the inclusion map z: T -̂> C. 

An alternative description of Tn can be obtained by adapting a construction used by 
Plastiras [21] and Bures [5]. Let A„: Tx —> Mn{T\) be the diagonal map, and set T'n = 
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An(Ti) + MnilQ. It is clear that Tn ^ T'n by an isomorphism sending X to Mn(%) and 
un to A„(MI). From this description we see that Tn/H£ = C(T) by an isomorphism that 
sends un + % to z. Let 7r: T„ —> C(T) denote the corresponding quotient map. 

2.2. Choose a rank 1 projection e G ^C, so that 1 — w„w* ~ « • e. Since w„w* ~ 1, it 
follows that 1 ̂  1 © « • e. Hence, «[e] = 0 in Ko(Tn). 

The groups ^ i (C(T)), # o ( 0 , and K0(C(T)) are all infinite cyclic, generated by the 

classes [z], [e], and [IQT)] respectively. Since K\(JQ = 0, the standard 6-term exact 

sequence for the extension 0 —> % -?—> Tn - ^ C(T) —> 0 looks as follows: 

K0(9Q ^ *o(r») - ^ «o(C(T)) 

4 I 
*i(c(T)) ^— ^i(rw) ^— o 

In particular, 7r* is surjective, and hence Ko(Tn) = Z[lrJ 0 ker(7r*). Further, ker(7r*) = 
im(/*) is generated by the class [e] G Ko(Tn). Since the unitary z G C(T) lifts to the 
isometry un G rw, we compute that d([z]) = [1 — w*w„] — [1 — unu*] = —n[e] (cf. [1, 
Section 8.3.2]). Hence, d is injective and its image is generated by n[e] G Ko(9Q. It 
follows that Kx(Tn) = 0 and that 

(1) [e] G K0(Tn) has order «. 

In particular, K0(Tn) = Z[ l r J 0 Z[e] ̂  Z 0 (Z/»Z). 

2.3. The next step is to manufacture a stably finite algebra with a quotient isomorphic to 
Tn. Moncasi used a trick of G. Bergman's (cf. [11, Example 5.10] and [18, Lemma 13]) 
for this purpose. The analog in our setting is the algebra 

Bn = {(x,y) eTn®T?\ TT(X) = 7r(y)}, 

where 7£p denotes the opposite algebra of Tn (the C*-algebra with the same elements, 
linear structure, adjoint, and norm as Tn, but with the reverse multiplication). Here ir is 
also used to denote the quotient map 7£p —• C(T)op = C(T), and the commutativity of 
C(T) is crucial to ensure that Bn is closed under the multiplication in Tn 0 7^p. The algebra 
B\ was examined by Menai [17], who showed that it is finite and has stable rank 2. 

We shall give a different description of Bn that is more natural in the C*-algebra set
ting. Note that #(£2)op = $(£2) via transposition of matrices (with respect to the stan
dard orthonormal basis of i,2). The transpose sends un to w*, and so it restricts to an 
isomorphism of 7^p onto Tn. Thus, we may replace 7^p by Tn, provided we also replace 
C(T)op by a copy of C(T) in which z is replaced by z*. We account for the latter using the 
automorphism 0 of C(T) given by/(0 i—»/(r *); note that 0(z) = z*. 

Thus, we now present Bn in the form 

Bn = {(x,y) G Tn 0 Tn | TT(X) = 07r(y)}, 
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which is a separable, imitai sub-C*-algebra of Tn © Tn. (In this form, the case n = 1 yields 
an algebra that has been analyzed by Pedersen in [20,9.3-9.6].) The subset/ = ^C 0 ^ 
is a closed ideal of Bn, and Bn/I = CCI). Further, the projections of Tn © Tn onto its 
factors induce isomorphisms Bn/(0 0 HQ = Tn = Bnj(% © 0). There are two natural 
quotient maps Bn —• CCI), namely (x,y) \—> ir(x) and (x,y) *—> n(y) = 0n(x). We shall 
use 7T7 to denote the former; thus Trf(un, w*) = z. Note that Bn is nuclear, since nuclearity 
is preserved in extensions [1, Theorem 15.8.2]. 

