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Particle motions under nonlinear gravity waves at the free surface of a two-dimensional
incompressible and inviscid fluid are considered. The Euler equations are solved
numerically using a high-order spectral method based on a Hamiltonian formulation
of the water-wave problem. Extending this approach, a numerical procedure is devised
to estimate the fluid velocity at any point in the fluid domain given surface data. The
reconstructed velocity field is integrated to obtain particle trajectories for which an analysis
is provided, focusing on two questions. The first question is the influence of a wave setup
or setdown as is typical in coastal conditions. It is shown that such local changes in the
mean water level can lead to qualitatively different pictures of the internal flow dynamics.
These changes are also associated with rather strong background currents which dominate
the particle transport and, in particular, can be an order of magnitude larger than the
well-known Stokes drift. The second question is whether these particle dynamics can
be described with a simplified wave model. The Korteweg—de Vries equation is found
to provide a good approximation for small- to moderate-amplitude waves on shallow and
intermediate water depth. Despite discrepancies in severe cases, it is able to reproduce
characteristic features of particle paths for a wave setup or setdown.
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1. Introduction

One of the most pertinent features of periodic waves in free-surface flows is the so-
called Stokes drift, a net forward drift of the orbiting fluid particles that was memorably
illustrated in van Dyke (1982). The Stokes drift can be explained by invoking standard
linear Airy wave theory, and it can be argued that the drift is a second-order response to
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the wave motion, in essence caused by the decay of the horizontal velocity component of
the orbital motion with increasing depth (Debnath 1994; Kundu & Cohen 2008). As has
become clear over the last few decades, the argument based on linear wave theory is too
limited to paint a full picture, and in reality, the situation is rather more complex. The well-
known expression for the Stokes drift found in textbooks is useful as a first approximation
to the actual drift of particles, but there are many factors such as background currents,
wave breaking, three-dimensional effects and many more that can significantly affect the
eventual drift experienced by fluid, buoyant and suspended particles (see Monismith et al.
(2006), Santamaria et al. (2013), Hsu (2013), van den Bremer & Taylor (2016), Curtis,
Carter & Kalisch (2018), Chen, Basu & Martin (2021), Jaganathan et al. (2023) and
references therein).

Arguably the first modification to the classical Stokes drift was made by Longuet-
Higgins in the seminal paper (Longuet-Higgins 1953) where it was argued that the Stokes
drift should be modified by a constant counter current, and that viscosity may alter the
Stokes drift even in the limit of zero viscosity. Presumably, these considerations were
based on laboratory experiments such as Bagnold (1947) and others who observed that
the Stokes drift did not take the expected form. The counter current may be induced by
a return flow in a closed laboratory or if waves are approaching a beach or other barrier.
However, one may argue that in the laboratory, if measurements are taken before the first
waves reach the end of the flume, then no overall return flow is established yet, and the
counter flow must be due to local mass conservation acting already at wave inception at
the wavemaker.

More recent experimental studies have also indicated that the Stokes drift may take a
different form than what is expected from the classical theory. For example, the presence of
a background shear current may alter the nature of this Stokes drift, and in the experiments
reported by Ramsden & Nath (1988) and Monismith ez al. (2006), no Stokes drift was ob-
served either in the average or even in the pointwise sense. The absence of Stokes drift has
also been noted in field experiments on wave trains in the open ocean (Smith 2006). On the
other hand, some experiments have confirmed the existence of Stokes drift (Chen, Hsu &
Chen 2010; Umeyama 2012), and a firm mathematical proof has shown that particle trajec-
tories in Stokes waves are not closed, at least with an inviscid theory (Constantin 2006).

Theoretical studies on this problem have often assumed deep-water wave conditions
(Chang, Chen & Liou 2009; Santamaria et al. 2013; van den Bremer & Taylor 2016; Curtis
et al. 2018). The shallow- or intermediate-water regime entails additional difficulties for
modelling and simulation, due to the more complex environmental and physical processes
involved. In the case of waves approaching a beach in a realistic setting, the return flow
may take the form of an undertow (and therefore not be uniform), or may be superseded by
arelatively stronger longshore flow (depending on the bathymetry and beach morphology)
or by more complex surfzone circulation patterns such as described in Bondehagen,
Kalisch & Roeber (2024) and many other works. Of course, mass transport in the nearshore
is also influenced heavily by wave breaking which is not considered in the present study.
If waves are created by wind forcing, and there is no apparent barrier, such as in the open
ocean, then it is not clear at all how the return flow may be created, though recent work
points to the possibility that interaction of waves with turbulence may induce an Eulerian
counter flow thus also reducing the usual Stokes drift (Ellingsen et al. 2025).

Yet another condition that can alter the Stokes drift significantly is the existence of a
wave setup or setdown. The ubiquity of non-zero local mean-water levels in the nearshore
has been understood for a while (Peregrine 1998), and recent measurements also confirm
that most waves do not have zero mean, but feature either a local setup or setdown that
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correlates with particle drift (Bjgrnestad et al. 2021). These variations of the mean water
level may be interpreted as an infragravity wave signal, and for long infragravity waves
with a period of several minutes, this mean level may stay depressed or elevated for many
wave periods, becoming in effect a local background condition. In the case of small-
amplitude waves, the influence of infragravity waves on the drift velocity of (shorter)
gravity waves is well understood (see Bondehagen er al. 2024 and references therein). In
this case, linear wave theory with superposition of long and short waves can be used, and
this will be briefly reviewed in § 3. For weakly nonlinear waves, especially in the context of
the Korteweg—de Vries (KdV) equation, a setup or setdown may be imposed on a periodic
cnoidal wave for an overall exact solution that also exhibits strong drift properties. In the
general nonlinear case, the exact impact of a wave setup or setdown on particle trajectories
and drift properties remains largely unexplored. This is the main focus of the present work,
inspired by the measurements reported in Bjgrnestad et al. (2021).

In order to paint an accurate picture of the influence of non-zero mean water level
on properties of particle paths, we use the full Euler system with free-surface boundary
conditions that can be formulated in terms of inviscid potential-flow theory. We adopt
the high-order spectral (HOS) method of Craig & Sulem (1993) to provide a numerical
approximation for nonlinear surface gravity waves. This model is highly efficient and
accurate when it is applicable, and has been validated under a broad range of wave
conditions (Craig et al. 2006; Guyenne & Nicholls 2007; Xu & Guyenne 2009; Guyenne
2019). It is based on Zakharov’s Hamiltonian formulation (Zakharov 1968) where the
water-wave equations (i.e. the full Euler equations with free-surface boundary conditions)
are reduced to a lower-dimensional system in terms of surface variables alone. This is
accomplished by introducing the Dirichlet-Neumann operator (DNO) associated with the
elliptic boundary value problem. The numerical scheme makes use of a Taylor series
expansion of the DNO combined with the fast Fourier transform. We focus on the two-
dimensional situation of periodic travelling waves on water of finite depth. In this context,
our new contributions include the following.

(i) Derivation of the background current induced by a small wave setup or setdown.
This uniform current represents the leading-order correction to potential flow and its
expression further simplifies for infinitesimal changes in the mean water level. Such
a correction is crucial to properly address the present problem as any potential flow
solver alone would not be able to uniquely determine the flow perturbations caused
by a wave setup or setdown.

(i) Derivation of the fluid velocity field at the free surface, with explicit dependence
on surface variables. This exact nonlinear formulation provides a closed first-order
differential equation in time to track the motion of fluid particles on the free surface,
which may be viewed as an alternate version of the John—Sclavounos (JS) equations
(Fedele, Chandre & Farazmand 2016).

(iii) Development of a numerical procedure to reconstruct the fluid velocity field on or
under the free surface, given surface data at any instant in time. This methodology
is non-perturbative in the sense that it does not rely on any asymptotic solution of
the water-wave problem, and is not influenced by the smoothness of the free surface.
The proposed method can estimate the velocity field anywhere in the fluid domain
and for general time-dependent wave evolution. Moreover, it can accommodate any
uniform component of the fluid flow in a straightforward manner, via corrections
to the governing equations for the surface wave dynamics and to the reconstruction
algorithm for the velocity field.
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(iv) Detailed tests to assess the accuracy of this reconstruction procedure by examining
profiles of horizontal velocity along the water column and by comparing with
predictions from Fenton’s method (Fenton 1988) for unperturbed Stokes waves over
a broad range of values of wave steepness and water depth.

(v) Development of an efficient and accurate numerical scheme to simulate the
trajectories of fluid particles on or under the free surface, by employing the
reconstructed velocity field. An explicit fourth-order Adams—Bashforth scheme is
proposed to integrate their horizontal and vertical positions in time. The canonical
Hamiltonian structure of these dynamical equations for fluid particles under a linear
or nonlinear travelling wave is also demonstrated. For a linear wave, the Stokes
drift velocity is estimated from these simulations and verified against a second-order
asymptotic approximation by Longuet-Higgins (1953).

(vi) Computation of particle paths along the water column and estimation of the Stokes
drift velocity for nonlinear travelling waves over a broad range of parameter values.
Both the surface wave and internal flow dynamics are directly simulated in the
time domain, without reducing the Euler equations into a steadily moving reference
frame. These numerical results are compared with predictions based on exact cnoidal
wave solutions of the KdV equation. Cases of a small wave setup or setdown
are investigated in detail, and qualitative differences in the internal flow dynamics
between these two configurations are highlighted.

