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A prediction framework for the mean quantities in a compressible turbulent boundary
layer (TBL) with given Reynolds number, free-stream Mach number and wall-to-recovery
ratio as inputs is proposed based on the established scaling laws regarding the velocity
transformations, skin-friction coefficient and temperature–velocity (TV) relations. The
established velocity transformations that perform well for collapsing the compressible
mean profiles onto incompressible ones in the inner layer are used for the scaling of such
inner-layer components of mean velocity, while the wake velocity scaling is determined
such that self-consistency is achieved under the scaling law for the skin-friction coefficient.
A total of 44 compressible TBLs from six direct numerical simulations databases are
used to validate the proposed framework, with free-stream Mach numbers ranging from
0.5 to 14, friction Reynolds numbers ranging from 100 to 2400, and wall-to-recovery
ratios ranging from 0.15 to 1.9. When incorporated with the scaling laws for velocity
transformation from Griffin et al. (2021, Proc. Natl Acad. Sci., vol. 118, e2111144118),
the skin-friction coefficient from Zhao & Fu (2025, J. Fluid Mech., vol. 1012, R3) and
the TV relation from Duan & Martín (2011, J. Fluid Mech., vol. 684, pp. 25–59), the
prediction errors in the mean velocity and temperature profiles remain within 4.0 % and
6.0 %, respectively, across all tested cases. Correspondingly, the skin-friction and wall-
heat-transfer coefficients are also accurately predicted, with root mean square prediction
errors of approximately 3 %. When adopting different velocity transformation methods
that are valid for inner-layer scaling, the root mean square prediction errors in the mean
velocity and temperature profiles remain below 2.3 % and 3.6 %, respectively, which
further highlights the universality of the proposed framework.
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1. Introduction
The high-speed turbulent boundary layer (TBL) is known to significantly affect the surface
drag and heat transfer, the accurate prediction of which is thus of great importance for
reliable vehicle design and flow control (Bradshaw 1977). Numerous studies conducted
are engaged in uncovering physical insights in the TBL, based on which fruitful
mathematical models in describing the physical properties are extracted (e.g. van Driest
1951; Spalding & Chi 1964; Huang, Bradshaw & Coakley 1993; Duan, Beekman & Martin
2010; Chen, Gan & Fu 2024). As an idealised simplification of the compressible TBL,
the incompressible counterpart exhibits distinct universal laws in the mean quantities,
such as those for the mean velocity profile in the wall-normal direction (Johnson & King
1985; Kawai & Larsson 2012). However, due to the variations of mean properties such as
density and viscosity in the wall-normal direction, the prediction of the mean properties
of compressible TBLs with non-negligible Mach numbers is still a challenging task and
needs further refinement.

Inspired by Morkovin (1962), where it is hypothesised that the compressible wall-
bounded flows can be mapped onto incompressible counterparts by accounting for the
variations in mean properties, the established scaling laws for incompressible TBLs can
be applied in compressible ones with appropriate transformations. Over decades, studies
on velocity transformations have been actively conducted (e.g. van Driest 1951; Zhang
et al. 2012; Trettel & Larsson 2016; Volpiani et al. 2020; Griffin, Fu & Moin 2021b;
Hasan et al. 2023). The pioneer work by van Driest (1951) (denoted as vD) built upon the
mixing length assumption performs well in high-speed adiabatic flows but deteriorates for
diabatic conditions. On the other hand, the total-stress-based transformation by Griffin
et al. (2021b) (denoted as GFM), which is parameter-free, demonstrates exceptional
performance in collapsing the mean streamwise velocity profiles of various flow types,
including turbulent channel flows, pipe flows and TBLs even with strong heat transfer,
into the incompressible counterparts in the inner layers. In addition to GFM, the
transformations proposed by Volpiani et al. (2020) (termed Volpiani), which is data-
driven, and Hasan et al. (2023) (termed HLPP), by interpreting intrinsic compressibility
effects, also perform well in the inner layers of compressible TBLs.

Besides the velocity transformation, the scaling of the skin-friction coefficient in
compressible TBLs is a related but different topic. Accounting for the variations in
density and viscosity, van Driest (1951) proposes a scaling law for the skin-friction
coefficient that is applicable in both compressible and incompressible TBLs. Spalding &
Chi (1964) further improve the theory of van Driest (1951) by including the impacts
of free-stream Mach number and temperature. However, neither of these two theories
provides accurate predictions on the skin-friction coefficient with a very cold wall
(Bradshaw 1977). Recently, Zhao & Fu (2025) developed a general scaling law for the skin-
friction coefficient based on physical and asymptotic analyses, which precisely predicts
the transformed skin-friction coefficient with wide ranges of free-stream Mach numbers
and wall-to-recovery ratios. The above-mentioned established scaling laws for velocity
transformation and skin-friction coefficient, in combination with the well-established
temperature–velocity (TV) relations (e.g. Duan & Martín 2011; Zhang et al. 2014), provide
abundant theoretical foundations for modelling the mean quantities of compressible TBLs
in the current study.

To predict the mean profiles in compressible TBLs, Huang et al. (1993) apply inverse
vD transformation to a modelled incompressible velocity profile. Griffin et al. (2021a)
compute the velocity and temperature profiles of compressible wall-bounded turbulence
with inverse GFM transformation and TV relation (Zhang et al. 2014). Such a strategy
is further developed for evaluating the mean profiles, wall shear stress and wall heat
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flux for wall-modelled large-eddy simulations (Griffin, Fu & Moin 2023). Kumar &
Larsson (2022) also evaluate the entire profile within the boundary layer based on
the inverse Volpiani transformation. Despite these advancements, given that the current
velocity transformations (e.g. vD, GFM, HLPP and Volpiani) are developed based on
the physical properties in the inner layer, the determination of the entire velocity profile
depending solely on one scaling law is somehow questionable. To address this, Hasan
et al. (2024) separately model the inner and wake components with inverse HLPP and
vD transformations, where the scaling factor for the wake component is modelled based
on data fitting. However, the scaling factor expressed as a function of the momentum-
thickness-based Reynolds number Reθ still results in non-negligible data scatter, indicating
potential error sources in the predicted results. On the other hand, Chen et al. (2024)
propose to predict the mean profiles in the inner and outer layers with inverse GFM and
vD transformations, respectively, and splice them at a certain matching point between
the two layers. While these approaches show promise, a more reliable framework is
needed for appropriate scalings of the entire mean profiles, especially for that in the
outer layer.

