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Abstract Oda’s problem, which deals with the fixed field of the universal monodromy representation of
moduli spaces of curves and its independence with respect to the topological data, is a central question of
anabelian arithmetic geometry. This paper emphasizes the stack nature of this problem by establishing
the independence of monodromy fields with respect to finer special loci data of curves with symmetries,
which we show provides a new proof of Oda’s prediction.

1. Introduction

Let Mg,m be the moduli stack of smooth projective curves of genus g with m (disjoint

ordered) sections satisfying the hyperbolicity condition 2g−2+m≥ 1, which is a smooth
geometrically connected Deligne-Mumford stack over Q, and is endowed with a universal

punctured curve Cg,m →Mg,m. For X a punctured curve over Q of topological type (g,m),

associated to a morphism x : SpecQ→Mg,m, one obtains two short exact sequences of
étale fundamental groups

1→ πet
1 (X⊗Q)→ πet

1 (Cg,m)→πet
1 (Mg,m)→ 1 and

1→ πet
1 (Mg,m⊗Q)→ πet

1 (Mg,m)
p→GQ → 1, (1.1)

where the fundamental groups are given with respect to a choice of compatible base

points that we omit. Denoting X⊗Q by XQ, the left-hand one gives rise to the universal
�-monodromy representation

Φ�
g,m : πet

1 (Mg,m)→Outπet
1 (XQ)→Outπ�

1(XQ),
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where the right-hand side morphism comes, for � a fixed prime, from the surjective map
πet
1 (XQ) → π�

1(XQ) to the pro-� geometric fundamental group of X (also the maximal

pro-� quotient of the geometric one). Composing with the section induced by x between

Galois and étale fundamental groups, one furthermore recovers the �-adic representation
associated to X

ϕ�
X : GQ →Outπ�

1(XQ),

which, contrary to the classical profinite geometric Galois action, has a nontrivial kernel

whose corresponding fixed field contains Q�
g,m =Q

p(KerΦ�
g,m)

.

The following prediction, as formulated in [17] §1.4, stems from Takayuki Oda’s original
conjecture formulated in [27].

Oda’s prediction. For g, m ∈N such that 2g−2+m> 0, the �-monodromy fixed field

Q�
g,m associated to Φ�

g,m is independent of (g,m).

As noted in [27], the group Outπ�
1(XQ) is ‘almost intractable’, which motivates Oda

to formulate his conjecture in terms of a seemingly more reachable but stronger weight-

filtration version of the above prediction, and for fixed g ≥ 0, see ibid. §2. Theorem and

conjectures. Oda’s prediction is finally settled1 for every (g,m) by Takao in [31] following

successive advances on the independence in g or m in terms of arithmetic-geometry
(see Ihara and Nakamura in [17]), of group theoretic and Lie algebra computations

(see Nakamura-Takao-Ueno [25] and Matsumoto [20]) and by the use of the (divisorial)

Knudsen-Mumford stratification ofMg,m (see [23]). An independant proof was later given
in terms of combinatorial anabelian geometry by Hoshi and Mochizuki in [13]. We also

refer to [32] for a recent panorama.

Oda’s problem – that is, to which extent canonical arithmetic and geometric data
such as g and m, produce independent �-monodromy fixed fields – is a central question

of anabelian arithmetic geometry: it allows the study of the Deligne-Ihara Lie algebra

[15] related to motivic multiple zeta values, since for (g,m) = (0,3), the morphism Φ�
0,3

is one of Ihara’s questions on P1
Q \{0,1,∞} [14], which in turn, is related to the

Rasmussen-Tamagawa conjecture [28]. It also has application in low-dimensional topology
via the Johnson homomorphism and the Morita obstructions [22]. This conjecture has

since motivated the anabelian notion of monodromic fullness [12].

We remark that, as presented in [20] Remark 3.3, while Oda’s problem is essentially of

stack-theoretic nature – by Mg,m as a solution to a fine moduli problem and the very
existence of the universal punctured curve Cg,m – the field Q�

g,m was expressed and dealt

with in a scheme-theoretic way. This paper develops a setup and techniques that allow

to exploit the stack-theoretic aspects of Oda’s problem.

Oda’s problem for G-special loci

Let Mg,[m] denote the moduli stack of curves of genus g with m (unordered) marked

points (in particular, Mg,[m] is not represented by a scheme), which is naturally endowed

1Publication of the proof, established in 1995, was indeed postponed to 2012 for unfortunate
non-mathematical ground.
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with a stack inertia stratification (i.e., by the automorphism group of objects). Each

strata corresponds to a G-special locus Mg,[m](G) of curves whose automorphism group

contains a given finite group G. It is shown that the geometric irreducible components
Mg,[m](G)kr for G cyclic automorphism group, that are among the biggest nontrivial

strata, are Q-rational and can be described by combinatorial Hurwitz data kr; see [4].

This context also provides an �-universal G-monodromy representation; see Theo-
rem 2.2.

There exists a universal monodromy representation

Φ�
g,[m](G)kr : π

et
1 (Mg,[m](G)kr)−→Outπ�

1(X)

for X a smooth curve with compactification X represented by a Q-point on Mg,[m](G)kr
and where X \X is a divisor of degree m on X.

In particular, this setup provides an �-monodromy fixed field Q�
g,[m](G)kr =

Q
p(KerΦ�

g,[m](G)kr)
where p denotes the usual projection to GQ. In this paper, we deal

with the following Z/�nZ-special loci version of Oda’s problem.

Oda’s problem for cyclic special loci. For g, m ∈ N such that 2g−2+m> 0 and G cyclic group of
order �n is the �-monodromy fixed field Q�

g,[m]
(G)kr independent of all the special loci data (g,m), n

and kr?

While a positive answer to this problem may at first seems ‘unreasonable’ – Oda’s

problem for cyclic special loci is finer and implies Oda’s prediction – it is supported by

a series of indirect results that exhibit similar arithmetic properties of the stack inertia

stratification to the classical divisorial one: the Galois actions have the same type [5],
and the related Grothendieck-Teichmüller groups are isomorphic [3]. More concretely,

one notices that the curves used in [20] §4 to establish Oda’s prediction for 2g = 0

mod (�−1) live in Mg,[m](G)kr with G= Z/�Z, quotient genus g′ = 0 and some kr data
with k = (1, . . . ,1,j,− (1+1 · · ·+1+ j)) for j = 1 or 2; see Section 2.1.1 for notations.

Indeed, the main results of this paper can be summarized as follows; see Section 2.2

for the compatibility of the various �-universal monodromy fields and morphisms and
Theorem 5.3.

Theorem. Let � be a fixed prime. Let g,m ∈ N be such that 2g − 2 +m > 0 and

kr an associated abstract Hurwitz data such that Mg,[m](Z/�Z)kr is nonempty. The

map Φ�
g,[m](Z/�Z)kr is compatible with the map Φ�

g,m and the �-monodromy fixed field

Q�
g,[m](Z/�Z)kr is constant equal to Q�

0,3.

As a corollary, see Corollary 5.4, we recover the containment Q�
g,m ⊂Q�

0,3 and thus the
classical version of Oda’s prediction; that is, for all g, m ∈ N such that 2g− 2+m > 0,

we have Q�
g,m = Q�

0,3 (see also [17] Theorem 3 B). Both proofs of Oda’s problem for

special loci and classical settings still rely on the previously established Q�
0,3 ⊂Q�

g,m; see
[23, 20, 31].

The organization of the paper is as follows. In Section 2, we recall the kr combinatorial

description of irreducible components of cyclic special loci of [4] and introduce the
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�-universal G-monodromy representation, whose fixed field we relate within a lattice of
other �-monodromy fixed fields, which, in particular, includes the more traceable Hurwitz

spaces Mg,[m][G]kr

Q�
g,m Q�

g,[m](Z/�
nZ)kr Q�

g,[m](Z/�
nZ)νkr

Q�
0,3 Q�

g′,m′ Q�
g′,[m′](δZ/�

nZ)ν,

where (g′,m′), resp.Q�
g′,[m′](δZ/�

nZ)ν , denotes the topological data, resp. a certain

monodromy fixed field, obtained by G-quotient. At this stage, establishing the G-special

version of Oda’s prediction relies on showing that Q�
g,m(Z/�nZ)νkr ⊂Q�

0,3; our proof adapts

Ihara-Nakamura’s [17]. Section 3 deals with the construction of tangential base points, or
one-parameter families, on the G-stable compactification of Hurwitz spaces in terms of

formal patching of certain Matsumoto-Seyama Z/�Z-stable curves, whose Galois action

properties are established in Section 4 via Grothendieck-Murre theory and by comparison
with Deligne’s original tangential base point. This results in the inclusion of the

�-monodromy fixed field of the generic fiber of the constructed one-parameter families

into Q�
0,3. We conclude with a general Theorem 4.12 that can be applied to multiple

geometric situations. Section 5 ties everything together for Z/�Z, starting with the case

of proper loci for which the deformation method does not apply. In the diagram above,

Oda’s classical prediction then follows the bottom row reading.

Notations and conventions. For G a finite group, we write Mg,[m][G] for the Hurwitz
space of G-covers and Mg,[m](G)ν for the quotient Mg,[m][G]/AutG. We denote by

Mg,[m](G) the G-stable compactification of the G-special locus Mg,[m](G), and by

Mg,[m](G)ν the stable compactification of Mg,[m](G)ν . The topological data (g,m) of

a curve are said to be of hyperbolic type if they satisfy 2g−2+m> 0.

2. Oda’s conjecture for G-special loci

After some brief reminders on the description of irreducible components Mg,[m](G)kr of

cyclic G-special loci in terms of combinatorial Hurwitz data kr, we define the �-universal
G-monodromy representation Φ�

g,m(G)kr : π1(Mg,[m](G)kr) −→ Outπ�
1(X) – for G any

finite group – where X is a hyperbolic curve of type (g,m). Relying on the forgetful

functor and the quotient functor

Mg,[m](G)νkr →Mg,[m](G)kr →Mg,[m], and Mg,[m][G]kr
δ→Mg′,[m′]

and some properties of the stack inertia IM, we build step-by-step a lattice of relations

between the various �-monodromy fixed fields arising from this context – that is, between

Q�
g,m, Q�

g,[m](Z/�
nZ)kr, Q

�
g,[m](Z/�

nZ)νkr, and Q�
g′,[m′](δZ/�

nZ)νkr.

2.1. Universal monodromy representations and Oda’s fields for G-special loci

2.1.1. Hurwitz data of special loci. Let Mg,[m][G] be the moduli stack of curves

of genus g with m marked points endowed with a faithful G-action, or Hurwitz stack,
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whose S -sections for a Q-scheme S are defined as follows: the objects of Mg,[m][G](S)

are triplets (C,D,ι) where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C is a smooth projective curve of genus g over S,

ι : G→AutSC an injective homomorphism,

D an tale Cartier divisor of degree m

stabilized by the G-action induced by ι;

see [4] §2.1 as well as for the rest of this section. The G-special locus Mg,[m](G) of Mg,[m]

is obtained as the image of Mg,[m][G] in Mg,[m] under the forgetful functor defined by

Mg,[m][G](S) −→ Mg,[m](S)

(C,D,ι) �−→ (C,D).

In particular, the S -sections ofMg,[m](G) are curves over S whose geometric fibers admits

a faithful G-action. The stackMg,[m][G] having a canonical right-action of AutG via ι, we
can form the quotient stack Mg,[m][G]/AutG that we denote by Mg,[m](G)ν since, apart

from a few exceptional cases2 (see [19] Theorem 5.1 and Section 4 for an account with

g ≥ 2 and also Remark 2.1 2.1.1), it identifies with the normalization of Mg,[m](G) by the

proof of [29] Proposition 3.4.1. All the stacks Mg,[m][G], Mg,[m](G) and Mg,[m](G)ν are
Deligne-Mumford stacks over SpecQ – with Mg,[m][G] and Mg,[m](G)ν moreover smooth

over SpecQ.

From now on, we assume that G 	 Z/nZ is cyclic, so that following [4], we can
investigate the sublociMg,[m](G)kr ofMg,[m](G) of S -curves whoseG-action ramification

data correspond to certain Hurwitz data kr= (k,r) modulo the diagonal (Z/nZ)×-action,
which are abstractly defined as follows:

• The part k corresponds to an N -tuple in (Z/nZ)N , where N is the degree of the
branch divisor, whose terms sum to 0, and which is taken up to permutation. Each
component of k corresponds to a generator of one of the G-isotropy groups.