As mentioned above, a major contribution of this work is the formulation,
implementation, testing and application of a numerical approach to reconstruct the internal
velocity field from surface data provided by the HOS method. In the framework of
potential flow theory, while there is a large literature on numerical studies of nonlinear
water waves using direct simulations of the Euler equations, these have focused mostly
on examining the surface wave dynamics. Comparatively, in the same numerical category,
much less has been done to characterize the internal flow dynamics, be it the internal
velocity field or the Lagrangian motion of fluid particles.

Notable references include Bateman, Swan & Taylor (2003) who devised a perturbative
approach to estimate the internal flow kinematics from surface data by exploiting the same
idea as for the DNO representation. Their approach was used to investigate the kinematics
beneath extreme (non-breaking) waves with varying directional spread. Guyenne & Grilli
(2006) computed the velocity and acceleration fields under overturning waves via a
boundary integral method combined with a mixed Eulerian—Lagrangian formulation of
the governing equations. Using a conformal mapping technique, Ribeiro Jr, Milewski &
Nachbin (2017) explored the flow structure beneath steadily progressing waves in the
presence of non-zero constant vorticity. They reported portraits of streamlines, pressure
contours and particle trajectories to describe the interior flow. More generally, potential
flow solvers that discretize the entire fluid domain, for example via a conformal map, a
o-coordinate transformation or similar strategies to accommodate the vertical direction,
can directly infer the flow kinematics under surface waves, by local or global interpolation
with the interior grid (e.g. Hanssen et al. 2023). In contrast, for other solvers like the
HOS method that only resolve the domain boundary (e.g. the free surface), it is a more
challenging task to estimate the interior solution.

The remainder of this paper is organized as follows. Section?2 recalls the governing
equations for nonlinear surface gravity waves on water of finite depth, and presents the
uniform flow correction due to a setup or setdown. Linear predictions on particle paths
together with the Stokes drift velocity are reviewed and extended in §§ 3 and 4. Related
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results from the KdV theory are discussed in § 5. Sections 6 and 7 introduce the lower-
dimensional system of evolution equations for the nonlinear surface wave problem, then its
numerical implementation is described in § 8. Sections 9 and 10 elaborate on the numerical
approach to estimate the internal velocity field from surface data and provide detailed
accuracy tests. Section 11 describes the numerical scheme to simulate the Lagrangian
motion of fluid particles and demonstrates the Hamiltonian character of their dynamics in
the case of travelling waves. Section 12 shows computations of particle trajectories and
the associated Stokes drift velocity under various wave conditions. Differences between
the setup and setdown configurations are examined. These results are compared with
predictions based on exact cnoidal wave solutions of the KdV equation. Finally, concluding
remarks are given in § 13.

2. Nonlinear waves with non-zero mean

The surface water-wave problem is generally described by the Euler equations with
boundary conditions at the bottom and free surface. Since the fluid is incompressible and
the flow is assumed irrotational, the problem may be formulated in terms of the velocity
potential ¢ (x, z, t) and the surface elevation n(x, t). In two dimensions, the variables x
and z denote the horizontal and vertical coordinates, respectively, whereas the variable ¢
measures the time evolution. The pressure is eliminated with help of Bernoulli’s equation
and the potential ¢ satisfies Laplace’s equation

V2 =0, for —h<z<nlx,1). 2.1

At the free surface z =n(x, t), the kinematic and dynamic boundary conditions are
formulated in terms of the velocity potential and the surface excursion by

N+ ¢xne — ¢ =0, 2.2)
o+ %(cﬁf +¢?) +gn=0. (2.3)

At the bottom z = —h (set to be uniform), the no-flow boundary condition amounts to
¢, =0. (2.4)

Hereafter, subscripts denote partial derivatives, unless stated otherwise.
For steadily progressive waves propagating at speed ¢ in the x-direction, (2.2)—(2.3) are
rewritten as

—Cny + Pxx — P, =0,

= n(x). 25
—c¢x+%(¢§+¢§)+gn=0, onz=n -

Now suppose that we impose a solution by shifting 7 by a small (indeed minute) constant
amount s, i.e. a setup if s > 0 (increase of the water level) or a setdown if s < 0 (decrease
of the water level). This parameter s may be viewed as the mean water level with respect
to the coordinate system (x, z) recognizing that, if 77(x) = n(x) + s, then

1 (L 1 (L
— 7dx = — dx, 2.6
LA?; s+LAn (2.6)

where L is the length of the domain under consideration or, in the context of the present
paper, the wavelength A of a travelling wave. If the original free surface n has zero mean,

i.e. fOL n dx = 0, then s represents the shifted mean water level. The equations then become
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_Cﬁx +§5xﬁx - sz =0,

- 1,y = _ onz=1(x)=n(x)+s. 2.7
—Céx + 5 (95 +¢2) + 271 =0,
The functions 77 and ¢ are solutions of this slightly altered problem, now with a
propagation speed C. Let us assume that the original propagation speed ¢ and the new
propagation speed C are related by C = c + V. Let us also assume that the only change in
the velocity potential is an augmented horizontal speed, i.e. ¢ = ¢ + Vx. We can then use
the second equation to write

1 1 1
—C(¢>x+V)+5¢§+¢xv+5v2+5¢§+gn+gs=o. (2.8)

Rearranging gives
1 1 1
—(C—V)¢x—CV+§¢§+5V2+§¢§+gn+gs=0. (2.9)

We see that some terms in the last equation simplify if we assume that the original dynamic
boundary condition is still approximately valid, and we are left with

1

5v2 —CV +gs=0. (2.10)
Remembering that C = ¢ + V and reducing further leads to

V2 42cV —2g5=0. (2.11)

Solving this quadratic equation yields two roots

V=—c=%,/c?+2gs. (2.12)

We are only interested in the solution

V=—c+,/c?+2gs, (2.13)

such that V=0 when s=0 in the unperturbed configuration (=mn, (;3 =¢).
Asymptotically, for small s (i.e. gs/c < 1), we have V ~ gs/c. In subsequent sections,
we will propose (2.13) as a correction to linear or nonlinear potential flow for estimation
of the Stokes drift velocity and for simulation of particle dynamics in the presence of a
wave setup or setdown. As it will appear, the corrected flow speed given by (2.13) captures
the effect that a setup or setdown has on the background flow of a surface wave. If this
background current V is introduced together with a setup or setdown s in a periodic
travelling wave, the resulting combination yields a new approximate steady wave solution
which cannot be readily obtained by other means. We also point out that a background
current can be added to this nonlinear problem (e.g. Constantin & Strauss (2010), Hsu
(2013) and many others). However, here the current is strictly connected with the altered
mean level of the surface wave profile.

3. Particle paths for linear waves and Stokes drift

As can be found in many authoritative works on fluid mechanics (e.g. Debnath 1994,
Kundu & Cohen 2008), the Stokes drift can be explained in the linear case by invoking the
exponential decrease with depth of the wave-induced horizontal velocity field. As fluid
particles trace out a nearly circular path in the fluid column, the upper part of the path
experiences a stronger horizontal velocity than the lower part. This slight discrepancy
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Figure 1. This schematic elucidates the geometric setting of the problem. The undisturbed water level is
indicated by a dashed line. A surface wave is indicated in light grey (initial time) and black (final time). Since
this is a travelling wave, the two waveforms coincide exactly after one period. This wave features a setup, i.e.
a positive mean level s which is indicated by a red line. The wave height is H, and it can be seen that a fluid
particle located at the free surface stays there, but instead of cycling through the wave as in a typical Stokes
wave, the particle experiences a significant forward drift.

leads to a small offset as the particle approaches the original position and results in a
small drift in the direction of wave propagation (figure 1).

Consider a sinusoidal wave propagating on a fluid of depth 4. The deflection of the
free surface for a wave of amplitude a (wave height H = 2a) is assumed to be n(x, t) =
a cos(kx — wt). Solving the linearized Euler equations with bottom and surface boundary
conditions shows that the velocity potential is

wa cosh[k(h + 2)] .
o(x,z,t)= . sinh (k) sin(kx — wt). (3.1)
Here, k =2n/A is the wavenumber, A is the wavelength, w =2m/t is the angular
frequency and 7 is the wave period. The velocity field # = (u, v) T = V¢ is obtained by
taking spatial derivatives of ¢, as follows:

Ox(x,2,1)= wam cos(kx — wt),
sinh(kh) (32)
¢ (x,z,1)= a)aw sin(kx — wt) .
e sinh(kh) ‘

Particle paths given parametrically by (x, z) = (§(¢), ¢(t)) can now be computed by
solving the coupled system of ordinary differential equations (ODEs)
d§ cosh[k(h + ¢)]
dt sinh(kh)
d¢ sinh[k(h + ¢)]
— =wad————
dr sinh(kh)
Assuming that the particle position stays close to a centre (xg, zo) allows for replacement

of the position (£(¢), {(¢)) on the right-hand side by the centre position, leading to closed
elliptic orbits of the form

cos(ké — wt),
(3.3)
sin(ké — wt).