In our current study, a universal framework for predicting mean profiles of compressible
TBLs is proposed based on established scaling laws regarding the velocity transformation,
skin-friction coefficient and TV relation, by which the inner and wake components of the
mean profiles are properly scaled. No additional data fitting operations are introduced in
this framework, allowing it to be feasible to incorporate any velocity transformations with
validity in the inner layer. The prediction framework is derived in § 2, with prediction
results for the mean quantities presented in § 3. Concluding remarks are provided in § 4.

2. Methodology
The mean-profile-prediction framework to be derived includes the incompressible model
for mean velocity, velocity transformation, general scaling law for skin-friction coefficient
and TV relation, as elaborated in §§ 2.1, 2.2, 2.3 and 2.4, respectively. They are leveraged
to iteratively compute the mean velocity and temperature profiles until the results converge,
as summarised in § 2.5.

2.1. Modelling the mean profiles of the incompressible TBL
The mean velocity profile for the incompressible TBL can be expressed by (Coles 1956)

U inc(y) = U inc
inner

(
y

δν

)
+ ΠU inc

wake

(
y

δe

)
, (2.1)

where y is the wall-normal distance, δe is the boundary layer thickness where the mean
streamwise velocity is 99 % of the free-stream velocity, δν = ν/uτ is the viscous length, ν

is the molecular kinetic viscosity, uτ = √
τw/ρw is the friction velocity, τw = (ρ∂yU )w is

the wall shear stress, ρ is the mean density and the subscript w denotes the quantities at the
wall. In this study, the velocities and lengths with superscripts + denote those normalised
by uτ and δν . For instance, U inc,+ = U inc/uτ and y+ = y/δν . Assuming equilibrium, the
inner component of the mean velocity profile can be expressed with (Kawai & Larsson
2012)

dU inc
inner(y/δν)

dy
= uτ

δν

1
1 + μt/μ

, (2.2)

where μ = ρν is the molecular dynamic viscosity, and μt is the eddy dynamic viscosity.
The Johnson–King model (Johnson & King 1985) that is built upon the arguments of
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the mixing length model (van Driest 1956) is adopted to describe the eddy dynamic
viscosity, i.e.

μt = κρy

√
τw

ρ
D, D = [

1 − exp
(−y+/A+)]2

, (2.3)

with κ = 0.41 and A+ = 17. On the other hand, Coles’ wake function (Coles 1956) is
adopted to describe U inc

wake(y/δe), which is the normalised shape of the wake component
of the mean velocity profile, as expressed by

dU inc
wake(y/δe)

dy
= uτ

δe

π

κ
sin

(
π

y

δe

)
. (2.4)

According to Coles’ law of the wake (Coles 1956), the wake scaling factor Π for a zero-
pressure-gradient incompressible TBL can be approximately treated as a constant 0.55. In
our proposed framework, Coles’ law of the wake is further extended to the compressible
TBL by determining Π based on the self-consistency criterion regarding the general
scaling law for Cf (Zhao & Fu 2025), as illustrated in the next subsection.

The inner component U inc
inner in (2.2) and normalised wake component U inc

wake in (2.4) of
the incompressible TBL introduced in this subsection will be utilised for constructing the
compressible counterparts, as derived in the following.

2.2. Shaping the mean profiles of compressible TBLs with velocity transformations
In this study, the mean streamwise velocity profile of a compressible TBL is reconstructed
with

U = Uinner + ΠUwake, (2.5)

where Uinner and Uwake are inversely transformed from U inc
inner and U inc

wake, respectively.
Given the validity of the established velocity transformations (e.g. GFM, HLPP and
Volpiani) in the inner layer, U inc

inner can be readily transformed to the compressible
counterpart with these methods. With inverse GFM transformation applied, for example,
the mean velocity in an incompressible TBL compared to that in a compressible TBL with
the same Re∗

τ is expressed by

dU+
inner

dy∗ =
dU inc,+

inner
dy∗

1
μ+ − 1

μ+
dU inc,+

inner
dy∗ + μ+ dU inc,+

inner
dy+

, (2.6)

where y∗ = y/δ∗
ν , Re∗

τ = δe/δ
∗
ν (y = δe), δ∗

ν (y) = ν(y)/u∗
τ (y) is the semi-local length scale,

u∗
τ (y) = √

τw/ρ(y) is the semi-local velocity scale, and μ+ = μ/μw. The derivations of
the inverse GFM transformation (2.6) are provided in Appendix A. In the rest of this paper,
the inverse GFM transformation is the default method for inner scalings unless otherwise
stated.

On the other hand, most of the currently available velocity transformations are
fundamentally based on the physical characteristics of the inner layer, which results
in a less robust foundation for outer scaling when compared to the well-established
inner scaling. As a practical compromise without sacrificing generality, the inverse vD
transformation that provides fair scaling of Uwake (Duan, Beekman & Martin 2011; Chen
et al. 2024) is employed for outer scaling in the tests conducted in this study:

dU+
wake

dy∗ =
√

1
ρ+

dU inc,+
wake

dy∗ , (2.7)
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where ρ+ = ρ/ρw. Note that the transformation for outer scaling can be replaced with
more reliable methods developed in future studies.