2.4. To compute the iC-theory of Bn, we appeal to the standard 6-term exact sequence 

for the extension 0 —> I —> Bn —• C(T) —> 0, namely 

K0(I) ^ K0(Bn) - ^ Ko(C(I)) 

*i(C(T)) ^— ^ ( A ) ^— 0 

As before, Ko(Bn) = Z[lBn] 0 ker(7r*), but this time ker(7r*) is generated by the classes 
[0,0)] and [(0, e)] in K0(Bn). In 2?w, the element (un, w*) is a partial isometry such that 
(un,u*)(un,u*n)* = (unu*n, l)and(w„,w*)*(w„,w*) = (1, unu*n); hence, (unu*n, 1) - (l,www*)-
Since (1 — unu*, 0) ~ « • (e, 0) and (0,1 — unu*) ~ n • (0, e), we also have 

n • (e, 0) 0 ( « X , 1) ~ (1,1) ~ H - (0, e) 0 (1, unit), 

and thus «[(e,0)] = n[(0,e)] in Xo(5w). Since Xo of the left-hand projection Bn —* T„ 
sends [(<?, 0)] - [(0, e)] to [e], it follows from (1) that k([(e, 0)] - [(0, e)]) ^ 0 for k = 
\,...,n — 1. Therefore 

(2) [(e, 0)] - [(0, *)] has order n in *b(fti). 

Since the unitary z G CCI) lifts to the partial isometry (un, u*) € 2?w, we have 

#([*]) = H - (un, Kfiun, «;>] - [i - (ii,,, i/;x«», «;)*] 
= [(0,1 - unuH)] - [(1 - unu*n, 0)] = «[(0, e)] - n[(e, 0)] 

in ^0(i). Observe that K0(I) 9* Z2 with basis [(e,0)], [(0,e)]. In view of (3), it follows 
that df is injective, and that its image is generated by the element n([(e, 0)] — [(0, e)]) in 
K0(I). Hence, 

(4) Kx(Bn) = 0, 

and ker(/£) = i m ^ ) is contained in the subgroup Z([(e,0)] - [(0,e)]) of K0(I). This 
subgroup is a direct summand with complement Z[(0, e)]. Consequently, 

(5) ^o(5„) = Z[l*J 0 Z[(0, e)] 0 Z([(e, 0)] - [(0, e)]) = Z © Z © (Z//iZ). 

(Cy [20, Remark 9.6] for the case n = 1.) Under this isomorphism, the class [1#J G 
Ko(Bn) corresponds to the triple (1,0,0). 
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Observe that K0(I)
+ = Z+[(e, 0)] + Z+[(0, e)]9 and so im(S') n K0(I)

+ = {0}. Since / 
and C(T) are both stably finite, it now follows from [24, Lemma 1.5] that 

(6) Bn is stably finite. 

2.5. The order structure on Ko(Bn) remains to be computed. We claim that in terms of 
the isomorphism (5), 

K0(Bn)
+ 9* {(a, ft, c + nT) G Z 0 Z 0 (Z//iZ) | a > 0} 

U {(0, ft, c + nT) £ Z 0 Z 0 (Z/nZ) | ft > c > 0}. 

Consider an arbitrary element p = a[lB„] + b[(09e)] + c([(e,0)] - [(0,e)]) in ^o(#w), 
where a, ft, c are integers. Since 7î  sends/? to tf[lc(T)]> w e s e e t n a t l^P £ Ko(Bn)

+ then 
« > 0. On the other hand, |c| • (e, 0) 0 |ft — c\ • (0, e) is equivalent to a projection in /, 
whence 

-ft[(0,e)] - c([(e,0)] - [(0,e)]) < |c| • [(e90)] + |ft - c\ • [(0,e)] < [1*J 

in Ko(Bn). Thus/? G Ko(Bn)
+ in case a > 0. 

Now assume that « = 0. If p e Ko(Bn)
+, then/? = [g] for some projection g G 

Moo(Bn), and ft • (0, e) 0 c • (e, 0) 0 w • lB„ ~ c • (0, e) 0 g 0 m • 1^ for some positive 
integer m. Since # „ / / is stably finite, g must lie in M^I). Thus, the elements of the 
form/? = ft[(0, e)] + c([(e, 0)] - [(0, e)]) in ^o(#«)+ are precisely the K0(B n)-c\nsses of 
projections from M^I). Any such projection is equivalent to c • (e, 0) 0 d • (0, e) for some 
nonnegative integers c, J, and 

c[(e, 0)] + 4(0, e)] = (c + </)[(0, e)] + c([(e, 0)] - [(0, e)]). 