• The second part r is an element of Nn, whose i -th component, in the case of a
quotient map ψ : C → C/G, corresponds to

r(i) = Card{y ∈D/G | br(y) = i mod n},
where br(y) is the branching order at y – that is, the ramification index of any
point in the fiber ψ−1(y).

Note that the (Z/nZ)×-quotient in kr should be seen as the (AutG)-quotient previously

introduced. We refer to ibid. Definitions 3.5 and 3.9, and Example 3.11 for further details.
The construction of abstract Hurwitz data from G-curves defines a map

kr : Mg,[m][G]N −→ ((Z/nZ)N/SN ×Nn)/(Z/nZ)×,

where Mg,[m][G]N denotes the substack of Mg,[m][G] of curves whose branch divisor is of

degree N, which is locally constant – see [4] Lemma 3.13. For a fixed value of kr, one thus

2Erratum: Proposition 2.4 and Corollaire 2.5 of [4] are subject to the same exceptions.
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obtains a substack Mg,[m][G]kr of Mg,[m][G] of G-curves with abstract Hurwitz data kr

so that one can define the following:

Definition 2.1. For G cyclic and given abstract Hurwitz data kr, the special sublocus

Mg,[m](G)kr is the image of Mg,[m][G]kr under the forgetful functor Mg,[m][G] →
Mg,[m](G).

Also, since the action of AutG stabilizes Mg,[m][G]kr by definition, we have substacks

Mg,[m](G)νkr of Mg,[m](G)ν . The stacks Mg,[m](G)νkr and Mg,[m](G)kr are defined over

Q by construction and are geometrically irreducible by Proposition 3.12 and Theorem 4.3
of [4].

One particular case of interest is when the ramification divisor is contained in the

marked divisor D. In this case, we can recover r by the data of D and k. Indeed, we have{
r(i) = Card{j | k(j) = i}/gcd(i,n) for i 
= 0

r(0) = degD−
∑

i∈Z/nZ\{0}Card{j | k(j) = i}.

Similarly to the moduli stacks of curves, the stacks Mg,[m](G), resp. Mg,[m](G)ν ,

are not necessarily proper. We denote by Mg,[m](G)kr the G-stable compactification

of the G-special locus Mg,[m](G)kr, and by Mg,[m](G)νkr the G-stable compactification

of Mg,[m](G)νkr. These are obtained from the original stacks by adding stable curves
endowed with a stable G-action. We refer to [6] and [2] §4 and 6 for details.

Remark 2.1.

1. The correspondence between the abstract Hurwitz data kr and the Hurwitz data ξ

of [2] §2.2 in terms of equivalence classes [Hi,χi] of characters χi at G-inertia group
Hi is straightforward by considering generators of the G-isotropy groups.

2. The difference between Mg,[m](G) and Mg,[m](G)ν comes from the potential

existence of a curve whose geometric fiber has an automorphism group that contains
2 topologically but not holomorphically conjugate subgroups. We refer to [7] for

examples.

2.1.2. The universal G-monodromy representation. We now consider

Cg,[m](G)kr the universal G-curve of genus g with m punctures and abstract Hurwitz

data kr. We denote by Mg,[m]+1 the stack of smooth projective curves with a degree
m divisor and an additional marked point. We have an identification Cg,[m](G)kr 	
Mg,[m](G)kr ×Mg,[m]

Mg,[m]+1. The S -sections of Cg,[m](G)kr are the elements of

Mg,[m](G)kr(S) with the additional data of a section outside the marked points
D ; similarly, the universal punctured curve over Mg,[m](G)νkr is given by the stack

Cg,[m](G)νkr =Mg,[m](G)νkr×Mg,[m]
Mg,[m]+1.

One obtains the �-universal G-monodromy representation of étale fundamental groups.

Theorem 2.2. Let g, m ∈ N such that 2g−2+m> 0, G a finite cyclic group and kr a
Hurwitz data with respect to g, m and G. Then there is an exact sequence

1 π1(X) π1(Cg,[m](G)kr) π1(Mg,[m](G)kr) 1, (2.1)
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where X denotes a geometric curve of type (g,m). The �-universal G-monodromy

representation is the induced monodromy map

Φ�
g,m(G)kr : π1(Mg,[m](G)kr)−→Outπ�

1(X), (2.2)

which is universal in the following sense: for any curve C over a connected Q-scheme S
in Mg,[m](G)kr(S) and Q-point s of S, the natural representation π1(S) → Outπ�

1(Cs)

factors through Φ�
g,m(G)kr. A similar result holds for Mg,[m](G)νkr.

Note that the exact sequence above is independent of the choice of the geometric curve
X of type (g,m). In the case m ≥ 1, one identifies π�

1(X) 	 F̂ �
2g+m−1 with the pro-�

completion of a free group; for general hyperbolic type (g,m), the group π�
1(X) is the

pro-� completion of a surface group.

Proof. The exactness of Equation (2.1) follows a classical argument on the geometric

parts of the étale fundamental groups. Considering Cg,[m](G)kr as the stack of m-marked

curves with G-symmetries and an additional marked point, then erasing this additional
point, provide a Birman point-erasing exact sequence between orbifold fundamental

groups:

1 πtop
1 (X) πtop

1 (Cg,[m](G)kr) πtop
1 (Mg,[m](G)kr) 1

whose exactness is preserved after profinite completion: The profinite completion is

always right-exact; the left-exactness follows from [1] Proposition 4 and above by residual
finitness of πtop(X) and the centerfreeness of the profinite completion of surface groups;

see ibid. Proposition 8 and Proposition 18.

A similar argument provides the result for Mg,[m](G)νkr with ad hoc substitutions.

For a curve C over S as in Theorem 2.2, the �-monodromy representation of C

ϕ�
C : π1(S)→Outπ�

1(Cs)

is obtained from the relative homotopy exact sequence as usual. Notice that the Q-scheme

S also sits in a classical arithmetic-geometric homotopy exact sequence, so that π1(S) is
naturally equipped with a projection map pS : π1(S)→GQ. We recall that, similarly, we

have a canonical homomorphism p : π1(Mg,[m](G)kr)→GQ.

Definition 2.2. The field Q�
g,[m](G)kr, resp. Q�

g,[m](G)νkr, is the fixed field of

p(KerΦ�
g,[m](G)kr), resp. of p(KerΦ�

g,[m](G)νkr). For a curve C over a connected Q-scheme

S, the field Q�
C is the fixed field of pS(Kerϕ�

C).

Lemma 2.3. For C a curve over a connected Q-scheme S represented by an S-point on

Mg,[m](G)kr, resp. on Mg,[m](G)νkr, we have the inclusion

Q�
g,[m](G)kr ⊂Q�

C, resp. Q
�
g,[m](G)νkr ⊂Q�

C .

The �-monodromy fixed field Q�
g,[m](G)kr is furthermore obtained as the intersection of

all the Q�
C for such C/S where S varies in the category of connected Q-schemes.
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The field Q�
g,[m](G)kr can also be obtained as Q�

C0
where C0 = Cg,[m](G)kr×Mg,[m](G)kr

Mg,[m]+m′(G)kr is a curve over S =Mg,[m]+m′(G)kr with m′ large enough for S to be a

scheme.

Proof. By the universality of the map Φ�
g,[m](G)kr, we have a commutative diagram

π1(S) π1(Mg,[m](G)kr) Outπ�
1(C)

GQ GQ,

pS p

where C denotes a hyperbolic curve of type (g,m), and where ϕ�
C appears as the com-

position π1(S)→ π1(Mg,[m](G)kr)→Outπ�
1(C). The compatibility with the projections

to GQ ensures that we have pS(Kerϕ�
C)⊂ p(KerΦ�

g,[m](G)kr) and thus the inclusion. To
prove the last point, by commutativity of the diagram, it suffices to show the existence

of a curve C in Mg,[m](G)kr(S) such that the induced map π1(S) → π1(Mg,[m](G)kr)

is surjective. This is done by taking C0 = Cg,[m](G)kr ×Mg,[m](G)kr
Mg,[m]+m′(G)kr over

S =Mg,[m]+m′(G)kr with m′ large enough for S to be a scheme.

The case of Q�
g,[m](G)νkr is similar after replacing Mg,[m](G)kr by Mg,[m](G)νkr.

2.1.3. The case of Hurwitz data of étale type. Let us now relate the general
situation to the one where the divisor of marked points D contains the ramification

divisor R of the G-action, a property that we recall can be seen directly on the abstract

Hurwitz data.

By base change to an algebraically closed field and reading of the kr data, one notices
that the divisor R∪D is finite étale over S for a curve C/S as before.

Lemma 2.4. Let (C,D) be a curve represented by an S-point on Mg,[m](G)νkr as before.
Then the degree of the ramification divisor R of C and of the divisor R∪D are determined

by the abstract Hurwitz data kr.

Proof. As everything is locally constant on the base, it is enough to treat the case where
S is the spectrum of an algebraically closed field. By definition of kr, the degree degR=N

of the ramification divisor is the length of k. Furthermore, since the degree of R∩D is

given by
∑n−1

i=1 gcd(i,n) · r(i), we have the formula

degR∪D =m+N −
n−1∑
i=1

gcd(i,n) · r(i),

which is entirely determined by m, kr and G= Z/nZ.

For an abstract Hurwitz data kr, we introduce kret as the minimal associated Hurwitz

data such that the ramified points are contained in the marked divisor – thata is, minimal

in the sense that the new marked divisor is the smallest one containing D and R – and
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which is thus defined by{
ret(0) = r(0)

ret(i) = Card{j ∈ {1, . . . ,N} | k(j) = i}, i≥ 1.

Proposition 2.5. There is a natural map of stacks

Mg,[m](G)νkr −→Mg,[m+s](G)νkret,

where ret and s= degR−degR∩D can be explicitly determined as above.

Proof. By the previous lemma, we have that if (C,D) is in Mg,[m](G)νkr(S), then (C,R∪
D) is an element of Mg,[m+s](G)νkret(S). This association defines a map of groupoids as

any isomorphism preserving the G-action must also preserve the ramification divisor.

Theorem 2.6. We have the following inclusion of �-monodromy fixed fields:

Q�
g,[m](G)νkr ⊂Q�

g,[m+s](G)νkret . (2.3)

Proof. Let σ ∈ p(KerΦ�
g,[m+s](G)kret) ⊂ GQ. By Lemma 2.3, there is a connected Q-

scheme S and a curve (C,D) over S represented by an S -point on Mg,[m+s](G)kret such
that σ has a lift τ in the kernel of the map

π1(S) π1(Mg,[m+s](G)kret) Outπ�
1(X),

sC Φ�
g,[m+s](G)kret

where X denotes a hyperbolic curve of type (g,m). The divisor D admits a decomposition

D =Dun∪Dram where Dun is given by the unramified marked points and Dram by the

ramified marked points. By definition of the component ret of kret, the divisor Dram

corresponds to all the ramified points. The divisor Dram splits into a disjoint union of

geometrically irreducible divisors over a finite étale extension S′ = SK of S where K

is defined by the property that GK stabilizes each geometric component of Dram. In
particular, π1(S

′) contains the subgroup {α ∈ π1(S) | pS(α) ∈GK}, which contains τ by

construction. We can thus assume that S = S′.
By removing some chosen orbits of ramified points in Dram according to the data

given by r, we can form a divisor D′ =Dun∪Dram′
such that (C,D′) gives an S -point of

Mg,[m](G)kr. Hence, it is sufficient to show that σ is the image of an element of π1(S) that

acts trivially on the pro-�-fundamental group of a geometric fiber Cs \D′
s of C \D′. This

now comes from the fact that the outer actions of π1(S) on π�
1(Cs \Ds) and π�

1(Cs \D′
s)

are compatible with the canonical surjection π�
1(Cs \Ds)→ π�

1(Cs \D′
s).

2.2. From the classical to the special loci settings

In order to relate the �-monodromy fixed fields Q�
g,m and Q�

g,m(G)kr, let us start

by showing that we can move from Mg,m to Mg,[m] without harm. Let Q�
g,[m] be

the fixed field of p(KerΦ�
g,[m]) where p : Mg,[m] → SpecQ is the structure map and

Φ�
g,[m] : π1(Mg,[m])→Outπ�

1(C) the outer Galois action coming from the exact sequence

1 π1(C) π1(Mg,[m]+1) π1(Mg,[m]) 1,
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where C is a geometric fiber of Mg,[m]+1 →Mg,[m]. The following can also be seen as a
special case of [11] Lemma 1.4 (ii).