2.3. Determining the wake scaling factor with the general scaling law for Cf

To determine the wake scaling factor Π , the general scaling law for Cf recently proposed
by Zhao & Fu (2025) is introduced. In their theory, the redefined skin friction coefficient
Cf,i closely matches the predicted value as a function of the redefined momentum-
thickness-based Reynolds number Reθ,i in actual compressible TBLs within a fairly wide
range of flow conditions. The redefined skin-friction coefficient is described with(

2
Cf,i

)1/2

= 1
κf

ln Reθ,i + C, (2.8)

with κf = 0.344 and C = 1.770. Here, Cf,i and Reθ,i are defined by

Cf,i = FC∗Cf , Reθ,i = Fθ∗ Reθ∗, (2.9)

with FC∗ = (ρ∞/ρw)F−2, Fθ∗ = (ρwμ∞/(ρ∞μw))F and F = U inc,+∞ /U+∞. Here, the
subscript ∞ denotes the free-stream quantities, and U inc,+ is obtained from the forward
GFM transformation that is formulated by

dU inc,+

dy∗ =
1

μ+
dU+

dy∗

1 + 1
μ+

dU+

dy∗ − μ+ dU+

dy+

. (2.10)

In (2.9), Reθ∗ is expressed as Reθ∗ = U∞θ∗/μ∞, with

θ∗ =
∫ δe

0

ρ

ρ∞
U inc,+

U inc,+∞

(
1 − U inc,+

U inc,+∞

)
d

(
y∗δν

)
. (2.11)

Based on (2.8)–(2.11), the skin-friction coefficient can be predicted with

Cf = 2
/ [

FC∗
(

1
κf

ln Reθ,i + C

)2
]
. (2.12)

Since the above theory accurately describes the skin-friction coefficient for TBLs within
a vast range of flow conditions, it provides an important criterion to judge the self-
consistency of the predicted results from the to-be-proposed framework. Hence we propose
to determine the wake scaling factor Π such that the discrepancy between the predicted
Cf directly from definition, i.e. Cf = τw/(0.5ρ∞U 2∞) = 2/(ρ+∞U+∞

2
), and that from (2.12)

is lower than 10−5, which can be derived to be

|ε| =
∣∣∣∣∣ρ+∞U+∞

2
/[

FC∗
(

1
κf

ln Reθ,i + C

)2
]

− 1

∣∣∣∣∣� 10−5. (2.13)

An a priori test is conducted here by reconstructing the mean velocity profile with actual
mean temperature from the direct numerical simulations (DNS) such that the performance
of the proposed self-consistency criterion (2.13) in determining the wake scaling factor is
scrutinised individually. The prediction error of U+(y) is investigated in this test, which
is defined by

E(U+) =
√

1
δe

∫ δe

0

(
U+

P (η) − U+
DNS(η)

)2 dη

/ (
1
δe

∫ δe

0
U+

DNS(η) dη

)
, (2.14)
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20 %

(a) (b) (c)

10 %E (
U

+
)

0
300 1000 3000

Reτ
∗ Reτ

∗ Reτ
∗

10 000

20 %

10 %

20 %

10 %

0 0
300 1000 3000 10 000 300 1000 3000 10 000

Pirozolli & Bernardini (2011)

Cogo et al. (2022, 2023)

Zhang et al. (2018)

Zhang et al. (2022, 2024)

Volpiani et al. (2018)

Zhao & Fu (2025)

Figure 1. A priori test for prediction errors of the mean velocity profile in the results from (a) present
framework, (b) empirical formulation in Hasan et al. (2024), and (c) direct inverse transformation as in
Kumar & Larsson (2022) for inner-layer scaling. The black dotted lines denote the root mean square values
of the prediction errors for all the considered cases. The red, blue and green symbols denote the results from
GFM, HLPP and Volpiani.

where the subscripts P and DNS denote the predicted and DNS results, respectively. The
prediction errors based on a total of 44 compressible TBLs from six DNS databases
(Pirozzoli & Bernardini 2011; Volpiani, Bernardini & Larsson 2018; Zhang, Duan &
Choudhari 2018; Cogo et al. 2022, 2023; Zhang et al. 2022, 2024; Zhao & Fu 2025) are
summarised in figure 1. Detailed flow parameters of these 44 test cases are summarised in
Appendix B. Note that all of these cases will be further used for comprehensive validations
of the to-be-proposed framework in the following parts of this study. For comparison, the
results from the empirical formulation of the compressible mean profile in Hasan et al.
(2024) and direct inverse transformation of the incompressible counterparts as proposed by
Kumar & Larsson (2022) are also included in figure 1. In all the tested cases, the prediction
errors from the presented framework are lower than 5.0 % regardless of the specific choice
of the velocity transformation method among GFM, HLPP and Volpiani for inner scaling
with root mean square values equal to 1.9 %, which is much lower than those from the
other two frameworks. The validity of the self-consistency criterion regarding the general
scaling law of Cf in determining the wake scaling factor is thus demonstrated.

To further investigate how the wake scaling factor Π varies with increasing free-stream
Mach number M∞, the results of Π determined from the criterion (2.13) with actual mean
temperature from DNS are summarised in figure 2. For subsonic flow with M∞ = 0.5
from Zhang et al. (2022), the value of Π is 0.48, which is close to the recommended value
0.55 for incompressible flows (Coles 1956). As M∞ increases, Π tends to decrease. In
particular, for all hypersonic cases with M∞ � 5.0, Π falls below 0.35. This dependence of
the wake scaling factor Π on the free-stream Mach number underscores the importance of
accounting for compressibility effects when modelling mean profiles in high-speed wall-
bounded turbulent flows.

2.4. Determining mean temperature with TV relation
The mean temperature profile can be evaluated from the established TV relationships.
In the following test cases in this study, the TV relation established by Duan & Martín
(2011) is adopted to determine the mean temperature profile from the velocity, which is
formulated as

T

Te
= Tw

Te
+ Tr − Tw

Te

[
(1 − sPr)

(
U

Ue

)2

+ sPr
(

U

Ue

)]
+ Te − Tr

Te

(
U

Ue

)2

, (2.15)
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0.8
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M∞

5

0

0.6

0.4
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0
300 1000 3000 10000

Reτ∗

Π

Pirozolli & Bernardini (2011)

Cogo et al. (2022, 2023)

Zhang et al. (2018)

Zhang et al. (2022, 2024)
Volpiani et al. (2018)
Zhao & Fu (2025)

Figure 2. Values of Π for compressible TBLs with GFM for inner-layer scaling. The black dashed line
denotes Π = 0.55 as suggested by Coles (1956) for incompressible TBLs.
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Yes

No

n = n + 1

Exit

E � 10−5?

|ε| � 10−5?