' sinh(kh) (3.4)
é‘([) — ZO + aw COS(kx() —_ a)t)
sinh(kh)
1020 A22-7
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Figure 2. (a) Wave profile near the wave crest of a linear periodic wave for the original wave at time # = 0 and
after one period at = 7. A particle located initially at the wave crest, and constantly staying at the free surface
has drifted slightly forward. This is the Stokes drift. However, the particle has not yet reached quite the same
height as in the beginning. (») The wave profile after time 7 = 77 is shown together with the path of the same
particle. Here t is based on the particle shown, and it is found by specifying that the particle reach the same
height as where it started. Since 7 > t, the wave profile has completed slightly more than a full cycle.

(a) (b)

0.1005 0.1005

0.1000 ————0\.\ 0.1000 ;:;_’--)-——-—- ______

0.0995 \ 0.0995
0.0990 \ / 0.0990
0.0985 0.0985
~0.05 0 0.05 0.10 ~0.05 0 0.05 0.10

Figure 3. (a) Zoom-in of figure 2(a). (b) Zoom-in of figure 2(b). The dashed curve continuing the particle
trajectory indicates that the particle is at the highest position at time 7/ .

If the velocity field is not evaluated at the centre point (xg, zg), but it is assumed that
the difference between the particle position and the centre point stays small, i.e. |x — x|
and |z — zo| are small during one wave cycle, then the second-order approximation of the
paths yields a net movement of fluid particles in the direction of wave propagation. This
net transport of a particle is the Stokes transport

) cosh[2k(h + zp)]
XL =a“wkt —
2 sinh“(kh)
which can be obtained analytically by integrating over one period t =27 /w (Debnath
1994). A mathematically rigorous treatment of the Stokes drift for linear water waves is

given by Constantin & Villari (2008). Another quantity which is often used is the Stokes
drift velocity

) 3.5)

X
up ==, (3.6)

T
Furthermore, it is well known that the time for a fluid particle to complete one cycle is
not exactly equal to the wave period, but (in the inviscid theory) a bit longer (see figures 2

and 3). This period is known as the Lagrangian period 77 and varies with depth, as can
1020 A22-8
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also be understood if the linear surface water-wave problem is solved in the Lagrangian
framework (Lamb 1932). If particle trajectories are obtained numerically from solving
(3.3) without any further asymptotic approximation, the Lagrangian period t; may be
found and the Stokes drift velocity then takes the form

X
My 3.7)
TL
However, the difference between 77 and t is usually minute so that, for most purposes, we
can write the Stokes drift velocity as

>, cosh[2k(h + zo)]
up =a"wk —
2 sinh”(kh)

after dividing (3.5) by 7. Equation (3.8) for the Stokes drift velocity uy is compared with
the background current (2.13) induced by a wave setup or setdown s in figure 4. As can
be seen in this figure, the setup-induced velocity dominates the Stokes drift unless the
relative wave height H/ h is significantly larger than 1 which is already outside of the linear
regime. For particles located near the fluid bed, this discrepancy is even more extreme. It
is also noticed that the relative position of a fluid particle along the water column affects
the Stokes drift and this influence is more pronounced in the case of shorter waves, which
is an expected result.

Alternatively, if a particle path via the second-order approximation is integrated over
one Lagrangian period t;, rather than one wave period t, then a more explicit expression
for (3.7) can be obtained. Recall that (3.5) for x;, results from integrating over 7, not .
For this purpose, we directly consider the second-order correction u’ to the horizontal
velocity u = ¢,. Taylor expanding (3.2) for ¢, (£(¢), ¢(¢), t) about (xg, zo) and combining
with the Taylor expansions (3.4) for (§(¢), ¢(¢)) yields

2

, (3.8)

W (1) = ——"=—[ cosh?[k(h + z0)] sin® (kxo — @) + sinh[k(h + z0)] cos>(kxo — w1)].
sinh”(kh)
(3.9)
Then integrating this expression over one Lagrangian period gives
1 [
up = — u' (t)dt
L Jo
h[2k(h + z 2k
_ o2k SO+ 20)] ? [ sin(2kxo) — sin(2kxo — 207,)], (3.10)

2sinh?(kh) 4t sinh?(kh)
which follows from

TL 1 kxo
/ sinz(kxg —wt)dt = o [1 — cos(2t)]dt,
0

W Jkxo—wty,

T 1 kxo
f cos?(kxo — wt)dt = — [1+ cos(2t)]dt. (3.11)
0 W Jkxo—wty,

The first term in (3.10) coincides with (3.8) while the remainder measures the deviation
caused by a phase shift because 17 # 27 /w =rt. This deviation vanishes exactly if
77, = T since sin(2kxg) and sin(2kxg — 2wt;) cancel out. Hence, if 7;, >~ 7, the distinction
between (3.8) and (3.10) will be insignificant. From numerical simulations of (3.3), we
have indeed not observed any discernible discrepancies between (3.8) and (3.10) in this
linear regime. Consequently, we will choose (3.8) as the reference analytical estimate for
uy in our subsequent tests.
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V/co, up/co

(b)

z/h=-03 kh=28/5 A

V/co, up/co

. kh=2/5

Hih, s/h

V/co, up/co

Hih, s/h

Figure 4. Comparison of magnitude of the current V /cp (dashed line) due to a setup or setdown s/ 4 with the
Stokes drift velocity uy /co (solid line) as a function of the wave height H/h, where ¢y = +/gh. The drift is
compared at the undisturbed free surface (a) z/h =0, at the upper third of the fluid column (b) z/h = —0.3,
and at the fluid bed (c) z/h = —1. The red and blue lines represent u;, for kh =2/5 and 8/5, respectively.
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Note that (3.7) is a general definition of the Stokes drift velocity which also applies
to fluid particles under nonlinear waves, in which case x; and t; would be calculated
numerically.

4. Particle paths and linear wave setup

If a wave setup or setdown s is present, then the components of the linear fluid velocity
change to

Px(x,2,1) = waw cos(kx — wt) + L.,
sinh(kh) o @n
¢, (x )= waw sin(kx — wt) '
T G (k) '

Integrating over one wave period, the Stokes drift velocity becomes

cosh[2k(h
up = ook S (2 2ol 58 4.2)
2 sinh” (kh) co
This modification of the velocity field can be understood by interpreting the departure
of the mean water level from the overall average as an infinitely long wave of the form

s = lim s cos (kx — wt). 4.3)
k—0
The associated velocity field is
hlk(h

lim s /gk tanh(eh) OSEG T kx — o), (4.4)

k—0 sinh(kh)
which reduces to

8 S8

S8
S| == = —, 4.5
h  Jgh co (4.5)
as a function of the linear wave speed co = /gh in the long-wave shallow-water regime.
Alternatively, this correction

v~ (4.6)

]
may be interpreted as the limit of (2.13) for small s and for ¢ ~ ¢¢ (i.e. linear waves in the
shallow-water limit). Equation (4.6) also gives a clue about the size of s relative to the
depth A as it can be rewritten in the form

V s @7
co h '

Hence, the relative sizes of the speed correction V and the setup/setdown s are comparable
in the long-wave limit.
In the presence of a non-zero mean level s, (3.3) become

d¢  coshlk(h +¢)]
dr sinh(kh)
d¢ sinh[k(h + ¢)]
— =wad————
dr sinh(kh)

sg
cos(ké — wt) + —,

€0 (4.8)
sin(ké — wt).
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In general, (3.3) or (4.8) must be integrated numerically via an ODE solver to determine
the particle trajectories, even for a linear velocity field because of the nonlinear
dependence on &£(¢) and ¢ (¢).

5. The KdV theory for particle paths

Extending the previous linear analysis to a weakly nonlinear regime, we now outline the
modelling of particle paths in the KdV theory. For the purpose of this study, we write the
KdV equation in the form

3co coh?
Ermx + 6 Nxxx =0. (GRY

A close evaluation of the physical derivation of the KdV equation reveals that it follows
the same idea as the derivation of standard Boussinesq systems for shallow water waves
(Whitham 1974; Ali & Kalisch 2014). In particular, the derivation gives rise to an
approximate velocity potential ¢ (x, z, 1) = f — (1/2)(z 4+ h)? fex given in terms of a
function f(x, t) that represents the trace of the potential at the flat bottom boundary
(z = —h). The function f can be related to the horizontal fluid velocity u” at the bottom
(remember this is an inviscid theory) by f; =u®. More specifically, the free-surface
elevation 7 and this velocity component ?) are related by

N +conx +

_ Lo p o
w2 T3
More generally, given a solution 7n(x, t) of the KdV equation, we can find the horizontal

velocity field across the water column in the form

1 h2 2
¢x(x,zvt):il_0 |:77__772+<__Z_> nxx]- (5.3)

(&)
u®(x, 1) = S Mrx- (5.2)

4h 3 2

Similarly, the vertical velocity field can be evaluated by
c
§:(x, 2. 1) = =2+ s, (54)

As shown in Borluk & Kalisch (2012), the velocity field (5.3)—(5.4) can be integrated to
describe the Lagrangian motion of fluid particles
dr dr
These equations define a particle trajectory (£(¢), {(¢)) emanating from any initial point
(£(0), £(0)) in the fluid domain, provided that the velocity field is known. If a solution
of the KdV equation has been obtained, either numerically or in exact form such as a
solitary or cnoidal wave, then the particle trajectories can be approximated numerically.
In this study, we will use a fourth-order Runge—Kutta scheme to solve (5.5) from the
KdV solution. As suggested by Borluk & Kalisch (2012), it can be beneficial to include
a higher-order correction term in these equations, although this is not strictly required.
Constantin (2007) proposed an alternate method for constructing very accurate velocity
fields associated with solitary wave solutions of the KdV equation but, in the present
work, we follow the approach of Borluk & Kalisch (2012). As seen in Bjgrnestad et al.
(2021), the KdV particle paths are able to capture particle trajectories measured in field
experiments.
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The cnoidal solution of the KdV equation is given by
2K (m)
A

Tl(x,t)=fz—(f2—f1)cn2[ (x—ct);M], (5.6)
where the function cn(F; m) is the Jacobi elliptic cosine function defined in terms of the
inverse of the incomplete elliptic integral of first kind (Lawden 2013). In other words,
given a number 0 < m < 1, if we define

Y de
Flysm)=| —————, (5.7
0 v 1—msin?6
and let am(F; m) =y be the Jacobi amplitude, then cn(F; m)=cosam(F; m). The
number m is the elliptic modulus defined in terms of the constants fi, f> and f3 by
m=(f1 — f2)/(f1 — f3), and K (m) is the complete elliptic integral of first kind. The
wavelength A and wave speed c are given by

A=K Lhz, 5.8)
=K 3 =Ry ©.

c:co(1+ f1+§2+f3)’

and
(5.9

respectively.