Hence, f,(K0(I)
+) = {ft[(0,e)] + c([(e,0)] - [(0,e)]) | ft > c > 0}, and the claim is 

verified. Thus Ko(Bn) is isomorphic to the lexicographic direct sum of Z with the ordered 
group 

Gn := Z 0 (Z/«Z), where G^ := {(ft, c + nT) | ft > c > 0}. 

2.6. The algebra Bn is the C*-algebra analog of Moncasi's example in [19], and has 
the same ordered KQ, which (as is easily checked) is not a Riesz group. In Moncasi's 
construction, the role of C(T) is taken by a field (rational functions in one variable), which 
ensures that his example is a von Neumann regular ring. In the present setting, however, 
we do not yet have a large enough supply of projections, since C(T) does not have real 
rank zero. To manufacture an example with real rank zero, we form an inductive limit 
similar to those studied in [13], using Bn in place of C(X) as our basic building block. 

Choose a dense sequence of points {^,fe , . . .}cT. For k = 1,2,..., let 

$*:*„—>C(T)—>C—>Bn 

denote the composition of the quotient map IT': Bn —» C(T) with evaluation at tk, followed 
by the unital embedding C <̂-> Bn. We shall also use 8k to denote the induced maps 
M.(Bn) —• M.{Bn). Set^„ equal to the C*-inductive limit of the sequence 

Bn A > M2(Bn) ^ M4(Bn) - ^ • • • 
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where the connecting maps </>#: Af2*-i (Bn) —* M2k(Bn) are block diagonal maps given by 

W fctt = (j eh)-
Obviously An is separable, unital, and nuclear [1, Theorem 15.8.2]. Further, because of 
(6) we see that 

(9) An is stably finite. 

Since all the 5k vanish on /, each <j>k maps M2*-i(7) into M2*(7). The inductive limit 
of these ideals yields a closed ideal J in An, with J = / 0 9C = L Thus J is AF; in 
particular, J has real rank zero and K\(J) = 0. On the other hand, AnjJ is isomorphic to 
the inductive limit of a sequence 

C(T) — , M2(C(T)) — M4(C(T)) —> • • • 

with connecting maps analogous to (8). By [13, Lemma 1, Theorems 3,9], An/J is simple 
with stable rank 1 and real rank 0. Therefore 

(10) An has real rank 0 

by [27, Proposition2.3; 28, Corollary 2.12] {cf. [3, Theorem3.14, Corollary 3.16]). Note 
also that 

(11) *i(4,) = 0, 

in view of (4) and the continuity of K\. 

2.7. The inductive limits of the ideals M2*-i (3C0O) andM2*-i (00 3C) yield closed ideals 
J\ and J2 in An such that J1+J2 = / . Further, Tn, which is isomorphic to Bn/(9t 0 0) 
and to Bn /(0 0 3Q, embeds in v4„ / /1 and in An jJ2. Hence, An jJ\ and ̂ „ / / 2 are infinite. 
It follows, in particular, that An cannot have stable rank 1. On the other hand, since J 
and An/J have stable rank 1, the stable rank of An is at most 2 [25, Theorem 4; 22, 
Corollary 4.12]. Therefore 

(12) An has stable rank 2. 

To compute K0(A„), identify each XO(M2*-I(#W)) with Ko(Bn), equipped with the 
order-unit 2*-1[l#J. Then each connecting map Ko((j)k) doubles [I5J while fixing [(e, 0)] 
and [(0, e)]. In view of (5) and (7), it follows that 

(13) Ko(4n) * Z 
lex 

as ordered groups; further, the class [I A J G Ko(An) corresponds to the pair (1,0) under 
this isomorphism. We conclude by observing the same failure of Riesz decomposition 
noted by Moncasi, in case n > 2. Namely, the positive elements x = (0,1,0), y\ = 
(0,1,1 +»Z), andj2 = (0,n- \,n- 1 +«Z) satisfy* <y\ +yi butx ^y\ andx ^ y2. 
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Since x is an atom in G*, it cannot be the sum of two positive elements dominated by y\ 
and y2. Therefore 

(14) Ko(An) is not a Riesz group when n > 2. 

2.8. In the case n = 1, the statement (14) turns from negative to positive, since 

0Z, 
lex 

which is a dimension group [12, Proposition 3.3]. Thus A\ has the same Â'-theory as 
an AF-algebra, i.e., there exists an AF-algebra A! with KQ(A') = Z[^] 0i e x Z as ordered 
groups (see [8, Theorem 5.5] and [7, Theorem2.2], or [1, Theorem 7.4.1]). However,^ 
is not AF, by virtue of (12). 