Obtain T, μ and ρ profiles with TV, μT and ρT relations in

sequence; and accordingly U +
(0) when n = 1

inner wake

(a) (b)

�δe ∫0

δe|U +(n) − U +(n−1)|2dη

∫
0

δe U +(n−1)dη
Calculate E = 

Calculate y+ = (η/δe)Reτ and y∗ = (μw/μ)�(ρ/ρw) y+

Figure 3. Program chart of the prediction framework: (a) main program, (b) ODE solver.

with the optimal value of s Pr equal to 0.8 (Zhang et al. 2014). Here, the subscript e
denotes the quantities at y = δe, and Tr is the recovery temperature. Also, Te is obtained
from the adiabatic wall temperature relation

Tr = Te

[
1 + r

γ − 1
2

Ma2
e

]
, (2.16)

with specific heat ratio γ = 1.4, recovery factor γ = 0.9 and boundary-layer-edge Mach
number Mae = 0.99 Ma∞.

2.5. Summary of the prediction framework
The prediction framework is summarised in figure 3. The inputs are free-stream Mach
number M∞, friction Reynolds number Reτ = δe/δν , δe and Tw/Tr , with optionally
T∞ when the Sutherland’s law is applied for the viscosity–temperature (μT) relation.
To numerically solve Π that satisfies the iteration tolerance (|ε|� 10−5), the Newton–
Raphson method is applied. The outputs include wall-normal profiles of U+, T/Tw, μ/μw

and ρ/ρw. Here, the convergence threshold 10−5 is demonstrated to provide converged
results, as discussed in Appendix B in detail. The number of iterations required to
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y+

100 100 100 100 100 101 102 103

M∞

(a)

(b)

Figure 4. Predicted and DNS results for (a) the mean streamwise velocity, and (b) the temperature, for adiabatic
boundary layers. The presented results include, from left to right: M∞ = 2.0 with Reτ = 204, M∞ = 2.0 with
Reτ = 1106, M∞ = 3.0 with Reτ = 502, M∞ = 4.0 with Reτ = 501 (Pirozzoli & Bernardini 2011); M∞ = 2.5
with Reτ = 505 (Zhang et al. 2018); M∞ = 2.28 with Reτ = 224 (Volpiani et al. 2018); M∞ = 2.0 with
Reτ = 444 (Cogo et al. 2022, 2023); M∞ = 0.5 with Reτ = 660, M∞ = 2.0 with Reτ = 701, M∞ = 4.0 with
Reτ = 709, M∞ = 6.0 with Reτ = 667, M∞ = 8.0 with Reτ = 626 (Zhang et al. 2022, 2024). The colours
(yellow to red) denote M∞ (low to high).

reach convergence, and the corresponding computational costs, are also summarised in
Appendix B, where the computational robustness and efficiency of the algorithm are
demonstrated. Typically, convergence is achieved within 6 iterations and 2.5 s even when
the convergence threshold is selected as 10−10, as measured on a desktop computer with
an Intel Core i7–8700 CPU @ 3.20 GHz and 32 GB of RAM, running MATLAB in
single-threaded mode on Windows 10.

In addition to the algorithm that uses the friction Reynolds number Reτ as input, we also
provide an alternative formulation based on the momentum-thickness Reynolds number
Reθ , as described in Appendix C, where the results indicate that the error distributions are
similar under both input conditions regarding the types of Reynolds numbers.

3. Results
The predicted results for the mean profiles in adiabatic and diabatic TBLs are depicted
in figures 4 and 5, respectively. The presented results include the TBLs with lowest and
highest values of M∞, Reτ and Tw/Tr , respectively, in each of the six DNS databases.
It is found that the predicted mean profiles for velocity and temperature both match well
with the DNS results for all the depicted cases. To quantify the overall discrepancy of
the velocity profile compared to the actual result, the prediction error E(U+) is defined
in (2.14), and E(T/Tw) is defined in the same way but replacing U+ with T/Tw. As in
figure 6(a,b), the prediction errors for mean velocity and temperature are lower than 4.0 %
and 6.0 % in all the tested cases. Here, the higher prediction error in mean temperature
should stem from two aspects. First, the wake scaling factor Π is determined according to
the self-consistency of the skin-friction coefficient calculated from the velocity profiles.
Thus the framework is intrinsically more reliable for the prediction of velocities than
that of temperature. Second, when determining the mean temperature profiles from the

1021 A30-8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
16

.7
3.

21
6.

15
4,

 o
n 

31
 O

ct
 2

02
5 

at
 2

1:
34

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

5.
10

69
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10699


Journal of Fluid Mechanics

30
DNS
Predicted
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T/
T w

U+
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y+
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M∞

(a)

(b)