When using these formulae in practice, it is convenient to take the wave height H, the
mean surface level s and the elliptic modulus m as given parameters. The constants fi, f2
and f3 can then be computed explicitly as follows:

HE(m) H
f3=s— . h=fh+—, f=hH—-H, (5.10)
mK (m) m
where E (m) is the complete elliptic integral of second kind (Lawden 2013).

Since the function cn oscillates between O and 1, it is apparent that fj denotes the
z-value of the wave crest, and f> represents the wave trough. In the non-dimensionalized
situation where the undisturbed depth / is taken as a unit length, a cnoidal wave is
completely determined if the wavelength A, the wave height H and the mean surface
level s are given. This implies in particular that a cnoidal wave can be readily computed
in the presence of a setup or setdown, with s 20 in (5.10) while the formulae (5.3)—
(5.4) and (5.6) for the velocity field and surface elevation remain unchanged. The elliptic
modulus m must be evaluated numerically by minimizing the difference between (5.8) and
a prescribed wavelength A (with fixed H and s). The expression (5.6) is then substituted
into (5.3) and (5.4) which are needed in the ODEs (5.5).

Note that (5.5) is a general definition of the dynamical equations governing the
Lagrangian motion of any fluid particle, which will also be used for the full nonlinear
problem. However, a difficulty in this case is the calculation of the fluid velocity field
u = V¢ for which a numerical procedure will be devised as reported in § 9.

6. Hamiltonian formulation for nonlinear waves

After examining the linear and KdV regimes, we now come back to the full nonlinear
problem for a more detailed investigation of flow kinematics. We first present a
mathematical reformulation of the water wave equations (2.1)—(2.4) which forms the
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basis for our nonlinear potential-flow solver, before describing our numerical approach
to reconstruct the velocity field and to simulate particle motions. An adjustment will be
proposed to accommodate the effects of a wave setup or setdown in this nonlinear setting.

Zakharov (1968) and Craig & Sulem (1993) showed that the Laplace problem (2.1)—(2.4)
is equivalent to a Hamiltonian system in canonical form

un _ 0 1 H’?
- ()
where the two conjugate variables are the surface elevation n(x, ¢) and

Ux, 1) =¢(x, n(x, 1),1), (6.2)

which is the trace of the velocity potential evaluated on z =n(x, t). The corresponding
Hamiltonian is given by

1 (0,0
H=_ / [V Gy + g1 ]dx, 6.3)
—00
in terms of the DNO
Gy > /1+n2¢, |Z:,,, (6.4)

which by definition takes Dirichlet data i/ on the free surface, solves Laplace’s equation
(2.1) subject to (2.4) and returns the associated Neumann data.
More explicitly, (6.1) read

=Gy, (6.5)

1[Gy +ny]’
2 1+n?
which constitute a closed system of evolution equations in terms of surface variables alone.
Note that the function 5 is assumed to be a graph of x, so overturning waves with a
multivalued profile are not permitted here. More details on this Hamiltonian formulation of
(2.1)—(2.4) can be found in Craig et al. (2021). Because the DNO is analytic for sufficiently
smooth 7, it can be expressed via a convergent Taylor series expansion

(6.6)

1
Yy =—gn+§¢f+

o
Gm=Y_ G, (6.7)
j=0
about the quiescent state n = 0, where each term G ; is homogeneous of degree j in n and
can be determined by a recursion formula (Craig & Sulem 1993; Xu & Guyenne 2009; Li
et al. 2010).
To introduce our reconstruction method for the internal velocity field, we find it suitable
to recall the derivation of (6.5)—(6.6) as these are linked to the required surface data. First,
by differentiating (6.2) and using the chain rule, we note that

Vi=¢itmde| . Yx=de Hneg . (6.8)
The definition (6.4) of the DNO implies
GV = ¢z — 1xx | _,, (6.9)
which yields
$:|_, = GOY +nete| _, = GOV +ne (W — x|, (6.10)
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hence

G X VX
Vw0 =g, = TR (6.11)

after inserting the second equation from (6.8). Then substituting (6.11) back into (6.8)
leads to

u(S)(x’ )= ¢x| =y Ve =Gy

( my + nxKfo) =" (6.12)

_1+ 2 1472

Adding up the squares of (6.11) and (6.12) results in
2
_ v+ (Gmy)
1+92
It is easy to see that the kinematic boundary condition (2.2) coincides with (6.5) by virtue
of (6.9).

On the other hand, substituting (6.5) and (6.11) into the first equation of (6.8) gives
Gy
T+
Then combining this expression with (6.13) shows the equivalence between the dynamic
boundary condition (2.3) and the Hamiltonian equation (6.6).

P+ ¢? | (6.13)

G, =W~ (GY + nc ). (6.14)

7. Nonlinear surface kinematics

For potential flow, (6.11) and (6.12) yield, respectively, the vertical and horizontal
components of the fluid velocity at the free surface (denoted by v®) and u*)), and thus can
be used to compute these quantities explicitly given the DNO and the solution (5, ¥) T of
(6.5)—(6.6) at any instant ¢.

Furthermore, given the surface data (17, ¥) ', the Lagrangian motion of any fluid particle

labelled ¢ and located at (x, z) = (§¢(¢), &¢(¢)) on the free surface is governed by
(iiﬂ — u(s) (&, 1) = Yy — Ny G2(77)¢f ’ (7.1)
t 1+ n% x=£
according to (6.12), where ¢(t) =n(&¢(¢), t). An evolution equation to determine the
vertical position ¢ is not required because the fluid particle is constrained to lie on the
free surface.

Equation (7.1) may be viewed as an alternate version of the JS equations to describe
fluid particles on a free surface (Fedele et al. 2016). In the two-dimensional setting, the
JS system reduces to a single ODE for &, which is second-order in time and depends
explicitly on the surface elevation 1 along with its derivatives. By contrast, (7.1) is a first-
order ODE that depends on surface variables 1 and . This dual dependence is not an
issue since the pair (17, ¥) " is typically given by the solution of the water-wave equations.
We point out again that (7.1) is deduced from an exact nonlinear representation of the
horizontal fluid velocity as derived in the previous section. Moreover, the dual dependence
of (7.1) on n and v is explicit in the present formulation, via the DNO as defined by (6.7).

Equation (7.1) may thus have advantages when it comes to simulating the dynamics of
surface particles, in combination with the numerical solution of (6.5)-(6.6) for surface
waves. However, this equation will not be solved here because, as detailed in a subsequent
section, we will propose a more general (albeit less explicit) approach to evaluate the
velocity field on or under the free surface, which enables the description of Lagrangian
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particles anywhere in the fluid domain. Instead of considering (7.1), this general approach
incorporates u*) as a constraint in the calculation of the internal velocity field to match it
with surface values.

8. Numerical methods

Assuming periodic boundary conditions in x, we use a pseudospectral method to discretize
in space the equations of motion (6.5)—(6.6) together with the DNO. Both functions n and
Y are represented by truncated Fourier series

N/2

. n . 2 L
(nj)z Z <z]\n)elknxj, anTnn, xj:ﬁj’ ]={0,,N—1},
Vi n=—N/2+1 Vn
(8.1)

where n; >~n(x;) and ¥; >~ (x;) in the periodic domain 0<x; < L. The time

dependence is omitted here for convenience. Spatial derivatives and Fourier multipliers are

evaluated in the Fourier space, while the nonlinear products are calculated in the physical

space on a regular grid with N collocation points. All operations going back and forth

between the Fourier and physical spaces are performed via the fast Fourier transform.
The DNO is approximated by a truncated version of (6.7), namely

M
G~y G, (8.2)

Jj=0

for which a small number M of terms is sufficient to achieve highly accurate results.
The value M =6 is selected based on previous extensive tests (Craig et al. 2006; Xu &
Guyenne 2009). Time integration of (6.5) and (6.6) is implemented in the Fourier space
so that the linear terms can be solved exactly by the integrating factor technique. The
associated nonlinear system is marched in time by using the fourth-order Runge—Kutta
scheme with constant step At. More details on this numerical model can be found in
Craig & Sulem (1993) and Guyenne & Nicholls (2007). We also point out that artificial
filtering was not employed in any of the cases that we have examined here. Filtering was
not applied to either simulations of the surface waves ((6.5)—(6.6)) or simulations of the
fluid particles (see (11.1) in § 11).