Lemma 2.7. We have Q�
g,m =Q�

g,[m].

Proof. It suffices to see that the equality KerΦ�
g,m = KerΦ�

g,[m] holds in π1(Mg,[m]) as

we have π1(Mg,m)⊂ π1(Mg,[m]) with cokernel Sm. For a presentation of π�
1(C) given by

〈y1, . . . ,y2g,x1, . . . ,xm | [y1,y2] · · · [y2g−1,y2g]x1 · · ·xm = 1〉,

it is clear that an element τ ∈ π1(Mg,[m]) has image σ ∈Sm if and only if the permutation

induced by τ on the set of conjugacy classes of cuspidal inertia subgroups of π�
1(CQ), which

is in bijection with the set {x1, . . . ,xm}, is the one given by σ. Such an element τ thus
has trivial outer action on π�

1(C) only if it has trivial image in Sm and thus belongs to

π1(Mg,m).

2.2.1. First monodromy fixed fields comparisons. The comparison via the

forgetful functor Mg,[m](G)νkr →Mg,[m](G)kr →Mg,[m] is now straightforward.

Proposition 2.8. For all (g,m) of hyperbolic type and compatible Hurwitz data kr, we

have Q�
g,m ⊂Q�

g,[m](G)kr ⊂Q�
g,[m](G)νkr.

Proof. Let C be a curve over Q represented on Mg,[m](G)νkr. First, see that the sequence

of maps

π1(Mg,[m](G)νkr)→ π1(Mg,[m](G)kr)→ π1(Mg,[m])→Outπ�
1(C)

induces a sequence

KerΦ�
g,[m](G)νkr →KerΦ�

g,[m](G)kr →KerΦ�
g,[m],

where the second map is obtained by considering the following commutative diagram with

exact rows

1 π1(C) π1(Cg,[m](G)kr) π1(Mg,[m](G)kr) 1

1 π1(C) π1(Mg,[m]+1) π1(Mg,[m]) 1

1 Innπ�
1(C) Autπ�

1(C) Outπ�
1(C) 1,

and the first map is obtained in a similar way.

By applying the canonical projections to GQ, and Lemma 2.7 for Q�
g,m = Q�

g,[m], one

obtains the desired sequence of inclusions.

Corollary 2.9. With the notations of Theorem 2.6 we have

Q�
0,3 ⊂Q�

g,[m](G)kr ⊂Q�
g,[m](G)νkr ⊂Q�

g,[m+s](G)νkret .
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Proof. The inclusion Q�
0,3 ⊂ Q�

g,m for all hyperbolic (g,m) is essentially Theorem 3.6 of
[31]. The rest of the inclusions follow from Proposition 2.8 and Theorem 2.6.

Remark 2.10. In Proposition 2.8, there is no difficulty to move to the weight version of
Oda’s conjecture, and we get, for all (g,m) of hyperbolic type, any compatible Hurwitz

data kr, and all weight w

Q�
g,m(w)⊂Q�

g,[m](G)kr(w)⊂Q�
g,[m](G)νkr(w).

In contrast, see Remark 2.13 2.

2.2.2. Quotient vs G-special loci fixed fields. The quotient map δ : Mg,[m][G]kr →
Mg′,[m′] defined by (C,D,ι) �→ (C/ι(G),D/ι(G)) allows the comparison of �-monodromy
fixed fields. We first remark that the map δ is well defined at the level of the stack

Mg,[m](G)νkr, since δ is equivariant under the action of AutG.

Therefore, we have a map δ : Mg,[m](G)νkr →Mg′,[m′] that fits in a commutative square

Cg,[m](G)νkr Mg,[m](G)νkr

Mg′,[m′]+1 Mg′,[m′],

δ

where the map on the left is induced by the quotient in the same way. For a curve X

over Q represented on Mg,[m](G)νkr, let us denote Y the quotient proper curve, and X, Y
their open counterparts. This leads to a commutative diagram with exact rows

1 π1(X) π1(Cg,[m](G)νkr) π1(Mg,[m](G)νkr) 1

1 π1(Y ) π1(Mg′,[m′]+1) π1(Mg′,[m′]) 1,

which in turn provides an �-monodromy representation

Φ�
g′,[m′](δG)νkr : π1(Mg,[m](G)νkr)→Outπ�

1(Y )

in the quotient curve, so that one obtains

p(KerΦ�
g′,[m′](δG)νkr)⊂ p(KerΦ�

g′,[m′]) or equivalently Q�
g′,[m′] ⊂Q�

g′,[m′](δG)νkr (2.4)

where Q�
g′,[m′](δG)νkr denotes the fixed field of the subgroup p(KerΦ�

g′,[m′](δG)νkr) as usual.

Lemma 2.7 then gives Q�
g′,m′ ⊂Q�

g′,m′(δG)νkr.

In the rest of this section, we finally establish that Q�
g′,[m′](δG)νkr = Q�

g,m(G)νkr in the

case where X → Y is a finite étale3 geometric cover and where G 	 Z/�nZ. The finite

3That is, kr is of étale type (i.e., kret = kr). See Section 2.1.3 for definition.
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étale condition guarantees that the inclusion ι : π1(X) → π1(Y ) induces an inclusion at

the pro-� completion level ι� : π�
1(X)→ π�

1(Y ).

Denoting by Autπ�
1(Y )X the subgroup of the automorphisms of π�

1(Y ) that stabilizes
π�
1(X), we thus obtain a big commutative diagram

π1(X) π1(Cg,[m](Z/�
nZ)νkr) π1(Mg,[m](Z/�

nZ)νkr)

Innπ�
1(X) Autπ�

1(X) Outπ�
1(X)

Autπ�
1(Y )X Autπ�

1(Y )X/ι�(Innπ�
1(X))

π1(Y ) π1(Mg′,[m′]+1) π1(Mg′,[m′])

Innπ�
1(Y ) Autπ�

1(Y ) Outπ�
1(Y )

By tracking the conjugation action of π1(Cg,[m](Z/�
nZ)νkr) on π�

1(X) on the first square

of the back face, we see that the dashed arrow π1(Cg,[m](Z/�
nZ)νkr)→ Autπ�

1(X) factors

by Autπ�
1(Y )X through its conjugation action on π�

1(Y ) and the restriction map.

Theorem 2.11. For (g,m) of hyperbolic type, and kr an abstract Hurwitz data of étale

type associated to Z/�nZ with quotient topological data (g′,m′), we have the following
inclusions of �-monodromy fixed fields:

Q�
g′,[m′] ⊂Q�

g,[m](Z/�
nZ)νkr.

Proof. Since Q�
g′,[m′] ⊂Q�

g′,[m′](δG)νkr, by Equation (2.4), it suffices to show the equality

Q�
g′,[m′](δZ/�

nZ)νkr =Q�
g,[m](Z/�

nZ)νkr. We do so by introducing some intermediate fields

as can be seen in Diagram (2.5).
We first have a map

Ψ: π�
1(Cg,[m](Z/�

nZ)νkr)−→Autπ�
1(X)×Autπ�

1(Y )X

such that Φ�
g′,[m′](δZ/�

nZ)νkr and Φ�
g,[m](Z/�

nZ)νkr are obtained by composing Ψ with
the projections and quotients by the inner automorphisms. One checks directly that

Inn ι�π�
1(X) is a normal subgroup of Autπ�

1(Y )X . We thus have a quotient map

Autπ�
1(X)×Autπ�

1(Y )X −→Outπ�
1(X)×Autπ�

1(Y )X/ Inn ι�(π�
1(X)),

which by composition with Ψ results in a map

S� : π1(Mg,[m](Z/�
nZ)νkr)−→Outπ�

1(X)×Autπ�
1(Y )X/ Inn ι�(π�

1(X)).

Considering the quotient map pY : Autπ�
1(Y )X/ Inn ι�(π�

1(X)) → Outπ�
1(Y ) and the

canonical projections pi, i= 1,2, of the product Outπ�
1(X)×Autπ�

1(Y )X/ Inn ι�(π�
1(X)),
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one observes that by construction,

Φ�
g,[m](Z/�

nZ)νkr = p1 ◦S� and Φ�
g′,[m′](δZ/�

nZ)νkr = pY ◦p2 ◦S�.

By setting Q�
S to be the fixed field of p(KerS�) and Q�

SY
to be the fixed field of p(Kerp2◦

S�), we obtain the following diagram of inclusions of �-monodromy fixed fields:

Q�
g,m Q�

g,[m](Z/�
nZ)νkr

Q�
S

Q�
g′,[m′] Q�

g′,[m′](δZ/�
nZ)νkr Q�

SY

(2.5)

It remains to show some equalities. First, Q�
SY

= Q�
S = Q�

g,[m](Z/�
nZ)νkr since by the

inclusion ι�, we have that p2 restricted to the image of S� is injective, and by slimness of

π�
1(X) (see Section 3.1.2 for a definition), we have that p1 restricted to the image of S�

is also injective.
For the remaining equality Q�

SY
= Q�

g′,[m′](δZ/�
nZ)νkr, we consider the stack inertia

injection G⊂IM,x ↪→ π1(Mg,[m](G)νkr) as in [26], where x∈Mg,[m](G)νkr(K) corresponds

to the curve X, and where the injectivity follows from ibid. Theorem 6.2 with the

arguments of Remark 4.4 of [5]. The injection G ↪→ π1(Mg,[m](G)νkr) can be shown

to be independent of the choice of point x and maps, through our construction,
G = Z/�nZ isomorphically to the quotient Innπ�

1(Y )/ Inn ι�(π�
1(X). Let σ ∈ p(KerpY ◦

p2 ◦ S�), which lifts to τ ∈ π1(Mg,[m](G)νkr) by definition which in turn maps to h ∈
Innπ�

1(Y )/ Inn ι�(π�
1(X))	G. The element h−1τ ∈ π1(Mg,[m](G)νkr) is in Kerp2 ◦S� and

verifies p(h−1τ) = p(τ). Thus, we have proven that p(KerΦ�
g′,[m′](δZ/�

nZ)ν)⊂ p(KerS�
Y ),

and the reverse inclusion is given by Diagram 2.5.

By Theorem A of [23], Theorem 4.3 of [20] and Theorem 3.6 [31], there is an inclusion

Q�
0,3 ⊂Q�

g,m for all (g,m) of hyperbolic type. Thus, we can complete the diagram Diagram
(2.5) of field inclusions as follows.

Corollary 2.12. For (g,m) of hyperbolic type and kr compatible Hurwitz data, we have

a diagram of inclusions of fields

Q�
g,m Q�

g,[m](Z/�
nZ)kr Q�

g,[m](Z/�
nZ)νkr

Q�
0,3 Q�

g′,m′

Remark 2.13.

1. While for some well-chosen Hurwitz data kr, we have (g′,m′) = (0,3) in the diagram

above, the above references [23, 20, 31] are still required for the final comparison of

monodromy fields.
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2. In the setting of Oda’s weight conjecture, where the pro-�-fundamental groups are
replaced by quotients π�

1(−)[w] with respect to a certain weight filtration π�
1(−)(w),

the map π�
1(X)[w] → π�

1(Y )[w] fails to be injective. Thus, the end of the proof of

Theorem 2.11 does not adapt well, since we cannot recover the equality Q�
SY

(w) =
Q�

S(w), where Q�
SY

(w) and Q�
S(w) are defined in the obvious manner. See also

Remark 2.10

Establishing the G-special loci Oda’s conjecture in the case of G = Z/�Z – that is,

that Q�
g,m(Z/�Z)kr is independent of the topological and Hurwitz data and indeed equal

to Q�
0,3 – is thus reduced to establishing the last inclusion Q�

g,[m](Z/�Z)
ν
kr ⊂ Q�

0,3. We
proceed to do so in the rest of this paper by developing for G-special loci a refinement of

Ihara-Nakamura’s degeneration method used in their original proof of the containment

Q�
g,m ⊂Q�

0,3 in [17].