Figure 5. Predicted and DNS results for (a) the mean streamwise velocity, and (b) the temperature, for
diabatic boundary layers. The presented results include, from left to right: M∞ = 5.84 with Tw/Tr = 0.25
and Reτ = 436, M∞ = 7.87 with Tw/Tr = 0.48 and Reτ = 467, M∞ = 13.64 with Tw/Tr = 0.18 and Reτ =
634 (Zhang et al. 2018); M∞ = 2.28 with Tw/Tr = 0.5 and Reτ = 512, M∞ = 2.28 with Tw/Tr = 1.9 and
Reτ = 100 (Volpiani et al. 2018); M∞ = 2.0 with Tw/Tr = 0.76 and Reτ = 1947, M∞ = 4.0 with Tw/Tr = 0.44
and Reτ = 444, M∞ = 6.0 with Tw/Tr = 0.35 and Reτ = 444 (Cogo et al. 2022, 2023); M∞ = 2.0 with
Tw/Tr = 0.5 and Reτ = 757, M∞ = 8.0 with Tw/Tr = 0.5 and Reτ = 683 (Zhang et al. 2022, 2024); M∞ = 4.0
with Tw/Tr = 0.25 and Reτ = 706, M∞ = 6.0 with Tw/Tr = 0.5 and Reτ = 779 (Zhao & Fu 2025).
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Figure 6. Prediction errors of (a) the mean velocity profile U+, (b) the mean temperature profile T/Tw ,
and (c) the skin-friction coefficient Cf , for all the cases; and (d) wall-heat-transfer coefficient Ch for
diabatic cases.

velocity, extra errors are introduced from the TV relation. This highlights the importance
of the TV relation for the prediction accuracy of the present framework. In Appendix D,
the sources of the prediction errors are further analysed by examining the performance
of the underlying scaling laws in the prediction framework under different values of M∞
and Tw/Tr . Further, the skin-friction coefficient Cf and wall-heat-transfer coefficient Ch
that quantify the wall shear and heat transfer, respectively, are investigated. Here, Ch
is defined by Ch = qw/(cpρ∞U∞(Tw − Tr )), where qw = −(cp/Pr) μw(∂T /∂y)w, with
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Figure 7. Prediction errors in (a) mean streamwise velocity and (b) temperature. The purple hexagons linked
with dotted lines denote the root mean square prediction errors all across the considered TBL cases for each
combination of mean-profile-prediction framework and velocity-transformation method.

Pr the Prandtl number, and cp the isobaric specific heat. The relative errors of Cf and Ch

that are defined as E(Cf ) = ∣∣(Cf,P/Cf,DNS) − 1
∣∣ and E(Ch) = ∣∣(Ch,P/Ch,DNS) − 1

∣∣ are
summarised in figure 6(c,d), respectively, where figure 6(d) includes only diabatic cases
with non-zero wall heat transfer. It is found that E(Cf ) and E(Ch) keep relatively low
values all across the considered cases, with root mean square values equal to 3.1 % and
2.9 %, respectively.

Finally, to test the universality of the proposed framework, HLPP (Hasan et al.
2023) and Volpiani (Volpiani et al. 2020), which also perform well in the inner layer,
are incorporated into such a framework to replace GFM for inner-layer scaling. The
corresponding results for E(U+) and E(T/Tw) are depicted in figure 7. The root mean
square prediction errors of all three prediction frameworks incorporating three inner-layer
scaling laws are summarised in table 1. Upon applying any of the three considered velocity
transformations, the prediction errors of the present framework for mean velocity and
temperature are below 5.0 % and 10.0 %, respectively, with average values less than 2.3 %
and 3.6 %. For comparison, the GFM, HLPP and Volpiani transformations are further
incorporated in the frameworks proposed by Kumar & Larsson (2022) and Hasan et al.
(2024). From figure 7, significant increases in the prediction errors are observed in the
results from these two frameworks. Since the scaling factors for the wake region in the
framework of Hasan et al. (2024) are fitted based on HLPP, this framework performs
significantly better when incorporating HLPP than when incorporating GFM or Volpiani.
However, even when using HLPP for inner-layer scaling, the prediction errors for mean
velocity and temperature profiles with Hasan et al. (2024) are still 13.52 % and 32.42 %
higher, respectively, than those obtained with the present framework incorporating HLPP,
as indicated by table 1. Hence the validity and universality of the proposed framework are
demonstrated.

In addition to the demonstrated validity and universality, it is also worth highlighting
another important aspect implied by universality, i.e. future extensibility. The accuracy of
the mean profiles predicted by the new framework is fundamentally determined by the
four scaling laws mentioned above. As elaborated in Appendix D, the primary sources of
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GFM HLPP Volpiani

Present U 2.26 % 2.25 % 2.25 %
T 2.69 % 3.58 % 3.51 %

Hasan et al. (2024) U 7.83 % (+246.00 %) 2.55 % (+13.52 %) 5.20 % (+130.74 %)
T 10.36 % (+284.67 %) 4.75 % (+32.42 %) 6.60 % (+88.30 %)

Kumar & Larsson (2022) U 4.38 % (+93.72 %) 6.62 % (+194.33 %) 3.44 % (+52.52 %)
T 6.98 % (+159.27 %) 8.53 % (+138.06 %) 6.12 % (+74.53 %)

Table 1. Comparisons of the root mean square prediction errors of the newly proposed framework and those
proposed by Kumar & Larsson (2022) and Hasan et al. (2024). The percentages outside parentheses are the
root mean square prediction errors, while those inside parentheses are the increasing ratios of the prediction
errors compared to those from the present framework.

the prediction error are attributed to the TV relation and the scaling law for Cf . With the
development of more advanced scaling laws in the future, the prediction accuracy of the
present framework is expected to be further improved.

4. Concluding remarks
In this study, a universal prediction framework for mean profiles in compressible TBL
is proposed, leveraging the established scaling laws regarding velocity transformation, Cf
and TV relations. The basic flow properties of Reynolds number, boundary layer thickness,
free-stream Mach number and wall-to-recovery ratio are the inputs of such a framework.
In the coupled solving procedure for the mean profile, the scalings of flow quantities in
the inner layer are reliably described by the velocity transformation (e.g. Volpiani et al.
2020; Griffin et al. 2021b; Hasan et al. 2023), while the mean quantities in the wake
region are well determined based on the self-consistency criterion regarding the general
scaling law for Cf (Zhao & Fu 2025). The temperature, on the other hand, is obtained
from the velocity with the TV relation (Duan & Martín 2011; Zhang et al. 2014). The
scaling laws in these three aspects are leveraged in the prediction framework to iteratively
refine the mean profiles until the results converge. The prediction framework is applied in
compressible TBLs with a fairly wide range of flow conditions, demonstrating 11.9 % to
74.0 % lower root mean square prediction errors in the velocity and temperature profiles
compared to existing mean-profile-prediction frameworks. Especially for all three velocity
transformation methods used for inner-layer scaling, the root mean square prediction errors
in the mean velocity and temperature profiles remain below 2.3 % and 3.6 %, respectively.
Such robust validity of the present framework with different velocity transformations
highlights its universality among the established and future scaling laws.