9. Calculation of the internal velocity field

Recall that (6.5)—(6.6) form a closed system of evolution equations that leads to an efficient

and accurate numerical solver for the nonlinear surface wave problem. The question now

is how to infer the internal flow kinematics (i.e. the internal fluid velocity) from surface

data, which in turn governs the dynamics of Lagrangian particles in the fluid domain.
The starting point is the general solution

N/2
cosh |k,(z+h)| .
¢,z 0= ) qnm%e’w, 0<x<L, —h<z<n(x,1),
n=—N/2+1 "

9.1
to Laplace’s equation (2.1) subject to (2.4) with periodic boundary conditions in x,
consistent with the pseudospectral method being employed to solve (6.5)—(6.6) for  and
Y. Equation (9.1) generalizes (3.1) to the prospect of nonlinear multimodal waves. From
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(9.1), the components of the fluid velocity are given by

N2
cosh |k, (z+h)|
ulx,z,t) =@y(x,z,1) = Z iann(t)Melknx’ ©-2)
A cosh(k,h)
N/2 .
sinh [kn(Z+h)] ik
) =¢(x, 2, 1) = kngn () ———————=¢'""", 93
v(x, z,1) =¢;(x, 2, 1) n——%/:ﬂl ndn (1) cosh(k,h) ¢ O

at any point (x, z) on or under the free surface. The complex-valued coefficients {g,(¢)}
are to be found whenever data on (u, v) " are needed. Note that they are only functions of
k,, and ¢. For this purpose, at every such instant #, we match

u® (xj, 1) =ulxj, n(x;, 1), 1), (9.4)

at all nodes {x;} on the pseudospectral grid. The left- and right-hand sides of (9.4) are
given by (6.12) and (9.2), respectively. This produces an algebraic linear system

AX=B, B={u¥(;, 1}, (9.5)
to be solved for X = {k,q, (t)} where
A={Aj,}=i[ cosh(kyn(x;, 1)) + tanh(ky /) sinh(kyn (x;, 1)) ]e’*7. (9.6)

The coefficient matrix A is a square N x N matrix, consistent with the pseudospectral
discretization (8.1) for the surface wave dynamics. In practice, a lower resolution < N
may be prescribed when assembling and solving the linear system (9.5), to allow for more
efficient computations of the internal velocity field. It is also preferable to absorb k;, into
the vector X of unknowns in order to avoid multiplying the entries of the matrix A by a
factor that may amplify numerical errors at high wavenumbers during the solution process
of (9.5).
Some general comments are in order.

(i) The coefficients {g,} are in general not directly related to the Fourier coefficients
of u® (except in the linear case where quantities are evaluated at z = 0) because
the condition (9.4) requires that (9.2) be evaluated at z = n(x;, 7) through the cosh
function, hence the necessity to solve a non-local problem via the linear system (9.5).

(i) This linear system involves a dense coefficient matrix and must be solved repeatedly
during the time evolution. In the present two-dimensional case, we use a direct
Gaussian elimination solver which still leads to simulations at a reasonable cost.
It is expected that a more efficient solver (e.g. an iterative scheme like GMRES
(generalized minimal residual method)) would be needed in the three-dimensional
setting to deal with larger systems (9.5).

(iii) At any instant ¢, after the coefficients {g,(#)} have been determined, the velocity
components (¢, v) can be reconstructed at any location (x, z) in the fluid domain
via (9.2)-(9.3). We point out that this direct computation is not perturbative and thus
is not sensitive to the smoothness of the free surface, in contrast to the perturbative
approach proposed by Bateman et al. (2003).

(iv) To solve for {g, }, we choose to impose a matching condition (9.4) on the horizontal
velocity u rather than on the velocity potential ¢, because ¢ is only known up to an
additive constant by definition. Using (9.4) allows us to accommodate effects from a
mean flow or background current which may be relevant, especially in shallow water
(e.g. nearshore areas) or in a confined environment (e.g. wave-tank experiments).
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By absorbing k;, into X, a non-trivial zeroth mode may be deduced for the internal
velocity field, given the surface data u®,

(v) The basic idea following (9.4) to compute the coefficients in the harmonic
decomposition of the fluid velocity field was actually suggested by Bateman et al.
(2003). However, instead of tackling this calculation in a direct manner, these authors
devised an iterative scheme via a Taylor series representation of the flow kinematics
about the free surface. Due to convergence issues for locations far beneath the
free surface or associated with the surface smoothness, their method requires the
sequential application of two iterative schemes (their so-called H and H, operators).

10. Numerical tests

We assess the performance of this reconstruction algorithm by testing it against Fenton’s
method for periodic travelling waves (Fenton 1988). The latter method solves a steady
version of (2.1)-(2.4) in a reference frame moving at constant speed ¢ for solutions of
the form (8.1)-(9.3) with x replaced by x — ct. The coefficients in these expansions
(including the wave speed ¢) are computed numerically by solving the corresponding
nonlinear system iteratively up to an arbitrary order of truncation (see also Vanden-Broeck
(2010) and references therein).

In the present tests, we specify Fenton’s solution as an initial condition for our numerical
solver of (6.5)—(6.6). All equations are non-dimensionalized according to shallow-water
theory, i.e. lengths are divided by /o and times are divided by +/ho/g (where hg is a
characteristic water depth) so that g = 1 in dimensionless units. We simulate the travelling
wave over some time interval (up to ¢t = T') at which point we reconstruct the internal
velocity field using the simulated surface data and compare our results with the steady-
state predictions by Fenton’s method.

Figure 5 shows profiles of the horizontal velocity u along the water column for varying
wave steepness ka and varying water depth kh. The values of u are normalized by the
linear phase speed co = /g tanh(kh)/k, while the values of z are normalized by A. In
all these computations, the domain length and the carrier wavenumber are set to L = 27
and k = 1, respectively. Varying the wave steepness and water depth affects the properties
of wave nonlinearity and dispersion, with kA =0.3, 1, 27 corresponding to a regime
of shallow, intermediate and deep water, respectively. In each case, the internal points
are distributed vertically from near the bottom all the way up to the free surface, at an
abscissa xq near the central wave crest. This location xo need not be selected among the
grid points {x;}. We see an excellent agreement between these two predictions in all the
graphs of figure 5. The numerical solution of (6.5)—(6.6) is computed up to t =7 =10
with resolutions A7 =0.01 and Ax =L/N =0.05 (N = 128). As expected, the vertical
structure of the flow is more uniform in shallower water, while it exhibits more variation
in deeper water, decreasing quickly in magnitude with the depth. For the highest point in
each plot (which is taken at the free surface), we have also estimated the horizontal velocity
by interpolating the simulated surface values (6.12) at x = x( (using linear interpolation)
and found that it coincides with the reconstructed value at (x, z) = (xg, n(xg, t)) based
on (9.2). The surface elevation n(xp, t) is also estimated by linear interpolation of the
simulated values (8.1). This confirms that the matching condition (9.4) is properly enforced
by our reconstruction method, and it is reassuring to see in figure 5 that the velocity profiles
vary smoothly along the entire water column.

It is well known that such systems as defined by (9.5)—(9.6) suffer from ill-conditioning,
which may lead to inaccurate solutions (Wilkening & Vasan 2015). We investigate this
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Figure 5. Profiles of horizontal velocity u/co along the water column z/ & for nonlinear travelling waves with
varying wave steepness ka and varying water depth kh. The reconstruction results (red dots) are compared
with steady-state predictions by Fenton’s method (blue line). (@) ka = 0.005, kh =0.3, (b) ka=0.05, kh=1,
(¢) ka=0.05,kh=2n, (d) ka=0.01,kh=0.3, (¢) ka=0.1,kh=1, (f) ka=0.1,kh=2m, (g) ka=
0.02, kh=0.3, (h) ka=0.15,kh=1, (i) ka=0.2, kh=2nr, (j) ka=0.03,kh=0.3, (k) ka=0.2,kh=1,
() ka=0.3, kh=2m.

issue by computing the reciprocal condition number « of the coefficient matrix A, where
n is prescribed by Fenton’s solution. Typically, if A is well conditioned, « is near 1. If A
is badly conditioned, « is near &, where &,, ~ 107!¢ represents machine epsilon in double
precision (Golub & Van Loan 1996). Estimates of k are reported in figure 6 for various
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Figure 6. Reciprocal condition number « of the coefficient matrix (9.6) with Fenton’s solution for water depth
kh =0.3 (blue) and kh =1 (red) as a function of (a) wave steepness ka and (b) number N of Fourier modes.

values of water depth kh and wave steepness ka as illustrated in figure 5. We also examine
the dependence of k on the number N of Fourier modes (which determines the size of A).
These tests confirm that the conditioning of A deteriorates in cases of deeper water, steeper
waves or for a larger matrix (i.e. a finer spatial resolution). As will be discussed in § 12,
the present study considers the problem of wave setup and setdown with nonlinear waves
of moderate steepness (ka < 0.16) on shallow or intermediate water depth (kA < 1.6), for
which ill-conditioning is not severe in accordance with figure 6.