3. Maximal degeneration families for G-stable compactification

After some brief reminder on Deligne’s tangential base point on M0,4, we construct,

following [17] for generic curves, some tangential base points onMg,[m](G) as 1-parameter

deformation families X/SpfK[[q]] of some maximally degenerated G-stable curves in

some well-chosen strata of Mg,[m](G)νkr. These curves are defined as certain Z/�Z-stable

Cr-diagrams X0 that are obtained, via Grothendieck’s formal patching technique, from

well-chosen arrangements of so-called Matsumoto-Seyama curves Cr. In particular, the
associated Z/�Z-quotient curves and their deformation will be the P1 \{0,1,∞}-diagrams

and their canonical 1-dimensional deformation constructed by Ihara and Nakamura in

[17] 2.1.3.
We enunciate, under the anabelian slimness hypothesis, some immediate results for

the kernel of universal monodromy representations, and for Q�
C′

r
. Consequences for the

�-monodromy fixed fields Q�
g,m, Q�

g,[m](Z/�Z)kr and Q�
0,3, and for Oda’s conjecture are

exploited in Section 5.

3.1. Tangential Galois actions and universal monodromy properties

3.1.1. Tangential base points on curves. We follow the elementary definition of

tangential base point of the survey [24] Section I; that is, for X connected smooth curve

over a field K, a K-tangential base point v on X is a morphism v : SpecK((t))→X (see

ibid. Definition 1.1).
The key feature of such a choice of a K -rational tangential base point is, via the field of

Puiseux seriesK{{t}}, to provide at once a geometric base point for the étale fundamental

group of X and a section to the related homotopy exact sequence:

1 π1(XK,�v) π1(X,�v) GK 1.

sv

(3.1)

In other words, one obtains a specific GK -action ϕ�v on π1(XK,v) given by conjugation

which lifts the canonical outer Galois action
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GK Autπ1(XK,v)

Outπ1(XK,v)

ϕv

ϕX
(3.2)

and can be chosen to reflect some good arithmetic properties of X. More explicitly, the

GK action ϕv is given, via the function fields of X, by the action on the coefficients of

the formal series in K{{t}}; see also Equation (3.3) below.

Remark 3.1.

1. By the valuative criterion of properness this is equivalent to giving a map
v : SpecK[[t]] → X where X is the compactification of X (i.e., X ⊂ X is a Zariski

open given by finitely many punctures of the proper curve X).

2. By Grothendieck-Murre theory, the category RevD(X) of finite étale coverings of X

tamely ramified along the divisor D =X \X is equivalent to the category of finite
étale coverings of X. The choice of a tangential base point gives a fiber functor of

this Galois category in the following way. Let Y ∈RevD(X) and B the K[[t]]-algebra

obtained by the pullback of Y along our tangential base point v. With this formalism,
the fiber functor �v is defined by

�v : RevD(X) −→ Set

Y �−→ HomK[[T ]](B,K{{t}}). (3.3)

3. The above formalism provides a fundamental group πD
1 (X,v) which is canonically

isomorphic to π1(X,v) and carries the same tangential Galois action.

For X = P1
Q \{0,1,∞}, let us denote the set of fiber functor associated, as in 2 above,

to Deligne-Ihara’s original Q-tangential base points by

B= { �01, �0∞, �10, �1∞, �∞1, �∞0},

where, for example, �01: SpecQ((t)) → P1
Q \ {0,1,∞} and �0∞ : SpecQ((−t)) → P1

Q \
{0,1,∞}, and refer to the Appendix of [16] for further details on the associated GQ-action.

For our study, the main property of these tangential base points is that

Kerϕ�
�ij
=Kerϕ�

P1\{0,1,∞} for every �ij ∈ B. (3.4)

While even the simplest rational scaling of the parameter (see, for example, �01 vs �0∞
above or [33] Section 1.5), changes the tangential Galois action, we have the following
Galois invariance property.

Lemma 3.2. The GK-action induced by a K-rational tangential base point v : SpecK((t))
→X depends only on the closed point x ∈X(K) in the closure of the image of v and the

class of the image of t in the cotangent space mx/m
2
x.

Proof. Let x∈X be a closed K -rational point. It suffices to show that if t and t′ are both
uniformizers at x (i.e., we have ÔX,x 	K[[t]] 	K[[t′]] and t′ = t(1+ tF ) in K[[t]] with
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F ∈K[[t]]), then the isomorphism δt′,t : K{{t′}}→K{{t}} is GK -equivariant. But as δt′,t

is defined by t′
1
N �→ t

1
N (1+tF )

1
N for N ≥ 0, this comes from the fact that (1+tF )

1
N =GN

with GN ∈K[[t]] by the series expansion of (1+ tF )
1
N .

Indeed, let vt (resp. v′t) be the tangential base points given by t (resp. t′) and denote

by ϕvt
(resp. ϕv′

t
) the associated tangential GK -action. Let σ ∈ GK and consider a

meromorphic function f =
∑
k

akt
′ k
N ∈Mvt′ ⊂K{{t′}}. Then we have

σ−1
vt

◦ δt′,t ◦σvt′ (f) = σ−1
vt

◦ δt′,t(
∑
k

σ(ak)t
′ k
N )

= σ−1
vt

(
∑
k

σ(ak)t
k
N GN )

=
∑
k

akt
k
N GN ;

that is,
σ−1
vt

◦ δt′,t ◦σvt′ (f) = δt′,t(f),

which shows that σ−1
vt

◦ δt′,t ◦σvt′ = δt′,t and thus ϕv′
t
= ϕvt

◦ δt′,t as intended.

3.1.2. Monodromy fixed fields and tangential base points. We recall that a

profinite group is said to be slim if any of its open subgroup has trivial centralizer.

Examples of slim groups include the absolute Galois group of rational numbers and the

pro-� fundamental group of hyperbolic curves; see [21] Proposition 1.4.
We record the following inclusions between the �-monodromy fixed fields of the various

tangential and non-tangential Galois actions in the case of étale coverings.

Lemma 3.3. Let ψ : X → Y be a finite étale covering of geometrically irreducible curves

over a field K of degree a power of �. Let v : SpecK((t))→X be a tangential base point

on X and ψ(v) the induced tangential base point on Y. We have the following inclusions

of subgroups of GK :

1. Kerϕ�
�ψ(v)

⊂Kerϕ�
�v

2. Kerϕ�
�v ⊂Kerϕ�

X and Kerϕ�
�ψ(v)

⊂Kerϕ�
Y .

Furthermore, when π�
1(Y , �ψ(v)) is slim, we have Kerϕ�v =Kerϕ �ψ(v)

and Kerϕ�
X ⊂Kerϕ�

Y .

Proof. The homotopy exact sequence for X and Y and the covering map ψ gives the

diagram

1 π1(XK,�v) π1(X,�v) GK 1

1 π1(YK, �ψ(v)) π1(Y , �ψ(v)) GK 1

sv

sψ(v)

that is commutative by definition of ψ(v) and the étaleness of ψ. One thus recovers, via

π1(Y , �ψ(v))→Autπ�
1(YK, �ψ(v)) whose image stabilizes π�

1(XK,�v), the monodromy action
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ϕ�
�v as the composition

GK →Autπ�
1(YK, �ψ(v))XK →Autπ�

1(XK,�v),

which leads to the inclusion given in 1. In the case of slimness, the right restriction map

is injective, which yields the equality.

The remaining inclusions are obtained by adding the following commutative diagram:

Autπ�
1(XK,�v) Autπ�

1(YK, �ψ(v))XK

Outπ�
1(XK,�v) Autπ�

1(YK, �ψ(v))XK/ Innπ�
1(XK,�v)

Outπ�
1(YK, �ψ(v)).

dX

dY

The inclusions of 2 are thus direct by the diagram and the definitions of the maps

involved. To see the remaining inclusion, we remark that by slimness Kerϕ�
X =KerdX ◦

ϕ�
�ψ(v)

, and the inclusion follows as ϕ�
Y = dY ◦dX ◦ϕ�

�ψ(v)
.

3.2. The Matsumoto-Seyama curves

We now introduce the Matsumoto-Seyama curves Cr, for r ∈ {0,1, . . . ,�−2}, that live in
certain special loci Mg,[m](Z/�Z)kr and that have P1

K as Z/�Z-quotient, where K denotes

Q(μ�).

For r ∈ {1, . . . ,�−2}, the curves Cr are those of [30] – that is, some smooth projective
curves of genus g = �−1/2 that are birationally equivalent to the affine curve

yr(y−1) = x� with Z/�Z-action

{
given by x �→ ζ�x

ramified at Pr,0,Pr,1,Pr,∞ over 0,1, ∞.
(3.5)

The quotient ψ : Cr \{Pr,0,Pr,1,Pr,∞}→ P1
K \{0,1,∞} is finite étale and Galois of group

Z/�Z. The abstract Hurwitz data of Cr is k= (r,1,−(r+1)) which, when r varies, is seen
to represent every possible abstract Hurwitz data of a Z/�Z-curve with three ramified

points.

3.2.1. Tangential base points and Galois actions comparisons. The set of

curves {Cr | r= 1, . . . ,�−2} admits an S3-action that is compatible with the Z/�Z-action

and, in particular, with the S3-action on P1
K \ {0,1,∞} through the quotient map; see

[30] Corollary 2.5. This allows us to define, for every r, the tangential base points on

C ′
r = Cr \{Pr,0,Pr,1,Pr,∞} at the punctures by doing so at Pr,1.

Indeed, for σ ∈S3, we have σ(Pr,1) = Pσ(r),σ(1) so that for every r ∈ {1, . . . ,�−1} and

every P ∈ {Pr,0,Pr,1,Pr,∞}, there is an element σ ∈S3 such that P is the image of Pr,1 for
some r. Now, the smooth affine open U =Cr \{Pr,0,Pr,∞} is given by U = SpecK[x,y, 1y ]

where x� = yr(y−1). Looking at the equation, we see that x is a uniformizer at Pr,1, and

we have ψ(x) = x� = yr(y−1) where ψ is the quotient map to P1
K .
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Lemma 3.4. The tangential base point T r
10 : SpecK((t)) → C ′

r defined by t �→ ζ2�x

induces a tangential base point ψ(T r
10) on P1

K \{0,1,∞} that defines the same GK-action

on π1(P
1
K
\{0,1,∞}, �10) as −→

10.

Proof. By Lemma 3.2, it suffices to check that ψ(T r
10) and

−→
10 have, after taking the

closure, the same closed points in P1
K and the same class in m1/m

2
1. The first part is

obvious. For the second one, by definition, we have that ψ(T r
10) is −yr(y−1)∈K[[y−1]]	

ÔP1
K,1 so that its class modulo m2

1 is equal to −1 as required.

As stated before, by using the S3-action on the previous subset of Matsumoto-Seyama

curves, we obtain tangential base points T r
ij for i,j ∈ {0,1,∞}, whose set of associated

fiber functors on the categories of finite étale covers Et(C ′
r) we denote by

Br = {−→T r
ij | i,j ∈ {0,1,∞}}, for r ∈ {1, . . . ,�−2}.

These tangential base points induce the same tangential GK -actions on the fundamental

group of P1
K
\{0,1,∞} given by Deligne-Ihara as in Lemma 3.4.

Theorem 3.5. The GK-action defined by the
−→
T r
ijs on the groupoid Π1(C

′
r,K,Br) induces

a GK-action on the groupoid Π1(P
1
K
\ {0,1,∞},B) that is compatible with the Deligne-

Ihara one. Furthermore, an element of GK acts trivially on Π�
1(C

′
r,K,Br) if and only if it

acts trivially on Π�
1(P

1
K
\{0,1,∞},B).

Proof. The first part of the statement is the result of the previous paragraph. For the

second part, let σ ∈ GK . As the tangential base points of Br are K -rational, the action

of σ on Π1(C
′
rK,Br) stabilizes each fundamental group or set of étale paths. Now as this

action is compatible with the one on Π1(P
1
K
\{0,1,∞},B) and each of the inclusions maps

between Π1(C
′
r,K,

−→
Tij,

−→
Tjk) and Π1(P

1
K
\{0,1,∞}, �ij, �jk) remains injective after passing to

the pro-�-completion for all i,j,k ∈ {0,1,∞}, it follows that the reverse implication holds.
By Lemma 3.3, it also holds that Kerϕ�−→

Tij

= Kerϕ�
�ij

for all i,j ∈ {0,1,∞}. Thus, if σ

acts trivially on Π1(P
1
K
\{0,1,∞},B), it acts trivially on each of the fundamental groups

appearing in Π1(C
′
rK,Br), and thus on the whole groupoid.

In what follows, r will be omitted from notations when clear from context.

3.2.2. The fixed field of the Matsumoto-Seyama curves. For r= 0, we consider
the covering of P1

K given by

C0 : x= y� with usual Z/�Z-action having two ramified points 0 and ∞

with abstract Hurwitz data k = (1,−1). The �+2-marking is given by the two ramified

points and by the unramified points P1, . . . ,P� of the fiber at 1.