The four scaling laws underlying the proposed framework – i.e. inner-layer scaling,
outer-layer scaling, the general scaling law for skin-friction coefficient and TV relation –
are well established only for canonical equilibrium wall-bounded turbulence in the current
stage. Moreover, as comprehensively tested in Bai, Griffin & Fu (2022), the existing
velocity transformations do not deliver satisfying performance for non-canonical TBLs
under high-enthalpy or supercritical conditions. Such facts indicate that the framework
incorporating the currently established scaling laws is applicable only to canonical
zero-pressure-gradient TBLs. On the other hand, the application of the framework in non-
equilibrium flows would require the future development the scaling laws that are valid
under the non-canonical conditions. It should be noted that our proposed framework is
built upon the universal self-consistency criterion regarding the skin-friction coefficient
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rather than tied to any specific scaling, which is thus inherently general. Therefore, with
appropriate scaling laws for non-canonical TBLs developed in the future, the proposed
framework is expected to be naturally extended to such cases.

The proposed prediction framework is of importance in fundamental research and
engineering applications. For high-speed or high-Reynolds-number flows whose mean
properties are expensive to obtain from experiments or DNS, the proposed prediction
framework provides reliable predictions of their mean properties that are essential for
evaluating the skin friction and heat transfer. Besides, the predicted mean profiles can
also be applied for initialisation of the flow field and providing inflow conditions for the
numerical simulations of a compressible TBL, which is expected to shorten the recovery
distance and thus reduce the computational cost.
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Appendix A. Inverse GFM transformation
The forward GFM transformation (Griffin et al. 2021b) is expressed as

dU inc,+

dy∗ =
1

μ+
dU+

dy∗

1 + 1
μ+

dU+

dy∗ − μ+ dU+

dy+

, (A1)

which can be rearranged to

1
μ+

dU+

dy∗ =
(

1 + 1
μ+

dU+

dy∗ − μ+ dU+

dy+

)
dU inc,+

dy∗

= dU inc,+

dy∗ + 1
μ+

dU+

dy∗
dU inc,+

dy∗ − μ+ dU+

dy+
dU inc,+

dy∗ . (A2)

According to the chain rule, (A2) is further derived to be

1
μ+

dU+

dy∗ = dU inc,+

dy∗ + 1
μ+

dU+

dy∗
dU inc,+

dy∗ − μ+ dU+

dy+

(
dy+

dy∗
dy∗

dy+

)
dU inc,+

dy∗

= dU inc,+

dy∗ + 1
μ+

dU+

dy∗
dU inc,+

dy∗ − μ+ dU+

dy∗
dU inc,+

dy+ . (A3)

Equation (A3) is further rearranged to
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1
μ+

dU+

dy∗ − 1
μ+

dU+

dy∗
dU inc,+

dy∗ + μ+ dU+

dy∗
dU inc,+

dy+ = dU inc,+

dy∗

⇒ dU+

dy∗

(
1

μ+ − 1
μ+

dU inc,+

dy∗ + μ+ dU inc,+

dy+

)
= dU inc,+

dy∗

⇒ dU+

dy∗ =
dU inc,+

dy∗
1

μ+ − 1
μ+

dU inc,+

dy∗ + μ+ dU inc,+

dy+

. (A4)

The inverse GFM transformation is thereby obtained in (A4), by which the incompressible
velocity profile is transformed to its compressible counterpart with given temperature and
viscosity profiles.

Appendix B. Flow parameters and convergence test of the framework
The flow parameters of the 44 cases of compressible TBLs from six DNS databases
(Pirozzoli & Bernardini 2011; Zhang et al. 2018, 2022, 2024; Volpiani et al. 2018; Cogo
et al. 2022, 2023; Zhao & Fu 2025) are summarised in table 2, including information
for free-stream Mach number Ma∞ (0.5–13.64), wall-to-recovery ratio Tw/Tr (0.25–
1.9), friction Reynolds number Reτ (100–1947), boundary-layer-thickness-based Reynolds
number Reδe (10 216–1 343 863) and momentum-thickness-based Reynolds number Reθ

(877–41 172).
Meanwhile, the number of iterations and execution time required for our proposed

framework, incorporating GFM for inner-layer scaling, to reach the convergence thresholds
10−5 and 10−10 are also summarised in table 2. Here, the numbers of iterations refer to
those of the outer loop sketched in figure 3(a), which updates the wake scaling factor
Π at each step. In all the cases, the number of iterations is no more than 5 and 6 for
convergence thresholds 10−5 and 10−10, respectively, which indicates that the values of
Π quickly converge during the iterations, and thus demonstrates the robustness of the
algorithm. On the other hand, the total execution time is less than 2.5 seconds, with each
iteration taking less than 0.4 seconds, as measured on a desktop computer with an Intel
Core i7–8700 CPU @ 3.20 GHz and 32 GB of RAM, running MATLAB in single-
threaded mode on Windows 10. Such computational costs are negligible compared to those
of the DNS, which demonstrates the robustness and efficiency of the present framework.