11. Particle paths for nonlinear waves

After deducing the fluid velocity, we can address the simulation of particle dynamics.
Similar to (5.5), we compute the Lagrangian trajectory of any fluid particle labelled £ on
or under the free surface by solving the equations of motion

d
ff = u(&, &, 1), %ZU(&,QJ), (1L.1)

where (x, z) = (§¢(¢), {¢(¢)) denote the particle coordinates at time ¢ along its trajectory.
Equations (11.1) mean that a fluid particle is advected by the flow according to the velocity
field (9.2)—(9.3).

Note that (11.1) are evaluated at any time ¢ after solving (9.5) for {g,(¢)} given (1, V).
Therefore, we integrate (11.1) by employing the fourth-order Adams—Bashforth scheme

XD = <’">+—[55 M _ 505" D 13742 _ 0y "] w3, (112)

to update the particle position from time #,, to time #,+1 =1, + Af, where xEm) =

EM g™ w™ = @™ " ), vEM G ) with §7 2 E ), "
e (tm)

Advantages of (11.2) include its explicit character and fourth-order accuracy, consistent
with the time integrator for the water-wave system (6.5)—(6.6) and for the particle equations
(5.5) in the KdV approximation. However, unlike a Runge—Kutta scheme, (11.2) does
not involve intermediate steps between f,, and #,+1, which would require additional
calculations of (9.5) and thus would entail a higher computational cost. For the first three
time steps, the (first-order) forward Euler scheme is adopted to compute {xl(zl), .. (3)}

0

from the initial position x,” at t =1#p. Because the water-wave system (6.5)—(6. 6) and
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associated particle equations (11.1) are solved simultaneously, the same time step Af is
specified in their respective numerical schemes.

For a linear travelling wave of amplitude a, wavenumber k and frequency w, (11.1)
describing a particle trajectory labelled ¢ reduce to (3.3) and can be rewritten as

d& _  coshlk(h+ )]

P wa sinh (k) cos(k&p) —c, (11.3)
i CRPLL Gt DRI (11.4)

= wa -
dr sinh(kh)

for Eg =&, — ct where c = w/k is the phase speed. In this form, (11.3)—(11.4) possess a
canonical Hamiltonian structure
d&,  9H, d IH
de _OHe  dbe  0He (115)
dr 0se dr &y
where the Hamiltonian
sinh[k(h + &¢)] ~
=ca——— k&e) — , 11.6
He=ca Sinh(kh) cos(k&g) —c &y (11.6)
is conserved over time. The change of variables &, — & helps accommodate the explicit
dependence on ¢ so that

dte — 9t dr pg,  dr g

This Hamiltonian structure readily extends to nonlinear travelling waves by exploiting
their special functional dependence on x — ¢ . With the solution form (9.1) in mind, this
property implies that g, (f) = Q,e *? where Q, are constants (Fenton 1988; Chang
et al. 2009). As a consequence, the Hamiltonian formulation (11.5) of (11.1) still holds in
this nonlinear case, modulo the following series expansion for the Hamiltonian:

d 9 d&, 9 deg 9
L T S (11.7)

N/2 .
sinh [kn (h +¢0)] 7,
= > iQ st —c gy 11.8
He ‘o cosh(k,h) ¢ ol (11.8)
n=—N/2+1

By construction, this Hamiltonian is also a conserved quantity but now ¢ is meant to be the
actual speed of the nonlinear travelling wave (rather than the linear phase speed c = w/k
for a monochromatic wave).

However, a Hamiltonian formulation is unclear in the more general (time-evolving)
nonlinear setting due to the temporal dependence of the coefficients {g,(t)} via the
matching condition (9.4). Supposedly, such a Hamiltonian formulation (if it exists) might
also involve g;, among the conjugate variables in addition to £ and ¢.

We test the performance of the numerical integrator (11.2) for particle trajectories by
applying it to the case of a linear travelling wave where the equations of motion are
given explicitly by (3.3). Note that, even for a linear velocity field, these equations are
nonlinear in the particle path parameterization and thus must be solved numerically in
general. Simulations of particle trajectories up to t = 7' = 40 are illustrated in figure 7 for
wave heights H =2a = 0.01 and 0.04 with wavenumber £ =2/5 (two wavelengths over
the interval O < x < L). The domain dimensions are chosen to be # =1 and L = 10 with
resolution Ax = 0.12 (N = 256). Low wave steepness is selected in order to comply with
the linear wave regime being considered here. Accordingly, a small time step At = 0.0001
is used to accurately resolve variations in the short particle paths. As a reference, the
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Figure 7. Particle trajectories near the bottom (c,d) and at the free surface (a,b), for a linear travelling wave
of height H =2a =0.02 (a,c) and 0.04 (b,d) with wavenumber k =2/5 in the domain 0 < x < 10w, h = 1.
The blue line represents the numerical solution with initial (dot) and final (triangle) locations at t =0 and
40, respectively. The red line represents the closed orbit as predicted by the first-order approximation. (a)
H =0.02, at the free surface, (b) H = 0.04, at the free surface, (¢) H = 0.02, near the bottom, (d) H =0.04,
near the bottom.

closed orbit predicted by the first-order analytical approximation (3.4) is also depicted
in this figure, where the centre position (xg, zg) is taken to be the midpoint between the
minimum and maximum (x, z)-coordinates along the numerically calculated path, namely

o= min (Eg(t)) —{z—max (fg(l‘))’ o= min (Q(z‘)) 42—max (Q(t))’ 0<i<T.
(11.9)

for any particle £. Overall, these two solutions compare well together. However, we can
discern that the numerical orbit is not closed exhibiting a tiny drift, which is consistent
with the mathematical proof by Constantin (2006).

Figure 8 portrays the Stokes drift velocity u;, of 16 fluid particles distributed along the
water column (from near the bottom up to the free surface) under such a linear wave.
Initially (at # = 0), these 16 particles are evenly distributed along the vertical axis x = L /2
under the central wave crest. However, over time, they move individually according to
the internal velocity field. As explained in § 3, for each particle trajectory, the Stokes
drift velocity (3.7) is computed by evaluating the Stokes transport x; covered during
a Lagrangian period 77, which corresponds to the horizontal distance and time interval
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Figure 8. Stokes drift velocity u, for 16 Lagrangian particles along the water column z under a linear travelling
wave of height (a) H =0.02 and (b) H = 0.04 with wavenumber k =2/5. Numerical predictions based on the
exact (blue line) and reconstructed (red circles) velocity field are compared with an analytical second-order
approximation (black dashed line). (a) H =0.02, (b) H =0.04.

between two consecutive maxima of the particle elevation, and then by dividing x;, by 7.
Both quantities x; and 77, are determined numerically from the particle simulations. Here
the Lagrangian period t;, essentially coincides with the linear wave period t =2m/w.
These numerical predictions using a linear velocity field (3.2) are compared with the
analytical result based on a second-order approximation (3.8) for the Stokes drift, where
the central elevation z of each particle path is chosen as indicated above. An excellent
agreement is again found considering the very low magnitude of this Stokes drift velocity.
The smaller the wave amplitude, the smaller the drift, and the smaller the difference
between the analytical and numerical predictions. A perfect match is not expected because
the analytical prediction is an asymptotic approximation.

For further assessment, numerical estimates of u; via reconstruction of the internal
velocity field from the numerical solution of (6.5)—(6.6) are also included in figure 8.
To accommodate this linear wave regime, the nonlinear terms are omitted from (6.5)—
(6.6) with the DNO reducing to G(1) = Go = D tanh(h D) for finite water depth &, where
D = —i d,. The initial conditions for (6.5)—(6.6) are given by

n(x,0) =acos(kx), ¥(x,0)= % sin(kx). (11.10)
The same time integrator (11.2) with the same time step Atr is employed to compute
particle trajectories from the reconstructed velocity field. On one hand, the fact that the two
numerical predictions (based on the exact form (3.2) and reconstructed form (9.2)—(9.3)
of (u, v)) look indistinguishable in this figure further validates our reconstruction method.
On the other hand, the close match between these numerical estimates and the analytical
approximation of u attests to the high accuracy of the time integrator (11.2) that describes
the particle dynamics. We have examined cases with a lower wave amplitude and observed
an even closer agreement. Because discrepancies become less noticeable, these results are
not shown for convenience. Additionally, we have also checked the conservation of the
total Hamiltonian

16
H=> M. (11.11)
=1
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Figure 9. Relative error on Hamiltonian # as a function of time ¢ for 16 Lagrangian particles along the water
column under a linear travelling wave of height (a) H =0.02 and (b) H = 0.04 with wavenumber k =2/5.
Numerical estimates based on the exact (blue line) and reconstructed (red line) velocity field are shown. (a)
H =0.02, (b) H=0.04.

for all 16 particles in the two previous cases H = 0.02 and 0.04, where H, represents each
individual contribution. Figure 9 plots the relative error

AH M — Hol
Ho  Ho

on H as a function of ¢, where Ho denotes the initial value of H at t =0. Again,
numerical estimates based on the exact velocity field (3.2), with H, given by (11.6), and
on the reconstructed internal flow (9.2)—(9.3) from (6.5)—(6.6), with H, given by (11.8),
are displayed in both cases H =0.02, 0.04. These two sets of values are found to be
comparable in magnitude and to evolve similarly in time. Overall, the very low levels
attained by these errors (around 10~3 %) as well as their stable evolution confirm that H
is very well conserved. Not only does this test verify the existence of such a conserved
quantity for Lagrangian particles under a travelling wave, but it also further attests to the
good performance of our numerical solver (flow field reconstruction and time integration)
for the particle dynamics.