We further set

B0 = {
−−→
T 0
0∞,

−−→
T 0
∞0} and C ′

0 = C0 \{0,∞,P1, . . . ,P�},
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where the fiber functors
−−→
T 0
0∞ and

−−→
T 0
∞0 are induced by the tangential base points associated

to the parameter x and −1
x , and which are direct lifts of the Deligne tangential base points

−→
0∞ and

−→∞0.

Proposition 3.6. The action of GK on Π1(C
′
0K,B0) is compatible with its action on

Π1(P
1
K
\{0,1,∞},B). Furthermore, an element of GK acts trivially on Π�

1(C
′
0K,B0) if and

only if it acts trivially on Π�
1(P

1
K
\{0,1,∞},B).

Proof. The only part of the statement that is not already proven is a direct consequence
of [17] Corollary 4.1.4 (ii).

We finish this section by showing that the �-monodromy fixed field of the Matsumoto-
Seyama curves is Q�

0,3.

Corollary 3.7. We have Q�
C′

r
=Q�

0,3 for all r ∈ {0, . . . ,�−2}.

Proof. For r ∈ {0, . . . ,�−2} given, it follows from Lemma 3.3 that Kerϕ�−−→
T0∞

=Kerϕ�
�01

as

π1(P
1
K \{0,1,∞}, �0∞) is slim. From the same lemma, we also get the inclusions

Kerϕ�−−→
T0∞

⊂Kerϕ�
C′

r
⊂Kerϕ�

P1\{0,1,∞}.

Since the two outmost terms are equal as in Equation (3.4), it follows that Kerϕ�
C′

r
=

Kerϕ�
P1\{0,1,∞}, thus the desired equality.

Remark 3.8.

1. At this stage, one can already obtain, by following Matsumoto’s approach as in [20],

that Q�
g,m =Q�

0,3 for the specific values of (g,m) = ((�−1)/2),3) and (g,m) = (0,�+2).

2. The curves introduced in this section are chosen so that the corresponding stacks

Mg,[m](Z/�Z)kr have only one geometric point.

3.3. Diagrams in the Z/�Z-stable compactification

Similarly to the P1
K \{0,1,∞}-diagrams construction of [17] 1.2, we construct some Z/�Z-

stable Cr-diagram X0 over a field K, here as gluing the previously defined Matsumoto-

Seyama Z/�Z-curves.

3.3.1. Gluing curves with G-actions. While the gluing, or clutching, of marked

points for stable curves can be found in details in [18], the similar gluing for curves with
G-action requires an additional constraint as follows.

Consider two curves Cr and Cr′ with r,r′ ∈ {1, . . . ,�−2}. The gluing of both curves at

the points Pr,1 and Pr′,1 can be constructed as the union

C1,1
r,r′ = Cr×{Pr′,1}∪Cr′ ×{Pr,1} in the fiber product Cr×SpecK Cr′ .

The result of the gluing is a curve X0 of genus �−1 with 2 irreducible components and 4

marked points given by {Pr,0,Pr,∞,Pr′,0,Pr′,∞}, that is equipped with a Z/�Z-action by

pullback of the action on the product.
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For X0 to be a G-stable curve, the G-actions must be chosen such that Hurwitz data

at the points Pr,1 and Pr′,1 have opposite characters (see [2] Section 4.1), which is easily
done by choosing that G= Z/�Z acts by x �→ ζ�x on Cr′ and by x �→ ζ�x on Cr. The same

construction can be made by gluing together any two ramified points Pr,i and Pr′,j into

a curve Ci,j
r,r′ , where i,j ∈ {0,1,∞} denotes which points are glued.

Note that the S3-action on the curves (Cr)r∈{1,...,�−2} extends naturally to a S3×S3-
action on the fiber products (Cr×SpecKCr′)r,r′∈{1,...,�−2} of such curves. One checks that

this action stabilizes the closed subsets (Ci,j
r,r′)r,r′∈{1,...�−2}, i,j∈{0,1,∞} globally; that is,

for σ,τ ∈S3×S3, we have (σ,τ) ·Ci,j
r,r′ =C

σ(i),τ(j)
σ(r),τ(r′). It results that the affine neighborhood

of Ci,j
r,r′ with the 4 marked points removed is, for some r, always isomorphic to

C1,1
r,r′ \{Pr,0,Pr,∞,Pr′,0,Pr′,∞}= SpecK[x,y,x′,y′][

1

y
,
1

y′
]/(xx′),

which serves as a model for the construction of the Uμs as in Section 3.4.1.

3.3.2. Diagrams of Matsumoto-Seyama curves. We will build our Z/�Z-stable

Cr-diagrams from the two types of Matsumoto-Seyama curves Cr of Section 3.2. Recall

that the genus 0 curves have two distinguished rational sections given by the ramified
points, and that the genus (�−1)/2 ones have three.

Definition 3.1. A Z/�Z-stable Cr-diagram is a connected curve X0 over K that is

defined by the following data:

1. A finite collection of curves X0
λ (λ ∈ Λ�Λ′) where X0

λ is either isomorphic to Cr

with r ≥ 1 if λ ∈ Λ or to C0 if λ ∈ Λ′.

2. A finite collection of pairs of distinguished section P 0
μ (μ ∈M) of the X0

λ, λ ∈Λ�Λ′.
The pairs P 0

μ are such that the Hurwitz data at those sections are opposite and such

that two distinct pairs P 0
μ and P 0

μ′ (μ 
= μ′) have no common element. Let μ ∈ M
and set λ(μ) = (λ,λ′) where the sections of P 0

μ land in X0
λ and X0

λ′ .

The curve X0 is obtained from the disjoint union
⊔

λ∈ΛX
0
λ by identifying the pair of

points given by the P 0
μ . Given a Z/�Z-stable Cr-diagram X0, we shall denote by Q0

v,

v ∈ N , the distinguished sections of X0 coming from the X0
λ that do not appear in the

pairs P 0
μ , μ ∈M .

The isomorphisms of 1 come with choices of variables xλ,yλ and choices of tangential

base points Tλ
ij : SpecK((t))→X0

λ with the properties of the ones defined in Section 3.2.

The corresponding set of fiber functors will be denoted by Br
λ. We will omit λ and r from

the notations when it is clear from context.
The following three kinds of Z/�Z-stable Cr-diagrams will be used as basic building

blocks for the special fiber of our 1-parameter deformation families.

• Seyama curve (Figure 1a): a curve of genus g = (�− 1)/2 with ν = 3 ramified
points and k free;

• A Z/�Z-curve of genus 0 (Figure 1b): a curve of genus g = 0 with ν = 2 ramified
points, � unramified points and k = (1,−1);
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(a) Seyama curve (b) G-curve of genus 0 (c) 2-Seyama curve

Figure 1. Elementary building blocks of Z/�Z-stable Cr-diagrams.

• A 2-Seyama curve (Figure 1c): a curve of genus g = � with ν = 2 ramified points
and k = (1,− 1). These curves are obtained by gluing two Seyama curves twice.
The correspond data of the Z/�Z-stable Cr-diagram is Λ= {1,2} where X0

1 , X
0
2 are

Matsumoto-Seyama curves isomorphic to Cr with r ∈ {1, . . . ,�− 2} and Hurwitz
data k = (1,a,− (1+a)) with ramified points {ν1,ν2,ν3} and k′ = (−1,−a,1+a)
with ramified points {ν′1,ν′2,ν′3}. We have M = {1,2}, and the pairs P 0

1 , P
0
2 are,

respectively, (ν1,ν
′
1) and (ν2,ν

′
2). The remaining set of distinguished sections is

{ν3,ν′3}= {Q0
v}v∈N .

In Figure 1 above, the bold points represent ramified points under the G-action, the

lined markings represent the unramified points (�=3 here), and the dashed lines represent

the glued points. The hook at the end of the genus g = (�−1)/2 curves is to differentiate
them from the genus 0 ones, which are represented by straight lines.

Recall that we denote by Mg,[m](G)ν the stable compactification of Mg,[m](G)ν , and

accordingly, Mg,[m](G)kr the closure of Mg,[m](G)kr in Mg,[m](G)ν .

Proposition 3.9. Let g,m and kr be given as below, such that Mg,[m](Z/�Z)
ν
kr

is nonempty. Then there exists a Z/�Z-stable Cr-diagram in the boundary of

Mg,[m](Z/�Z)
ν
kr.

Let us first recall that, by [4] Proposition 3.7, the locus Mg,[m](Z/�Z)kr is nonempty

as soon as g can be obtained by the Hurwitz formula

g = (N −2)
�−1

2
+g′� with g′ ≥ 0 and N ≥ 0,N 
= 1,

where N is the number of ramified points in the cover, andN 
=1 by the nullity assumption

modulo Z/�Z as given in ibid. Définition 3.5. The m marked points are distributed freely
in G-orbits. This is a particular instance of the Frobenius coin problem, and it is thus

known that all g ≥ ( �−1
2 )( �−3

2 ) are attainable with N − 2 ≥ 0, as well as one element of

each pair (k,� �−1
2 − �− �−1

2 −k) for k ∈ {0, . . . , �−1
2

�−3
2 −1}. When g ∈ {0, . . . , �−1

2
�−3
2 −1}

is attainable only by the choice N = 0, we say that g is an unramified case. For example,
this is the case for g = 1 by considering the translation action by a choice of order � point

on an elliptic curve.

Proof. First, suppose g is not unramified. Then by gluing along the dotted lines as in

Figure 2a, we obtain the desired Z/�Z-stable Cr-diagram X0 as follows. The first part is

made by gluing p copies of Z/�Z-curves of genus 0, which contributes to the p� unramified
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(a) General case

(b) Unramified case

Figure 2. The Z/�Z-stable curve X0.

marked points that are permuted by Z/�Z to 1 ramified point with Hurwitz data k = (1)

and does not contribute to the genus. The second portion is composed of N −2 Seyama

curves of genus (�− 1)/2 glued in a chain, which contributes to (N − 2)(�− 1)/2 to the

genus and to N −2 to the ramified points with free Hurwitz data. The last part is made
by gluing g′ copies of 2-Seyama curves. It contributes to g′� to the genus and to 1 ramified

point with imposed Hurwitz data.

To achieve the unramified g, we remove the middle section made of Seyama curves in
the previous construction and glue the remaining parts on the added dotted line as in

Figure 2b. One can easily check in the same way that it gives a desired curve.

Remark 3.10. It is readily seen that the G-quotient of the G-stable diagrams that we

constructed is a P1 \{0,1,∞}-diagram as in [17] 2.1.3.

3.4. The deformation family of Z/�Z-stable diagrams

We now start with a Z/�Z-stable Cr-diagram X0 with CardΛ�Λ′ ≥ 2 which is in the

boundary of Mg,[m](Z/�Z)
ν
kr and build, by patching local formal schemes W•, V• and U•

into a S-scheme X over an affine cover of X0, a family of deformations X/SpfK[[q]] of X0.

3.4.1. The three families. Consider the following kind of families W 0
λ , U

0
μ, and V 0

v

of affine open of X0.

1. The family (W 0
λ)λ∈Λ, resp. (W

0
λ)λ′∈Λ′ , given for each λ∈Λ, resp. λ′ ∈Λ′, by the open

complement in X0
λ of the three ramified points, resp. of the two ramified points, and

represented as below:

W 0
λ = SpecK[yλ,xλ,

1
yλ

, 1
1−yλ

] W 0
λ′ = SpecK[yλ′, 1

yλ′
]

2. The family (U0
μ)μ∈M , that we will specify as three subfamilies U0

μ,0,0, U
0
μ,0,1, and

U0
μ,1,1, which for μ ∈M are defined such that P 0

μ consists of a pair of distinguished
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U0
μ,0,0 U0

μ,0,1 U0
μ,1,1

Figure 3. The three subfamilies of U0
μ.

sections over X0
λ and X0

λ′ with λ,λ′ ∈ Λ�Λ′, and are, respectively, given as below

(see also Figure 3):

U0
μ,0,0 = SpecK[yλ,xλ,yλ′,xλ′ ][

1

yλ
,
1

yλ′
]/(Tλ

ijT
λ′

kl ),

U0
μ,0,1 = SpecK[xλ,yλ,yλ′,

1

yλ
]/(Tλ

ijT
λ′

kl ),

U0
μ,1,1 = SpecK[yλ,yλ′ ]/(Tλ

ijT
λ′

kl ),

where Tλ
ij denotes the image of Tλ

ij : SpecK((t))→X0
λ and the couple (λ,λ′) is related

to μ ∈M as in Definition 3.1 and below.