To further test the impact of the convergence threshold on the prediction results, those
with 10−10 for both the outer loop and the ODE solver are compared with those with 10−5

as adopted in the main text. To quantify their difference, D(U+) is defined here with

D(U+) =
√

1
δe

∫ δe

0

(
U+

(10−10)
(η) − U+

(10−5)
(η)

)2
dη

/ (
1
δe

∫ δe

0
U+

(10−10)
(η) dη

)
, (B1)

where U+
(10−5)

and U+
(10−10)

are the predictions with thresholds 10−5 and 10−10,
respectively. We define D(T/Tw) in the same way as D(U+) by replacing U+ with T/Tw

in (B1). The values of D(U+) for all the tested cases are summarised in figure 8. For all
the cases, the differences in the predicted results with different convergence thresholds are
lower than 10−5, i.e. 0.001 %, which is negligible for the results. Thus the threshold 10−5

is considered to yield converged results.
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Reference Ma∞ Tw/Tr Reτ Reδe Reθ Number of Execution
iterations time (s)

Pirozzoli & Bernardini (2011) 2.0 1.0 204 10 216 877 4 (5) 0.4040 (0.6746)
2.0 1.0 251 13 012 1131 4 (5) 0.3933 (0.5937)
2.0 1.0 445 24 792 2090 3 (5) 0.3838 (0.6538)
2.0 1.0 580 33 702 2890 4 (5) 0.4754 (0.6849)
2.0 1.0 838 51 312 4437 4 (5) 0.6417 (0.9278)
2.0 1.0 893 55 170 4760 4 (5) 0.6813 (0.9061)
2.0 1.0 992 62 125 5347 3 (5) 0.5378 (0.8822)
2.0 1.0 1106 70 513 6045 3 (5) 0.5435 (0.9103)
3.0 1.0 403 44 654 3013 4 (5) 0.4715 (0.7186)
3.0 1.0 502 57 893 3955 4 (5) 0.5107 (0.7672)
4.0 1.0 395 83 623 4713 4 (5) 0.5308 (0.8153)
4.0 1.0 501 107 715 5943 4 (5) 0.5261 (0.8345)

Zhang et al. (2018) 2.50 1.0 510 36 944 2835 4 (4) 0.7286 (0.8225)
5.84 0.25 450 37 385 2121 5 (6) 1.1732 (1.2064)
5.86 0.76 453 242 029 9455 5 (6) 1.0748 (1.1391)
7.87 0.48 480 287 338 9714 5 (6) 1.1841 (1.2883)

13.64 0.18 646 701 454 14 408 5 (6) 1.9773 (2.2372)

Volpiani et al. (2018) 2.28 0.5 512 11 997 1251 3 (5) 0.5665 (1.0361)
2.28 1.0 395 24 328 1989 4 (5) 0.6641 (0.9320)
2.28 1.0 224 12 628 1047 4 (5) 0.5539 (0.7967)
2.28 1.9 100 13 440 868 4 (6) 0.5160 (0.9741)

Cogo et al. (2023) 2.0 0.76 1947 87 859 7954 4 (4) 1.2768 (1.4397)
2.0 0.69 444 13 399 1242 4 (5) 0.5288 (0.7561)
2.0 0.79 443 16 609 1486 4 (5) 0.5260 (0.7299)
2.0 0.90 443 19 971 1714 4 (5) 0.5357 (0.7433)
2.0 1.0 444 23 633 1981 4 (4) 0.5261 (0.6423)
4.0 0.44 444 27 001 1848 4 (5) 0.5780 (0.9278)
4.0 0.63 444 44 215 2749 4 (5) 0.5692 (0.8372)
4.0 0.81 444 63 551 3657 4 (5) 0.6367 (0.8536)

5.86 0.76 1947 996 276 41 172 4 (5) 0.1248 (1.7653)
6.0 0.35 444 56 610 2813 4 (5) 0.6430 (0.9729)
6.0 0.57 444 108 382 4841 5 (6) 0.7596 (1.1140)
6.0 0.78 444 166 073 6643 5 (6) 0.8024 (1.1388)
6.0 1.0 444 228 481 8401 5 (6) 0.7873 (1.1601)

Zhang et al. (2022, 2024) 0.5 1.0 660 16 335 1847 3 (5) 0.5619 (0.7109)
2.0 1.0 771 43 744 3790 4 (5) 0.7328 (0.9290)
2.0 0.5 757 14 865 1591 3 (5) 0.5727 (0.7762)
4.0 1.0 709 139 990 7653 4 (6) 0.8959 (0.1389)
6.0 1.0 667 592 097 21 797 5 (6) 1.0296 (1.3740)
8.0 1.0 626 1 343 863 35 628 5 (6) 1.1503 (1.8410)
8.0 0.5 683 524 923 17 858 5 (6) 1.1314 (1.4859)

Zhao & Fu (2025) 4.0 0.5 751 55 803 3716 4 (5) 0.8247 (0.9566)
4.0 0.25 706 19 231 1534 4 (5) 0.8241 (0.9387)
6.0 0.5 779 235 936 10 630 5 (6) 1.1367 (1.2571)

Table 2. Summary of flow parameters for the compressible TBLs in fully developed turbulent regions used
in this study. The rightmost two columns show the number of iterations and execution times required for our
framework with GFM-based inner-layer transformation to reach the convergence thresholds. Values outside
parentheses correspond to convergence thresholds 10−5 for both the outer loop and ODE solver; values inside
parentheses correspond to thresholds 10−10.
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Figure 8. Differences of the prediction results with convergence thresholds 10−5 and 10−10 for (a) mean
streamwise velocity and (b) mean temperature.

Inputs: M∞, Reθ, δe, Tw/Tr,
(T∞)

Generate grid for η ∈ [0, δe]

Initialization: U/Ue = η/δe, Reτ = 200, ψ = 1, n = 1

ODE solver

Update ψ

Outputs: U +(η), T(η)/Tw,

μ(η)/μw, ρ(η)/ρw

Calculate incompressible profiles Uinc,+ 
and Uinc,+ 

based on

(2.2) and (2.4), respectively

Calculate U+
inner

 
and U+

wake by inverse transformations

Calculate the mean velocity U+
(n) from (2.5) with ψ

n = n + 1

|ε| � 10−5?