(11.12)

12. Nonlinear wave setup and comparison with KdV theory

We now perform direct simulations of (6.5)-(6.6) in the presence of a wave setup or
setdown and compare them with weakly nonlinear predictions by the KdV equation. The
main goal is to highlight differences in the flow dynamics between the setup and setdown
configurations. We will see that, although the surface wave dynamics in these two cases
look similar, their respective internal flow dynamics can be quite distinct, even for a small
difference in the mean water level. We focus on the shallow water regime where conditions
are more suitable for a wave setup or setdown to occur, e.g. due to effects from currents as
commonly observed in nearshore areas.

For this comparison, we use exact cnoidal wave solutions of the KdV equation, which
are periodic travelling waves with analytical expressions for the surface elevation and
velocity field. Such explicit formulae can easily accommodate perturbations due to a wave
setup or setdown, as discussed in § 5.

On the other hand, to tackle this problem using the full nonlinear model, the equations
of motion for the surface wave dynamics as well as the reconstruction algorithm for the
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Figure 10. Stokes drift velocity u,, for 16 Lagrangian particles along the water column z under an unperturbed
nonlinear travelling wave (s =0). Different cases of (H, k) are shown: (a) (0.1, 2/5), (b) (0.2,2/5), (c)
(0.3, 2/5), (d) (0.2, 8/5). Numerical predictions from the Euler system (blue), KdV equation (red) and linear
approximation (black) are compared.

internal velocity field need to be adjusted. The point of this adjustment is to include
additional effects from a uniform horizontal flow U as explained in § 2. Accordingly, the
extended form of (6.5)—(6.6) is

=Gy —Uny, (12.1)

B 1, 1[G +ney]
e e A (12.2)

where U contributes to linear advection, as presented in Guyenne (2019). This is still a
canonical Hamiltonian system (6.1) for  and  with Hamiltonian

1 o0
HZE/ [wG(n)w—l—ZUmﬁx—Irgnz]dx. (12.3)

The reconstruction method for (u, v) is adjusted via the surface data in the matching
condition (9.4), so that the linear system (9.5) to be solved for X = {k, g, (#)} now becomes

AX=B, B={u®(x;,t)+U}. (12.4)
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Figure 11. Stokes drift velocity u; for 16 Lagrangian particles along the water column z under a nonlinear
travelling wave with setup (s = +0.025). Different cases of (H, k) are shown: (a) (0.1, 2/5), (b) (0.2,2/5),
() (0.3,2/5), (d) (0.2, 8/5). Numerical predictions from the Euler system (blue), KdV equation (red) and
linear approximation (black) are compared.

The initial conditions are Stokes waves (19 (x), ¥o(x)) computed by Fenton’s method and
perturbed by a small constant shift s of the water level, so that

n(x, 0)=no(x) +s, ¥(x, 0)=1vo(x), (12.5)

with s > 0 (respectively, s < 0) for a wave setup (respectively, setdown). The induced mean
flow is given by U = —c + /2 + 2gs as derived in § 2, where ¢ denotes the speed of the
unperturbed Stokes wave, and it is prescribed in (12.1)—(12.4). Such a perturbation of
the Stokes wave is not an exact travelling wave solution of (12.1)—(12.2) and produces
some minor unsteadiness, especially at early stages of the simulation while the numerical
solution transitions to a more steady state. In contrast, cnoidal waves with setup or setdown
remain exact travelling wave solutions of the KdV equation, by exploiting the associated
explicit expressions for the surface elevation and velocity field.

Considering the same domain as in the previous section (h =1, L = 107), figures 10—
12 plot the Stokes drift velocity uy, for 16 fluid particles initially located under the central
wave crest at x = L /2 (from near the bottom up to the free surface). We examine s = 0 and
s = #£0.025 in four different cases: H = 0.1, 0.2, 0.3 with kK = 2/5 (two wavelengths over
0<x <L), and H =0.2 with k = 8/5 (eight wavelengths over 0 < x < L). Simulations
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Figure 12. Stokes drift velocity u; for 16 Lagrangian particles along the water column z under a nonlinear
travelling wave with setdown (s = —0.025). Different cases of (H, k) are shown: (a) (0.1, 2/5), (b) (0.2, 2/5),
(c) (0.3,2/5), (d) (0.2, 8/5). Numerical predictions from the Euler system (blue), KdV equation (red) and
linear approximation (black) are compared.
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Figure 13. Surface profile n for an unperturbed nonlinear travelling wave with (@) (H, k) = (0.3, 2/5) and
(b) (H,k)=1(0.2,8/5) at t =0. Initial conditions for the Euler system (blue) and KdV equation (red) are

compared.
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are run until r =T =40 (respectively, T = 20) in cases with kK =2/5 (respectively, k =
8/5). For convenience, we will focus on s = +0.025 to illustrate our results about a wave
setup or setdown, but we have made similar observations with other small values of s.

For these computations, the spatial and temporal resolutions are set to Ax =0.12 and
At =0.01. Unlike the previous tests, a very small time step is not needed to accurately
describe the surface wave and internal flow in the present cases with larger wave
steepnesses. For each configuration (H, k, s), we compare estimates of u; from the Euler
system (12.1)-(12.2), the KdV equation (5.1) and the linear approximation (4.8). Recall
that the KdV equation is a weakly nonlinear and weakly dispersive model for water
waves, hence (H, k) = (0.3, 2/5) and (0.2, 8/5) represent more discriminating cases for
this model because the former is a more nonlinear regime whereas the latter is a more
dispersive regime. The Euler and KdV wave profiles at t = 0 for these parameter values
are depicted in figure 13 and small discrepancies can indeed be discerned around the wave
crests or troughs.

In each configuration determined by s, all curves of u; are displayed over the same
range of values to highlight differences between the various cases of wave parameters.
As expected, results from these three models tend to coincide when the wave steepness
is decreased, and they also tend to be more uniform along the water column. As
the wave steepness is increased (with increasing H and fixed k), the Euler and KdV
predictions remain close together while deviating from the linear approximation. For
higher wavenumber (with increasing k and fixed /), the Stokes drift velocity exhibits
more variation in the vertical direction and is larger in magnitude. Additionally, notable
differences are observed in this limit depending on the value of s.

For kh = 8/5 and s =0, the Euler and linear predictions on u;, look very much alike,
while the KdV graph is more concave. This higher concavity reflects the fact that the
KdV equation becomes less accurate in resolving the vertical structure of the flow in a
more dispersive wave regime (as kh is increased). This feature is clearly revealed by an
inflection of the KdV graph near the free surface. Indeed, we find that integration of (5.5)
for the KdV equation leads to a particle trajectory that (while lying initially on the free
surface) gradually drops below the cnoidal wave elevation over time. This issue is only
noticeable for the KAV equation and arises in all three configurations s =0, £0.025. To
highlight this decline of the surface particle trajectories, we substitute the value of the
vertical position ¢ obtained from (5.5) for the highest particle by its interpolation along
the cnoidal wave profile 5, hence the slight inflection of the KdV curves near the free
surface as shown in figures 10-12(d).

Compared with s =0, the picture is reversed for s ==0.025 (kh =8/5) with the
KdV and linear estimates being closer together while the Euler estimates are larger in
magnitude. Such a contrast is due to the higher levels of wave dispersion and nonlinearity
in this case (H = 0.2, k = 8/5). The fact that the KdV and linear datasets are close together
may be explained by the definition (4.5) of the mean-flow correction to the linear velocity
field (4.1) in the presence of a setup or setdown, which is given in terms of the long-wave
approximation co = +/gh as discussed in § 4. Note that the setup s = +0.025 induces a
positive (i.e. forward) drift with x; > 0 and u7 > 0 in the direction of wave propagation,
whereas the setdown s = —0.025 generates a negative (i.e. backward) drift with x; <0
and u;, < 0. This drift is strongest at the free surface (respectively, near the bottom) for a
wave setup (respectively, setdown). Overall, these values of #;, are found to be comparable
in magnitude between the two configurations s = +0.025 and are consistent with the
correction ~ gs/co as appearing in the linear estimate (4.2).

Figures 10-12 also reveal a small discrepancy in the wave elevation between the linear
approximation and the two nonlinear solutions, which is indicated by a small gap in the
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Figure 14. Stokes drift velocity u;, for 16 Lagrangian particles along the water column z under a nonlinear
travelling wave for different values of s. Two cases of (H, k) are shown: (a) (0.3, 2/5), (b) (0.2, 8/5).
Numerical predictions for s =40.025 (blue), s =—0.025 (red) and s =0 (black) are compared. (@) H =

03,k=2/5,(b) H=0.2,k=28/5.

position zg of their surface particles. This feature is especially pronounced for small
kh and is expected considering that nonlinear waves in this long-wave limit produce
an appreciable mean flow, leading to a higher water level than in the linear case. We
summarize these findings on uy for (H, k) = (0.3, 2/5) and (0.2, 8/5) in figure 14 where
all three datasets s =0, 20.025 are plotted together in each of these wave regimes. The
forward versus backward dichotomy of the Stokes drift when s < 0 is evident from this
figure. For each choice of (H, k), all three profiles of uy look similar along the water
column, and the magnitude of the deviation from s = 0 is seen to be essentially the same
for either s = £0.025, which correlates with |s| as can be expected.