3. The family (V 0
v )v∈N given for each v ∈N by taking the component X0

λ that supports

the section Q0
v and removing all the other distinguished sections, to obtain

V 0
v = SpecK[yλ,xλ,

1

1−yλ
], resp. V 0

v = SpecK[yλ]. (3.6)

for λ ∈ Λ, resp. λ ∈ Λ′.

We thus obtain an affine cover of the Z/�Z-stable curve X0

X0 =
⋃

λ∈Λ�Λ′

W 0
λ

⋃
μ∈M

U0
μ

⋃
v∈N

V 0
v ,

where each open is Z/�Z-stable by construction, and such that:

1. For μ ∈M such that P 0
μ contains a distinguished section of X0

λ and X0
λ′ we have W 0

λ

and W 0
λ′ as open subsets of U0

μ and W 0
λ ∩W 0

λ′ =∅.

2. For v ∈ N such that Q0
v is a distinguished section of X0

λ, we have W 0
λ as an open

subset of V 0
v .

3. The intersection of U0
μ or V 0

v with any other member of the affine cover is either

empty, W 0
λ or W 0

λ �W 0
λ′ .

These properties ensure, in the next section, the possibility of patching local formal

schemes over the affine cover that we just defined.
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3.4.2. Patching formal schemes in algebraic family. Consider the affine formal
scheme S = SpfK[[q]] with ideal of definition q= (q) equipped with the G-action q �→ ζ�q

by our choice of isomorphism G	 μ�. In order to construct a formal scheme X with base

X0 over S with a compatible G-action, we shall define affine formal S-schemes Wλ, Uμ

and Vv with bases W 0
λ , U

0
μ and V 0

v with ideal of definition the pullbacks of q denoted q

again.

For λ,v, we set

Wλ = Spf Γ(W 0
λ,OX0)[[q]] and Vv = Spf Γ(V 0

v ,OX0)[[q]],

where the K -algebras of sections Γ(−,OX0) are given by one of the explicit K -algebra of

the affine schemes of Section 3.4.1 items 1. and 3. above.

Whenever λ and v are such that W 0
λ is an open subset of V 0

v , the open immersion
jv/λ : Wλ → Vv over it is obtained without effort. For instance, let us assume W 0

λ =

SpecK[yλ,xλ,
1
yλ
, 1
1−yλ

] and V 0
v =SpecK[yλ,xλ,

1
1−yλ

]. By [8] Proposition 10.1.4, it suffices

to check that the map K[yλ,xλ,
1

1−yλ
][ 1
yλ
][[q]]∧ → Γ(Wλ), where ∧ denotes the q-adic

completion, is an isomorphism. But this is clear by construction. Note that jv/λ is an

S-morphism.
Let us consider the case of Uμ, whose base U0

μ is obtained via 3 subfamilies U0
μ,0,0,

U0
μ,0,1, and U0

μ,1,1 as in Section 3.4.1 2.

Proposition 3.11. For μ ∈M such that U0
μ is of the form U0

μ,0,0. Let us define

Uμ,0,0 = SpfK[T,T ′,X,X ′][ 1
1−T ,

1
1−T ′ ][[q]]/(TrT

′
r′ − q)

with

{
X� = T r(1−T ), Tr = ζ2�X

X ′� = T ′r′(1−T ′), T ′
r′ = ζ2�X

′.

Then we can identify Uμ,0,0 mod q with U0
μ,0,0 by (T,T ′) �→ (yλ,yλ′) with the choices

(X,X ′) �→ (xλ,xλ′). Furthermore, for λ ∈ Λ such that W 0
λ = SpecK[yλ,xλ,

1
yλ
, 1
1−yλ

], the

scheme W 0
λ is an open subset of U0

μ,0,0 given by inverting yλ, so that Γ(Uμ)[
1
T ]

∧ →Γ(Wλ),
given by T → yλ, is an isomorphism, which induces an open immersion jμ/λ : Wλ →Uμ,0,0.

Proof. By assumption, TrT
′
r′ = q so that for N ≥ 1, we have

Γ(Uμ)[
1

T
]/qN =K[T,T ′,X,X ′][

1

1−T
,

1

1−T
,
1

T ′ ]/(TrT
′
r− q)N .

As T and 1−T are invertible, so is X� = T r(T −1), and thus so is X and Tr = ζ2�X.

It follows that (TrT
′
r′)

N = 0 if and only if T ′
r′

N
= 0. Now as T ′

r′
�N

=−T ′r′N (1−T ′)N , we

have (1−T ′)N = 0, which gives that T ′−1
can be written as

∑N−1
k=0 (1−T ′)k. To recover

T ′ and X ′ first as T ′�
r′ = −T ′r′(T ′− 1), we have T ′�

r′ = P (T ′) with P invertible for the

composition in K[[T ′−1]]. So there is F ∈K[[T ′−1]] such that F (T ′�
r′) = T ′. As T ′�

r′ is

nilpotent of order N, we can truncate F to get a polynomial F̃ that verifies the equality
F̃ (T ′�

r′) = T ′ in Γ(Uμ)[
1
T ]/q

N . Thus, as T ′
r′ =

q
ζ2�T

, we have

Γ(Uμ)[
1

T
]/qN =K[X,T,

1

T
,

1

1−T
][q]/(qN )
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and the desired isomorphism by passing to the q-adic completion. It is clear that this
isomorphism is compatible with the Z/�Z-action on both sides.

The other open immersions are proven in the same way.

One thus obtains a proper formal regular S-scheme X with a collection of sections

(Qv)v∈N with base space X0 by gluing along the affine formal schemes Uμ,Vv and Wλ.
The formal scheme X has the property that, for each μ, λ or v, we have S-isomorphisms

ϕμ : X|U0
μ
→Uμ, ϕλ : X|W 0

λ
→Wλ,ϕv : X|V 0

v
→Vv

extending the identity maps of U0
μ, W

0
λ and V 0

v , respectively, such that

1. for each v ∈ N , Qv is induced from the canonical section S → X|V 0
v

that lift the
section Qv of V 0

v ,

2. the isomorphisms ϕλ, ϕλ and ϕv are compatible with the open immersions jv/λ and

jμ/λ.

A direct application of Grothendieck’s existence theorem [9] 5.4 as in [17] 2.4.1 and

3.1 provides the algebraization of the formal scheme X into a scheme X over SpecK[[q]],

whose generic fiberXη is a smooth geometrically irreducible genus g curve with m marked
points and a Z/�Z-action, coming by pullback of the one on X, with Hurwitz data kr,

and whose special fiber is X0.

The sets of divisors D = ((X0
λ)λ∈Λ�Λ′,(Qv)v∈N ) and D = ((X0

λ)λ∈Λ�Λ′,(Qv)v∈N ) are
regular with normal crossings on X and X, respectively, in the sense of [10] Section 1.8.3;

see [17] 3.2 for details.

Remark 3.12. The generic fiber Xη of the scheme X should be interpreted as a

tangential base point η : SpecK((q))→Mg,[m](Z/�Z)
ν
kr in the moduli space.

3.4.3. Local-global tracking tangential base points. Another important output

of our construction, that will be of interest in the next section, is that we can explicitly

track our tangential base points in the different formal completions of X along chosen

closed subsets of the special fiber.
Consider the completion Xμ of X along P 0

μ . By construction, X|U0
μ
= SpfA/(Tr,sT

′
r′,s′ −

q) for a ring A given in the construction of U0
μ and P 0

μ corresponds to the ideal (Tr,s,T
′
r′,s′),

so that

Xμ = SpfK[[Tij,T
′
kl]] with TijT

′
kl = q as usual.

Let T1,T2 be two indeterminacies. We have a commutative diagram

SpfK[[T1,T2]] Xμ

SpfK[[q]] S,

q �→T1T2

μ

s

where K[[T1,T2]] has ideal of definition (T1T2), and where the top horizontal map is an

isomorphism. The formal scheme Xμ comes with a divisor Dμ given by the pullback of D
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which has two components corresponding to X0
λ and X0

λ′ where λ(μ) = (λ,λ′). They are

defined by T1 = 0 and T2 = 0, respectively, so that Dμ is a set of divisors with regular
normal crossing on Xμ.

We shall also consider the completion Xλ of X along X0
λ. It is also equipped with a

divisor Dλ as the pullback of D to Xλ which consists of the union of two divisors:

1. D0
λ given by X0

λ

2. D′
λ given by the distinguished sections of X0

λ.

It is again a set of divisors with regular normal crossings.

By arguing as in the proof of Proposition 3.11, one further obtain the following

compatibility result between tangential base points and formal completions.

Proposition 3.13. Let μ ∈M and λ ∈ λ(μ). Then we have the following commutative

diagram in the category of formal schemes:

Xμ SpfK[[T1,T2]] SpfK((T ))[[q]] SpfK((T ))

SpfK[[T ]]

Uμ W 0
λ

X Xλ X0
λ.

μ

Tλ
ij

One remarks that the map ιλ : SpecK[[T ]] → SpfK[[T1,T2]] which is given by the

quotient by T2 factors through the restriction to the special fiber SpecK[[T1,T2]]/(T1T2).

4. Galois actions by Grothendieck-Murre theory

Starting with a G-stable diagram X0 with CardΛ�Λ′ ≥ 2, the end result of the previous

section gives us a smooth curve Xη represented by a K((q))-point on Mg,[m](G)νkr which

comes with a model X over S with special fiber X0.

We will now relate the Galois action on the fundamental groupoid Π1(Xη \
{(Qv)v∈N},(�μ)μ∈M ) of Xη based at the punctures coming from the double points
(Pμ)μ∈M of X to the ones on the curves (Cr)r∈{0,...,�−2} obtained by the tangential

base points T r
ij that we defined in Section 3.2. To do so, we follow some equivalence

between categories of covers as in [17]: the category RevD(X) of finite étale covers of X
tamely ramified along the divisor D, made of the union X0 ∪{(Qv)v∈N}, is canonically

equivalent both to RevD(X) and Rev(Xη \{(Qv)v∈N}). For μ ∈M , we then define some

fiber functors �μ, so that, by the previous canonical equivalences of categories, we have
the isomorphism

πD
1 (X,�μ)	 πD

1 (X,�μ)	 π1(Xη \{(Qv)v∈N},�μ).
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Those equivalences are Galois equivariant, so in order to determine whenever an element
of GK acts trivially on the geometric part of π1(Xη \{(Qv)v∈N},�μ), it is enough to do so

on the left-hand side.

4.1. Tamely ramified fundamental groups and fiber functors

4.1.1. Tangential base points: Fiber functors and Galois actions. We start by

defining fiber functors on RevD(X) locally by fixing μ ∈ M and considering Xμ. Recall
that we have a commutative diagram

SpfK[[T1,T2]] Xμ

SpfK[[q]] S

μ

s

given by the map q �→ T1T2. Both maps s and μ define fiber functors, �μ for RevDμ(Xμ)

and �s for RevS
0

(S); see [17] 3.3.1 and 3.3.2.

To be explicit, consider a compatible choice of indeterminates {T
1
N
1 ,T

1
N
2 }N∈N and

{q 1
N }N∈N to form the fields K{{T1,T2}} and K{{q}}. Then for B = SpfB ∈ RevD(Xμ),

resp. A= SpfA ∈ RevS
0

(S), the values of the fiber functors are given by

�μ(B) = HomK[[T1,T2]](B,K{{T1,T2}}), resp. �s(A) = HomK[[q]](A,K{{q}}).

By choosing geometric points such that q
1
N �→ (T1T2)

1
N , one obtains two compatible

homotopy exact sequences

1 Ẑ(1)× Ẑ(1) π
Dμ

1 (Xμ,�μ) GK 1

1 Ẑ(1) πS0

1 (S,�s) GK 1,

jμ pμ

pμ/S

sμ

jλ jλ′

jS pS

ss
(4.1)

where the geometric parts Ẑ(1)× Ẑ(1) and Ẑ(1) are equipped with the Galois actions

coming from the sections defined by the choices of tangential base points μ and s. We
refer to [17] 3.3.1–3.3.4 for details.