Obtain T, μ and ρ profiles with TV, μT and ρT relations in

sequence; and accordingly U +
(0) when n = 1

inner wake 

Calculate E = |Reτ(n) − Reτ(n−1)|

Calculate y+ = (η/δe)Reτ(n−1) and y∗ = (μw/μ)�ρ/ρw y+

Calculate Reτ(n) = Reθ (μ
+
e/(ρ+

e U+
e)) (δe/θ), with θ = ∫

0

δe (ρU/(ρe Ue)) (1 − (U/Ue)) dη

Enter

Exit

(a) (b)

E � 10−5?

No

Yes

Yes

No

Figure 9. Program chart of the prediction framework with Reθ as input: (a) main program, (b) ODE solver.

Appendix C. Prediction framework with the momentum-thickness-based Reynolds
number as input
In the main text, the friction Reynolds number Reτ is utilised as an input of the prediction
framework, which is summarised in figure 3. In this appendix, the alternative algorithm
based on the momentum-thickness-based Reynolds number Reθ is presented, as in figure 9.
Such an algorithm differs slightly from that with Reτ as input. Here, the unknown Reτ is
updated at each step in the ODE solver until the results converge, while the core idea
of the proposed framework, i.e. self-consistency regarding the skin-friction coefficient,
is retained. Comparisons between the prediction results with Reτ and Reθ as inputs
are depicted in figure 10. Although minor differences exist, the results show that the
error distributions are similar under both input conditions. The consistency between the
results with Reθ and Reτ as inputs further demonstrates the universality of the proposed
framework.
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Figure 10. Prediction errors of (a,c) the mean velocity profile U+ and (b,d) the mean temperature profile
T/Tw that are obtained from inputs (a,b) Reτ and (c,d) Reθ .

Appendix D. Discussions on the sources of prediction error
The prediction error in our framework comes from the four underlying scaling laws, i.e.
the inner-layer velocity scaling, the outer-layer velocity scaling, the TV relation and the
general scaling law for the skin-friction coefficient (Cf ). In Griffin et al. (2021b), it is
demonstrated that the GFM transformation performs well for inner-layer velocity scaling
with a wide range of flow conditions for canonical wall-bounded turbulence. Thus it is
not considered to be the main source of prediction error in the canonical TBL cases tested
in this study. On the other hand, while the outer-layer scaling shapes the wake region, its
magnitude is determined by the scaling law for Cf . Thus the main sources of error are
considered to be the TV relation and the scaling law for Cf . To clarify the contributions
of each to the overall prediction error, we perform a priori analyses for each of these two
types of scaling laws.

To quantify the prediction error of the TV relation (Duan & Martín 2011; Zhang et al.
2012), the predicted mean temperature profiles T + = T/Tw based on the actual mean
velocity profiles from DNS with

T

Te
= Tw

Te
+ Tr − Tw

Te

[
(1 − sPr)

(
U

Ue

)2

+ sPr
(

U

Ue

)]
+ Te − Tr

Te

(
U

Ue

)2

(D1)

are compared with the mean temperature directly from the DNS, where the prediction
error E(T/Tw) is defined in the same way as in (2.14), identical to that used in the main
text. To investigate the impacts of M∞ and Tr/Tw on the performance of the established
TV relation, the values of E(T/Tw) are depicted in figures 11(a) and 12(a) versus Re∗

τ ,
where the symbols are coloured based on M∞ and Tr/Tw, respectively. It is found that
the prediction error of T/Tw notably increases as Re∗

τ increases. On the other hand, the
increases of M∞ and T/Tw also appear to enlarge the prediction error, although the sole
increase of each one of them does not show a unified effect. Considering that the increases
of M∞ or T/Tw at given T/Tw or M∞ both enlarge the value of Re∗

τ , we conclude that the
performance of the current TV relation is negatively affected by both free-stream Mach
number and wall heat transfer.
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Figure 11. Prediction errors of (a) the TV relation (Duan & Martín 2011; Zhang et al. 2012) for mean
temperature profile and (b) the general scaling law (Zhao & Fu 2025) for the skin-friction coefficient. The
colours of the scattered symbols (yellow to red) denote the free-stream Mach number.
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Figure 12. Prediction errors of (a) the TV relation (Duan & Martín 2011; Zhang et al. 2012) for mean
temperature profile and (b) the general scaling law (Zhao & Fu 2025) for the skin-friction coefficient. The
colours of the scattered symbols (cyan to magenta) denote − ln(Tw/Tr ). The only symbol coloured with red
denotes the hot-wall case from Volpiani et al. (2018) with M∞ = 2.28 and Tw/Tr = 1.9.

To analyse the performance of the general scaling law for Cf (Zhao & Fu 2025) as
defined in (2.8), the prediction error E(Cf ) is defined by

E(Cf ) =
∣∣∣∣∣
(

2
Cf,i

)1/2

−
(

1
κf

ln Reθ,i + C

)∣∣∣∣∣
/ (

2
Cf,i

)1/2

. (D2)

The values of E(Cf ) are shown in figures 11(b) and 12(b) as functions of Re∗
τ . As with

the mean temperature results, the data points are colour-coded according to M∞ and
Tw/Tr , respectively, to examine the effects of these parameters. In contrast to the TV
relation, the scaling law for Cf does not display a significant dependence on either M∞ or
Tw/Tr . For example, cases from Volpiani et al. (2018) with M∞ = 2.28 exhibit prediction
errors similar to those for M∞ = 8.0 from Zhang et al. (2024) – both approximately 5 %.
These results indicate that the performance of the established scaling law for Cf is not
substantially affected by the free-stream Mach number or wall heat transfer, while the
prediction results scatter within range approximately 5 % relative to the DNS results.

According to the above discussions, the sources of prediction error are identified into
two aspects. First, the increases of M∞, Tw/Tr and Re∗

τ enlarge the prediction errors of
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the TV relation. Second, the prediction errors from the scaling law of Cf are not notably
affected by M∞ and Tw/Tr , but distribute from 0 to approximately 5 %. The improvement
of the accuracy of the prediction framework relies on the further advancements of the TV
relation and the scaling law of Cf , which are anticipated to be developed in future work.
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