Another difference between A \ and the AF-algebra A' is that A' has only one proper 
nonzero closed ideal (corresponding to the single proper nonzero ideal 0 © Z in 
T[\~\ ©iex Z), whereas A\ has three (namely J\, J2, -0- The ideals J\ and J2 are not seen 
by Ko(A 1) since the ideals of £0(^1) correspond just to the stably cofinite ideals of A\ 
[14, Theorem 10.9]. 

2.9. The algebras ,4„ are also interesting from the point of view of extensions. First note 
that AnjJ is just the basic Bunce-Deddens algebra of type 2°°. (For instance, Elliott's 
invariant K*(An/J) is clearly the graded ordered group Z[ | ] 0 Z with positive cone 
{(0,0)} U {(a,b) I a > 0} and order-unit (1,0), which is the same as for the Bunce-
Deddens algebra, and [10, Theorem 7.1] applies.) Thus 

(15) An is an extension of the Bunce-Deddens algebra by ^C © ^C 

Since An/J\ is infinite, it cannot be approximately homogeneous (i.e., it is not an induc
tive limit of finite direct products of matrix algebras over commutative C*-algebras). It 
follows immediately that 

(16) An is not approximately homogeneous. 

That extensions of Bunce-Deddens algebras by AF algebras need not be approximately 
homogeneous was already known via an example of Putnam analyzed in [16, Section 1, 
end] and [2, Section 1, end]. These examples show that the class of inductive limit al
gebras analyzed in [10] is not closed under extensions. There also exist extensions of 
algebras in this class which have stable rank 1 yet are not approximately homogeneous 
[6, Example 4.5]. 

3. Summary. 

THEOREM 3.1. (a) The algebras An are stably finite, unital, separable, nuclear C*-
algebras with real rank 0 and stable rank 2. 
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(b) K\(An) = 0 andKo(An) = Z[\] 0iex Gn, where Gn denotes the partially ordered 
group Z 0 (1/nZ) with positive cone G^ = {(b,c + nT) \ b > c > 0}. Under this 
isomorphism, the class [l^J G Ko(An) corresponds to the element (1,0) G Z[^] 0iex Gn. 

(c) Ifn > 2, then Ko(An) fails to satisfy the Riesz decomposition property. 

(d) There exists a unital approximately finite dimensional C*-algebra A' such that 
(K0(A'),[lA,]) * (tfo^iMl*,]) (andKx{A') = 0 = KMÙ)- However, A' £ Ax, be
cause A\ is not approximately finite dimensional 

(e) An is an extension of the Bunce-Deddens algebra by ^C © %j but An is not ap
proximately homogeneous. m 

3.2. Dàdarlât has pointed out that the existence of C* -algebras with most of the above 
properties can be predicted from the Universal Coefficient Theorem of Rosenberg and 
Schochet [23, Theorem 1.17; 1, Theorem23.1.1]. Namely, let « b e the Bunce-Deddens 
algebra, and let/„ be the group homomorphism from # i ($ ) = Z to ^ 0 ( X 0 ^C) = Z2 

with matrix (-«, n). By the UCT, there is an element of KK(<B, 3C0 %) inducing/^, and 
this AX-element may be represented by a unital extension 0 —-» ^C0 %, —> \ —> « —* 0 
for which the index map K\ ((B) —> #o(^C © ^C) equals/,. As above, it follows from [27, 
28] that J^n has real rank zero, from [24] that J^ is stably finite, and from the 6-term 
exact sequence that ^ ( J ^ ) = 0 and^0(-#«) = Z[\] 0 Z 0 (Z/nZ). 

It does not appear that one can completely determine the order structure on ATo(J )̂. 
However, enough can be determined to see the failure of Riesz decomposition when 
n > 2, as follows. Let Hn denote the kernel OÏKQ of the quotient map %n —» rB. Since îB 
is stably finite, Hn is an ideal of Ko(J%„) [14, Lemma 10.5], and so it suffices to show that 
Riesz decomposition fails in Hn. It is easily checked that Hn DKo(J%n)+ equals the image 
of K0(9C 0 9Çf (using again the fact that « is stably finite). Thus Hn is isomorphic to 
the quotient of Z2 (with the product ordering) modulo the image oîfn. In other words, 
Hn = Gn as ordered groups, and we conclude as in (2.7) that Hn does not satisfy Riesz 
decomposition unless n = 1. 
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