We will now track explicitly the fiber functors defined by �μ on RevDλ(Xλ) and

RevDλ′ (Xλ′) for (λ,λ′) = λ(P 0
μ) and compare them to the one given by the tangential

base points Tλ
ij of Definition 3.1. First of all, remark that the map Xμ → Xλ pulls back

the divisor Dλ to Dμ so that it induces a base change functor

RevDλ(Xλ)−→ RevDμ(Xμ),

and thus, we have a fiber functor on RevDλ(Xλ) that is given by composition with �μ,
which we also denote by �μ. In particular, this comes with a map on the étale fundamental

groups

pμ/λ : π
Dμ

1 (Xμ,�μ)−→ πDλ
1 (Xλ,�μ).
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In the same way, the morphism fλ : Xλ →S defines a map

pλ/S : π
Dλ
1 (Xλ,�μ)−→ πS0

1 (S,�s)

by the fact that the pullback of S0 is the divisor D0
λ ∪D′′

λ where D′′
λ is given by D′

λ

restricted to X0
λ. As the map Xμ →Xλ is a map of S-schemes, we have the commutativity

condition

pλ/S ◦pμ/λ = pμ/S

and compatibility with the previous homotopy exact sequences of Equation (4.1).

4.1.2. Étale fundamental group comparisons and Galois-compatible actions.
By Theorem 4.3.2 of [10] the restriction map to X0

λ gives a categorical equivalence

RevD
′
λ(Xλ)	 RevDλ(X0

λ),

and the last one is canonically equivalent to Rev(Wλ
0 ).

Proposition 4.1. The isomorphisms RevD
′
λ(Xλ) 	 RevDλ(X0

λ) 	 Rev(W 0
λ) transform

the fiber functor �μ in
−→
Tij and thus yield a Galois compatible isomorphism

π
D′

λ
1 (Xλ,�μ)	 π1(W

0
λ,
−→
T ij).

Proof. By Proposition 3.13, the following diagram commutes:

SpfK[[T1,T2]] SpfK[[T ]]

Xμ Xλ X0
λ,

μ

ιλ

Tij

where we recall the map ιλ : SpecK[[T ]]→ SpfK[[T1,T2]] is given by the quotient by T2.

It thus suffices to check that the fiber functors on RevD
′
λ(Xλ) given by μ and μ◦ ιλ are

canonically equivalent and that they are also equivalent to the one given by composition

of the pullback to the special fiber and
−→
T ij .

Let B ∈ RevD
′
λ(Xλ) and consider A ∈ RevDλ(X0

λ) obtained from B by base change to

the special fiber. The pullback of B to Xμ is SpfB ∈ Rev(T1=0)(Xμ) with B a direct sum

of subalgebras of K[[T
1
N
1 ,T2]] for some N ≥ 1. Then we have

�μ(B) = HomK[[T1,T2]](B,K{{T1,T2}})
= HomK[[T1,T2]](B,K{{T1}}[[T2]])

= HomK[[T ]](B/T2,K{{T}})

�μ(B) =−−−→μ◦ ιλ(B) =
−→
Tij(A).

Remark 4.2. The map SpfK[[T ]] → SpfK[[T1,T2]] does not define a base change

RevDμ(Xμ) → Rev(T=0)(SpfK[[T ]]) as the pullback of the divisor Dμ is SpfK[[T ]] and

not (T = 0). Thus, we cannot define a fiber functor for the first category in this way.
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We can now compare π
D′

λ
1 (Xλ,�μ) and πDλ

1 (Xλ,�μ) by Grothendieck-Murre theory since

Dλ and D′
λ, as defined in Section 3.4.3, are two divisors that differ by the special fiber;

see [10] Corollary 5.1.11.

Proposition 4.3. We have an exact sequence

1 Ẑ(1) πDλ
1 (Xλ,�μ) π

D′
λ

1 (Xλ,�μ) 1,α

where α = pμ/λ ◦ jμ ◦ jλ and where β comes from the canonical projection induced by the

inclusion RevD
′
λ(Xλ)⊂ RevDλ(Xλ).

Proof. By [10] Theorem 7.3.1, we have the exactness of the sequence

Ẑ(1) πDλ
1 (Xλ,�μ) π

D′
λ

1 (Xλ,�μ) 1.α

The injectivity of α can be deduced from the injectivity of pλ/S ◦α= jS .

Remark 4.4. With the equality pλ/S ◦ pμ/λ ◦ sμ = ss, we also have the surjectivity of

pλ/S .

4.2. Geometric Galois actions and groupoids

For the fundamental group of a curve X over K, the geometric part is defined to be the

fundamental group of XK and coincides with the kernel of the projection to GK given

by the arithmetic geometric fundamental homotopy exact sequence Equation (3.1).

4.2.1. Galois actions and inertia. Following [17] 3.4.7, we define geometric parts

of the fundamental groups πDλ
1 (Xλ,�μ) as the kernels of such projections to GK .

Definition 4.1. The geometric part πDλ
1 (XλK,�μ) of πDλ

1 (Xλ,�μ) is the kernel of
pλ = pS ◦pλ/S .

Proposition 4.5. We have the following results on the structure of πDλ
1 (Xλ,�μ).

1. We have an exact sequence

1 Ẑ(1) πDλ
1 (XλK,�μ) πDλ

1 (X0
λK,

−→
Tij) 1α

and an isomorphism πDλ
1 (XλK,�μ)	 Ẑ(1)×πDλ

1 (X0
λK,

−→
Tij).

2. The exact sequence

1 πDλ
1 (XλK,�μ) πDλ

1 (Xλ,�μ) GK 1

admits a splitting, and we have an isomorphism πDλ
1 (Xλ,�μ)	 πDλ

1 (XλK,�μ)�GK .

Furthermore, the action of GK on πDλ
1 (XλK,�μ) preserves the direct product decomposition

of 1 and induces the Galois action on πDλ
1 (X0

λK,
−→
Tij) given by the tangential base point

Tλ
ij.
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Proof.

1. We deduce the exact sequence from the one of Proposition 4.3, where we replaced

the last term via the equivalence of categories RevD
′
λ(Xλ)	 RevDλ(X0

λ); see §4.1.2.
We know that Ẑ(1) is the kernel of β so that its image lands in the geometric part

is a given. The short exact sequence follows.

The projection pλ/S induces a geometric counterpart

pλ/S : π
Dλ
1 (XλK,�μ)−→ Ẑ(1)

which verifies pλ/S ◦ α = id
̂Z(1). It follows that Kerpλ/S ∩ α(Ẑ(1)) = {1} so that

Kerpλ/S is isomorphic to πDλ
1 (X0

λK,
−→
Tij) and we have the direct product decom-

position.

2. The splitting is given by sμ ◦pμ/λ. The fact that the resulting GK-action preserves

the direct product decomposition and induces the GK -action on πDλ
1 (X0

λK,
−→
Tij) given

by the tangential base point Tij follows directly from the compatibility of the fiber

functors �μ, �s and
−→
Tij .

4.2.2. A trivial Galois action condition. We can now state the basic result that

determines when an element of GK acts trivially on πDλ
1 (XλK,�μ).

Proposition 4.6. An element of GK acts trivially on π�,Dλ

1 (XλK,�μ) if and only if it acts

trivially on π�,Dλ

1 (X0
λK,

−→
Tij).

Proof. The decomposition of πDλ
1 (XλK,�μ) given by 4.2.1 of the previous result passes to

the pro-�-completion, which gives

π�,Dλ

1 (XλK,�μ)	 Ẑ�(1)×π�,Dλ

1 (X0
λK,

−→
Tij).

As the GK -action preserves the product, the implication is straightforward. For the
reciprocal, let σ ∈GK that acts trivially on π�,Dλ

1 (XλK,�μ). Let us choose a representation

(y1, . . . ,y2g,x1, . . . xn |
∏

i[yi,yi+1]x1 · · ·xn) of π�,Dλ

1 (X0
λK,

−→
Tij) in the usual way, where x1

denotes the loop around the closed point image of Tij in X0
λ. We have σ(x1) = x

χ�(σ)
1 = x1

by assumption. But σ also acts by χ�(σ) on the first factor Ẑ�(1), so the action of σ on

π�,Dλ

1 (XλK,�μ) is trivial.

Remark 4.7. More generally, the result also holds in the case of any almost full class of

finite groups C and the maximal pro-C-quotients of πDλ
1 (XλK,�μ) and πDλ

1 (X0
λK,

−→
Tij); see

[17] Proposition 3.4.8.

4.2.3. From fundamental groups to groupoids. In order to conclude, we first we

need to explain how to move from fundamental groups to fundamental groupoids. This
is essentially formal and comes down to the fact that the set of étale paths are principal

homogeneous spaces under the translation actions of the fundamental groups. As such,

the technical details will mostly be avoided.
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Let Mλ = {μ ∈ M | λ ∈ λ(μ)} and fix λ ∈ Λ � Λ′. Let μ1,μ2 ∈ Mλ. The set of

étale paths between the fiber functors �μ1 and �μ2 of the category RevDλ(Xλ) is the

profinite set πDλ
1 (Xλ, �μ1, �μ2) of ismorphisms between these two functors. The fundamental

groups πDλ
1 (Xλ, �μ1) and πDλ

1 (Xλ, �μ2) act by left and right translation canonically on

πDλ
1 (Xλ, �μ1, �μ2), and these actions are simply transitive. By construction, �μ1 and �μ2

are turned into the fiber functor �s of RevS
0

(S) through the base change by the map

fλ : Xλ →S so that we have a map

pλ/S : π
Dλ
1 (Xλ, �μ1, �μ2)−→ πS0

1 (S,�s).

By composition, we get a canonical map pλ = pS ◦pλ/S : πDλ
1 (Xλ, �μ1, �μ2)→GK .

Definition 4.2. The geometric part πDλ
1 (XλK, �μ1, �μ2) of πDλ

1 (Xλ, �μ1, �μ2) is the set

p−1
λ ({1}).

The maps pλ (for varying μ ∈ Mλ) induce a groupoid homomorphism from

ΠDλ
1 (Xλ,(�μ)μ∈Mλ

) to GK . This groupoid compatibility ensures that the canonical actions

of the groups πDλ
1 (Xλ, �μ1) and πDλ

1 (Xλ, �μ2) on πDλ
1 (Xλ, �μ1, �μ2) induce by restriction simply

transitive actions from their geometric part to the geometric part of the latter.

This construction can be made when considering �μ1 and �μ2 as fiber functors with

respect to the category of étale covers of Xλ tamely ramified over D′
λ instead of of Dλ.

As in Proposition 4.3, we have a natural map

βμ1,μ2
: πDλ

1 (Xλ, �μ1, �μ2)−→ π
D′

λ
1 (Xλ, �μ1, �μ2)

which is compatible with the canonical actions on both sides with regard to the maps

βμ1
and βμ2

. In particular, the map βμ1,μ2
is surjective and also induces a bijection from

pλ/S
−1({1}) to π

D′
λ

1 (XλK, �μ1, �μ2) as in Proposition 4.5. Moreover, the base change functor
to the special fiber induces again a canonical bijection

π
D′

λ
1 (Xλ, �μ1, �μ2)	 πDλ

1 (X0
λ,
−→
Tij, �Tkl).

Definition 4.3. We define an action of GK on πDλ
1 (Xλ, �μ1, �μ2) in the following way. For

γ ∈ πDλ
1 (XλK, �μ1, �μ2) and σ ∈GK , let

σ ·γ = sλ/μ1
(σ)◦γ ◦sλ/μ2

(σ)−1,

where sλ/μ = pμ/λ ◦sμ for μ ∈Mλ.

By the compatibility with pλ, this action induces an action of GK on the geometric

part of πDλ
1 (Xλ, �μ1, �μ2). This action is compatible with the bijection p−1

λ/S({1}) 	
πDλ
1 (X0

λK,
−→
Tij, �Tkl), and we recover the GK-action induced by our choice of tangential

base points on the right-hand side.
We can now state the groupoid analog of Proposition 4.6 and establish the main result

of this section.

Proposition 4.8. Let μ1,μ2 ∈M . An element of GK acts trivially on π�,Dλ

1 (XλK, �μ1, �μ2)

if and only if it acts trivially on π�,Dλ

1 (X0
λK,

−→
Tij, �Tkl).
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Proof. As the bijection p−1
λ/S({1})	 πDλ

1 (X0
λ,
−→
Tij, �Tkl) is a GK -isomorphism, the implica-

tion is straightforward again.