Our results on the Stokes drift velocity show that there is a significant qualitative
difference in the internal flow dynamics between a wave setup and setdown, even for a
relatively small shift of the water level and despite the fact that the surface wave dynamics
look similar in both settings. Moreover, we find that the KdV predictions are robust over a
wide range of parameter values in this shallow-water regime, agreeing well with direct
computations based on the Euler system. To further illustrate these points, figures 15
and 16 depict the trajectories of the 16 Lagrangian particles for s =0, £0.025 in the
more discriminating cases (H, k) = (0.3, 2/5) and (0.2, 8§/5). We now restrict ourselves
to analysing and comparing the KdV and Euler predictions. We see that these particles
typically follow a trochoidal path with cyclic arches and loops. For (H, k) = (0.3, 2/5),
the particle paths from both models look quite similar whereas, for (H, k) = (0.2, 8/5),
discrepancies are more discernible, which is consistent with our previous observations
when inspecting uy . In this case, over the same duration 0 < ¢ < T and for a given zp, the
Euler particle paths yield a longer horizontal drift x7 with an additional arch, as compared
with the KdV ones. On the other hand, each KdV trochoidal cycle seems to be longer in
arclength than its Euler counterpart. Here, x7 is defined as the total horizontal drift

xr =§&(T) — &(0), (12.6)

over 0 <t < T for any particle £.

Figures 15 and 16 confirm that this total drift x7 is positive (respectively, negative) for
a wave setup (respectively, setdown). In both settings, the drift magnitude is found to be
appreciable along the entire water column, even near the bottom where it turns out to be
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Figure 15. Trajectories (black) of 16 Lagrangian particles along the water column under a nonlinear travelling

wave (H, k) = (0.3,2/5) from ¢t =0 (red) to t =40 (blue). Configuration: s =0 (a,b), s = 4+0.025 (¢,d), s =
—0.025 (e,f). Numerical predictions from the KdV equation (a,c,e) and Euler system (b,d,f) are shown. (a)
KdV, s =0, (b) Euler, s =0, (¢c) KdV, s = +0.025, (d) Euler, s = +0.025, (¢) KdV, s = —0.025, (f) Euler, s =
—0.025.

largest for a wave setdown. This phenomenon is even more apparent in the more dispersive
wave regime (H = 0.2, k = 8/5) where the distinction between the unperturbed (s = 0)
and perturbed (s # 0) configurations is particularly striking. Indeed, the particle paths for
s = 0 exhibit the typical pattern of the deep-water regime where the fluid motion rapidly
decays with the depth. By contrast, the particle paths for s # 0 bear closer resemblance
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Figure 16. Trajectories (black) of 16 Lagrangian particles along the water column under a nonlinear travelling
wave (H, k) = (0.2, 8/5) from ¢ =0 (red) to t = 20 (blue). Configuration: s =0 (a,b), s = +0.025 (¢,d), s =
—0.025 (e,f). Numerical predictions from the KdV equation (a,c,e) and Euler system (b,d,f) are shown.

to a shallow-water flow. Such perturbations of the internal flow dynamics in the presence
of a wave setup or setdown have important implications for mass and momentum transfer
(both horizontally and vertically) below the water surface, including effects on sediment
transport at the seafloor.

The setup and setdown configurations are further distinguished by noting that the
particle paths are trochoids of prolate type with concave-down arches for s > 0, whereas
they are of prolate type with concave-up arches for s < 0. This can be seen in figures 17
and 18 that show close-ups with a direct comparison of particle paths predicted by the
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Figure 17. Zoom-in on trajectories of Lagrangian particles at the free surface (a,b) and near the bottom (c,d)
under a nonlinear travelling wave (H, k) = (0.3, 2/5) from ¢ =0 (dot) to t = 40 (triangle). Configuration: s =
+0.025 (a,c), s = —0.025 (b,d). Numerical predictions from the KdV equation (red) and Euler system (blue)
are compared. (a) s = +0.025, at the free surface, (b) s = —0.025, at the free surface, (c¢) s = +0.025, near the
bottom, (d) s = —0.025, near the bottom.

KdV equation and the Euler system for s = 0.025 in the two previous cases of (H, k).
Discrepancies between these two approaches for (H, k) = (0.2, 8/5) are particularly
apparent in these close-ups, and are more significant near the bottom where the Euler
particle trajectories display more arches but with lower amplitude than their KdV
counterparts. In the setdown configuration, especially for (H, k) = (0.3, 2/5), the return
loop after each cycle turns out to be quite prominent, thus contributing to a shorter drift xr
than in the setup configuration, as demonstrated by figures 11 and 12. Consistent with our
previous comments on figures 10-12, the good agreement between Euler and KdV particle
dynamics for (H, k) = (0.3, 2/5) in figure 17 may serve to provide a cross-validation of
these two strategies, assessing on one hand the regime of validity for the KdV equation
and on the other hand the reconstruction method for the fluid velocity with a mean flow
via the Euler system.

Again, such differences in the geometry of particle orbits between a wave setup and
setdown may have important implications for mass and momentum transfer under ocean
surface waves, especially in nearshore areas. As noted earlier, the fact that the Euler
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Figure 18. Zoom-in on trajectories of Lagrangian particles at the free surface (a,b) and near the bottom (c,d)
under a nonlinear travelling wave (H, k) = (0.2, 8/5) from ¢t = 0 (dot) to # = 20 (triangle). Configuration: s =
+0.025 (a,c), s = —0.025 (b,d). Numerical predictions from the KdV equation (red) and Euler system (blue)
are compared. (a) s = +0.025, at the free surface, (b) s = —0.025, at the free surface, (c¢) s = +0.025, near the
bottom, (d) s = —0.025, near the bottom.

solution yields a longer drift x7 than its KdV counterpart for (H, k) = (0.2, 8/5) with both
s = £0.025 is clearly revealed in the close-ups of figure 18. Overall, these observations on
xr over the interval 0 < ¢ < T correlate well with our previous results on uy (xy, over tr)
as presented in figures 11 and 12.

13. Conclusions

We have investigated the effects of a setup or setdown on the particle transport properties
of periodic nonlinear waves at the free surface of an inviscid fluid. This work is inspired by
observations of surface tracers that showed that particle transport in non-breaking coastal
waves correlates more strongly with the observed mean water level than with the wave
height (Bjgrnestad er al. 2021). It is also motivated by a desire to understand wave-by-
wave properties of mass transport that will be needed if other observations of transport
anomalies due to wave groups (Smith 2006; van den Bremer & Taylor 2016) and the
influence of shear currents (Monismith et al. 2006; Curtis et al. 2018) are to be explained.
While deviations from the usual Stokes drift were observed both in field and laboratory
situations (Smith 2006; Monismith et al. 2006; Bjgrnestad et al. 2021), the present work
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is idealized in the sense that the underlying fluid is inviscid, the flow is laminar and
solenoidal (no turbulence, zero vorticity) and the waves are perfectly periodic. These
approximations allow us to thoroughly test our assumptions, and bring out the quantitative
results in an unambiguous way, informing future studies which may be set in more realistic
situations, and where the quantitative findings may be less unambiguous.

In this paper, we have derived the Eulerian background current induced by a small wave
setup or setdown, and we have shown that such a uniform flow can be inserted into the
time-dependent Euler equations together with a periodic Stokes wave, giving rise to a
coherent structure representing a periodic wave riding on this background current. The
Euler equations with free-surface boundary conditions in the potential flow formulation
were integrated via the well-established HOS method. An important new aspect of this
study was the development of a numerical procedure to accurately estimate the fluid
velocity under a nonlinear surface wave and in the presence of a non-zero mean flow.

Determination of the velocity field allowed us to investigate particle transport under
periodic surface gravity waves. Of particular interest was the regime of wave propagation
on shallow and intermediate water depth. First, we have revealed the Hamiltonian character
of particle dynamical equations in the case of a linear or nonlinear travelling wave, and
we have verified the associated conservation of energy via numerical simulations. Second,
a series of numerical experiments was conducted to assess the influence of mean water
level (wave setup or setdown) on particle motions and the resulting Stokes drift. These
results were compared with linear and weakly nonlinear predictions, involving cnoidal
wave solutions of the KdV equation.

We have observed that, although the surface wave dynamics look similar in the setup
and setdown configurations, their respective internal flow dynamics can be quite different,
both qualitatively and quantitatively, even for small variations in the mean water level. The
KdV approximation was found to be satisfactory over a wide range of parameter values,
displaying characteristic features of particle drift for a wave setup or setdown. As expected,
discrepancies between the KdV and Euler predictions become more pronounced in cases
of larger wave amplitude or shorter wavelength.

Finally, we point out that the proposed mathematical formulation for nonlinear surface
waves and the associated numerical procedure to reconstruct the fluid velocity field are
extensible to three space dimensions. Computations on this more general problem are
envisioned for future work.
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