For the converse, let σ ∈ GK . We first remark that by the simple transitiveness of

the action of πDλ
1 (XλK, �μ1) on πDλ

1 (Xλ, �μ1, �μ2) and its compatibility with the map pλ/S ,

we have that for every γ ∈ π�,Dλ

1 (XλK, �μ1, �μ2), there exists α ∈ Ẑ�(1) such that α · γ ∈
p−1
λ/S({1}).
Now, by assumption, we have σ(α ·γ) =α ·γ so that σ(γ) = σ(α)−1 ·(α ·γ), and thus, it is

enough to see that σ acts trivially on Ẑ�(1). This follows as in the proof of Proposition 4.6,

since σ acting trivially on πDλ
1 (X0

λK,
−→
Tij, �Tkl) implies it acts trivially on πDλ

1 (X0
λK,

−→
Tij),

again by simple transitiveness and Galois compatibility.

Remark 4.9. The result holds in more generality by using an almost full class of finite

groups instead of the pro-� completion.

Consider the formal scheme X. The maps Xλ → X for λ ∈ Λ�Λ′, which send D to Dλ

by pullback, induce base change functors RevD(X)→ RevDλ(Xλ). Hence, for μ ∈M , we
have fiber functors �μ for RevD(X) and a fundamental groupoid ΠD

1 (X,(�μ)μ∈M ) which

comes with a geometric part ΠD
1 (XK,(�μ)μ∈M ) equipped with a Galois action. For every

λ ∈ Λ�Λ′ and μ1,μ2 ∈Mλ, the induced canonical maps

pλ/X,μ1,μ2
: πDλ

1 (Xλ, �μ1, �μ2)−→ πD
1 (X, �μ1, �μ2)

are compatible with taking geometric parts and Galois actions on both sides.

Theorem 4.10. If an element of GK acts trivially on the groupoids Π�,Dλ

1 (X0
λK,Br

λ) for

every λ ∈ Λ�Λ′, then it acts trivially on the groupoid Π�,D
1 (XK,(�μ)μ∈M ).

Proof. The main result of [10] paragraph 8.2.6 gives an equivalence of categories between
RevD(X) and a system of certain subcategories of the RevDλ(Xλ) which yields that the

fundamental groupoid Π�,D
1 (X,(�μ)μ∈M ) is generated by the images of the pλ/X,μ1,μ2

for

all λ ∈ Λ�Λ′ and μ1,μ2 ∈Mλ. This generation statement carries to the geometric parts
by [17] Section 3.6.

The statement of the theorem now follows from Proposition 4.8.

By Theorem 4.3.2 of [10], there is a canonical isomorphism

Π�,D
1 (X,(�μ)μ∈M )	Π�,D

1 (X,(�μ)μ∈M ),

where the right-hand side is isomorphic to Π�
1(Xη \ {(Qv)v∈N},(�μ)μ∈M ), and the choice

of �μ defines compatible GK-actions.

Corollary 4.11. We have the inclusion of �-monodromy fixed fields K�
Xη

⊂Q�
0,3.

Proof. For any μ ∈ M and �μ, coming from a tangential base point of Xη, and seen as
a fiber functor on Rev(Xη \ {(Qv)v∈N}, we have the usual inclusion K�

Xη
⊂ K�

�μ. The

inclusion K�
�μ ⊂ Q�

0,3 follows by [17] Corollary 4.1.4 (ii). Indeed, by Theorem 3.5, an

element of GK acts trivially on the groupoids Π�,Dλ

1 (X0
λK,Br

λ), λ ∈ Λ�Λ′ if and only
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if it acts trivially on the groupoid Π1(P
1
Q
\ {0,1,∞},B). If so, it also acts trivially on

Π�,D
1 (XK,(�μ)μ∈M ) and thus on Π�

1(Xη \{(Qv)v∈N},(�μ)μ∈M ) by Theorem 4.10.

For future use, let us summarize the results of Section 4 in a statement that can be
applied for various well-chosen geometric constructions as in Section 3 of this paper.

Theorem 4.12. Let X/S be a stable curve with S the spectrum of a discrete valuation

ring with residue field K of characteristic 0. Let D ⊂ X be a normal crossing divisor
containing X0 the special fiber of X. Let us denote by Xη the generic fiber of X such that

Xη, equipped with Dη, is a proper smooth marked curve. Let (Xλ)λ∈Λ be the irreducible

components of X0, which are equipped with a divisor Dλ by pullback from D, and M the

set of double points of X0. Suppose given for each μ ∈M a morphism

μ : SpfK[[T1,T2]]	 Xμ → X.

If σ ∈ GK acts trivially on ΠDλ
1 (Xλ,{�μλ}{μ|μ	λ}) for every λ ∈ Λ, then it acts trivially

on Π
Dη

1 (Xη,{�μ}μ∈M ), where {�μλ}{μ|μ	λ} are the associated fiber functors of RevDλ Xλ.

5. Oda’s problem for Z/�Z-special loci

In the rest of this section, we fix a prime � and specialize the previous study of this paper

to the case G = Z/�Z to establish Oda’s prediction for Z/�Z-special loci – that is, the
�-monodromy fixed field Q�

g,m(Z/�Z)kr is constant independent of the topological g, m

and Hurwitz kr data and equal to Q�
0,3 – which provides a new proof of Oda’s original

prediction (i.e., that is Q�
g,m =Q�

0,3).
We proceed by considering two types of irreducible components Mg,[m](Z/�Z)kr,

whose associated monodromy fixed fields Q�
g,m(Z/�Z)kr are compared to those of other

components by the G-quotient of Section 2.1 and the G-deformation of Section 3.4.

5.1. The case of proper special loci

Let us consider the case where Mg,[m](G)νkr is such that the quotient loci is M0,3, – that
is, when the quotient loci is proper. As the quotient map is itself quasi-finite and proper,

the stack Mg,[m](G)kr is proper if and only if it is the case of the stack of the quotient

curves. In this case, both stacks Mg,[m](G)kr and Mg,[m](G)νkr are geometrically given

by a single point and are equal.
The following lemma enumerates the possible values of g, m and kr that make this

possible for a Z/�Z-special loci in the étale quotient case.

Lemma 5.1. Assuming the ramified points are marked, the moduli space Mg,[m](Z/�Z)kr
is proper in the following cases:

1. g = 0, m= 2+ �, k = (1,−1);

2. g = �−1
2 , m= 3, and the abstract Hurwitz data k is free.

Proof. In the case of a quotient by Z/�Z, the Hurwitz formula is

2g−2 = (2g′−2)�+N(�−1),
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where N is the number of ramified points, and setting g′ = 0 yields

g = (N −2)(
�−1

2
).

Since the ramified points are assumed to be marked, we have N ∈ {2,3}, since the cases
N = 0 or 1 are not possible.

For N = 2, we have g = 0 and k = (1,−1). The m = 2+ � marked points are given by

two ramified points and � points permuted under the action of Z/�Z.

For N = 3, we have g = (�− 1)/2, and the marked points are the ramified points. In
this case, there is no condition on the abstract Hurwitz data.

Let us remark that the case N = 3 (resp. N = 2) is given by the Seyama curves (resp.

the G-curves of genus 0) discussed in Section 3.2.

Theorem 5.2. For g,m ∈N and compatible abstract Hurwitz data kr such that the stack

Mg,[m](Z/�Z)kr is proper and nonempty, we have the equality

Q�
g,[m](Z/�Z)kr =Q�

0,3.

Note that following our assumptions one as also Q�
g,[m](G)kr =Q�

g,[m](G)νkr.

Proof. Corollary 2.12 (see diagram below) gives the inclusions Q�
0,3 ⊂Q�

g,[m](Z/�Z)kr ⊂
Q�

g,[m](Z/�Z)
ν
kr. Let us consider s and the abstract Hurwitz data kret, as defined in

Proposition 2.5, and the map Mg,[m](G)kr → Mg,[m+s](G)kret which is finite. Thus,

Mg,[m](G)kr is proper if and only if Mg,[m+s](G)kret is, and it is sufficient to establish the

reverse inclusion Q�
0,3 ⊃Q�

g,[m](Z/�Z)kr in the étale quotient case, since Q�
g,[m](Z/�Z)kr ⊂

Q�
g,[m+s](Z/�Z)kret by Theorem 2.6. In this case, it follows from Lemma 5.1 that there

is a K -point in the special loci that represents a curve C isomorphic to either a Seyama

curve or a G-curve of genus 0.
The result then follows from the inclusion Q�

g,[m](G)kr ⊂ Q�
C = Q�

0,3 obtained from

Lemma 2.3 and Corollary 3.7.

5.2. General conclusion

We can now establish the main result of this paper for prime cyclic special loci, which

also recovers Oda’s weak classical conjecture.

Theorem 5.3. For g,m ∈ N such that 2g− 2+m > 0 and compatible abstract Hurwitz

data kr such that Mg,[m](Z/�Z)kr is nonempty, we have Q�
g,[m](Z/�Z)kr =Q�

0,3.

Proof. By Corollary 2.9, we can assume that the marked points contain the ramified

points of the G-action. Since Theorem 5.2 gives the equalities Q�
g,[m](Z/�Z)

ν
kr =

Q�
g,[m](Z/�Z)kr = Q�

0,3 in the case where Mg,[m](Z/�Z)kr is proper, let us assume

otherwise.

In this case, let us consider the G-stable diagram X0 over K, with CardΛ�Λ′ ≥ 2,
in the boundary of Mg,[m](G)νkr such as provided by Proposition 3.9. The stable curve

X0 admits a formal deformation X which is algebraizable into a scheme X with generic
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fiber Xη ∈ Mg,[m](Z/�Z)
ν
kr(K((T ))) as given by Section 3.4.2. The groupoid Π�

1(Xη \
{(Qv)v∈N},(�μ)μ∈M ) is equipped with the tangential Galois action of GK constructed

in Section 4 coming from the choices of the fiber functors (�μ)μ∈M . It results from

Corollary 4.11 that KXη
⊂Q�

0,3.

It follows that Q�
g,[m](Z/�Z)

ν
kr ⊂Q�

0,3, since Q
�
g,[m](Z/�Z)

ν
kr ⊂KXη

by Lemma 2.3, which
concludes the first statement by the diagram below Corollary 2.12. In short, we obtained

Q�
0,3 Q�

g,m Q�
g,[m](Z/�Z)kr Q�

g,[m](Z/�Z)
ν
kr KXη

Q�
0,3.

Recovering Oda’s weak conjecture relies on previous work of Nakamura and the
consideration of certain étale type loci in Mg,[m+s](G).

Corollary 5.4. For all g′,m′ ∈ N such that 2g′− 2+m′ > 0, the equality Q�
g′,m′ = Q�

0,3

holds.

Proof. For every g′,m′ ∈N such that 2g′−2+m′ > 0, there are g,m∈N and a compatible
abstract Hurwitz data kr such that Mg,[m](Z/�Z)

ν
kr is nonempty and (g′,m′) is the

quotient data. This nonemptiness assertion is obtained by Proposition 3.7 of [4].

Q�
g,m Q�

g,[m](Z/�Z)kr Q�
g,[m](Z/�Z)

ν
kr Q�

g,[m+s](Z/�Z)
ν
kret Q�

0,3

Q�
0,3 Q�

g′,m′ Q�
g′,m′+s′

(5.1)

From Proposition 2.5, there is a nonempty stack Mg,[m+s](G)kret for some s ≥ 0 with
kret of étale type by construction, and such that the quotient space is Mg′,m′+s′ for

some s′ ≥ 0. By Theorem 2.11, we obtain the inclusion Q�
g′,m′+s′ ⊂Q�

g,[m+s](G)νkret ; then

Q�
g,[m+s](G)νkret ⊂Q�

0,3 by Theorem 5.3. The conclusions follow by [34] and [31] which gives

the inclusion Q�
g′,m′ ⊂ Q�

g′,m′+s′ with s′ ≥ 1, and finally by the inclusion Q�
0,3 ⊂ Q�

g′,m′

which is again Theorem A of [23]; see Diagram 5.1 for a summary.
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modules de courbes, action galoisienne en genre quelconque. Ann. Inst. Fourier 65(1)
(2015), 245–276. doi: 10.5802/aif.2930.

[5] B. Collas and S. Maugeais, On Galois action on the inertia stack of moduli
spaces of curves. Publ. Res. Inst. Math. Sci. 59(4) (2023), 731–758. https://doi.org/
10.4171/prims/59-4-2.

[6] T. Ekedahl, Boundary behaviour of Hurwitz schemes. In The Moduli Space of
Curves. Proceedings of the Conference Held on Texel Island, Netherlands During the
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