CHAPTER I

Machine Learning Algorithms and Measurement

Q. Chelsea Song, Ivan Hernandez, Hyun Joo Shin,
Meaghan M. Tracy, and Mengqiao Liu

MACHINE LEARNING AND ITS UNIQUE
CONTRIBUTION TO MEASUREMENT

Machine learning (ML) is a subfield of artificial intelligence that utilizes
data to optimize predictions and discover underlying patterns (e.g.,
Mitchell, 1997). Compared to traditional approaches for measuring
human attributes (e.g., classical testing theory, item response theory),
machine learning uniquely contributes to measurement by being better
suited to (1) utilize organic data and (2) capture complex relations.
Organic data are naturally occurring digital footprints that are collected
without reliance on a specific research design or measurement scale;
examples include online search records, Twitter posts, and location data
collected from fitness trackers (see Groves et al., 2011; Hickman, Bosch,
et al., 20225 Xu et al., 2020). Such data convey rich behavioral and
psychological traces embedded in everyday contexts, providing valuable
information for measurement. However, due to their complexity and
lack of structure, they were rarely utilized in psychological measurement —
until the introduction of machine learning. With machine learning, we
are now capable of analyzing a diverse and complex range of data, from
self- and other-reports to audiovisual footprints. To name a few, machine
learning is used to measure personality from interview videos (e.g.,
Hickman, Bosch, et al., 2022), stress and emotions from social media
posts (e.g., Wang et al., 2016), and interpersonal relationships from
proximity data obtained from wearable sensors (e.g., Matusik et al.,
2019). Such capability allows for increased accuracy in measurement
as well as ecological momentary assessment of human behavior and
cognition — enabling a more comprehensive measurement of human
psychology and behavior.

Machine learning can also capture complex relations (e.g., nonlinear
relations and interactions), potentially uncovering new insights into
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psychological phenomena. Recent works utilized machine learning to
study personality nuances at the facet and item levels, extending the
theoretical and practical understanding of personality traits (e.g., Putka
et al., 2018). Unlike traditional parametric methods, ML algorithms do
not rely on a priori specification of dimensions, allowing for a more flexible
examination of the data (e.g., Jiang et al., 2020). Finally, ML algorithms
are capable of handling high-dimensional data (where the number of
features is large relative to the sample size), enabling the integration of
multiple and complex data types while seeking to maintain the accuracy
and generalizability of measurement.

In general, machine learning contributes to measurement in two crucial
ways: conceptualization of a construct (via unsupervised learning) and
empirical keying (via supervised learning). Unsupervised learning aims to
find structure or patterns within data, and it could be used to explore the
structure of a construct (e.g., to identify depressive symptoms among a
wide variety of mental health symptoms). Similar to factor analysis in
classical testing theory, unsupervised learning contributes to the concep-
tualization of a construct, providing the foundation for measurement. Yet,
compared to traditional measurement methods, unsupervised learning has
the advantage of identifying patterns from a large set of unstructured data,
potentially contributing to broadened conceptual understandings.
Supervised learning aims to estimate certain psychological constructs
(e.g., ability) from a set of features (e.g., interview transcripts, event logs).
Supervised learning, when used in measurement, is effectively an empirical
keying method to convert features (or variables) into construct estimates —
similar to the empirical keys used in traditional measurement, yet with
improved accuracy, scalability, and consistency.” Together, machine learn-
ing contributes to measurement through conceptualization and empirical
keying.” In the sections below, we discuss common ML algorithms used
in measurement.

" A construct estimate could be continuous (e.g., ability level) as well as categorical (e.g., depressive
symptoms). When supervised learning is used to measure a continuous construct, the process is
called regression; when it is used to measure a categorical construct, the process is termed
classification.

* The use of unsupervised (contextualization) and supervised learning (empirical keying) ML
algorithms in measurement are guided by different approaches, which vary on the theory-data
spectrum. Hickman, Song and Woo (2022) provides a systematic discussion of these approaches,
which include (1) the theory-driven, hypothetico deductive approach, (2) the construct-driven, data-
flexible approach, and (3) the data-driven, construct-informing approach.
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1.1 Overview of Common ML Algorithms Used in Measurement

1.1.1  General Procedures of Using ML Algorithms in Measurement

A variety of ML algorithms can be used for measurement, yet their appli-
cations follow the same general procedure, which we describe in this section.

Suppose we want to measure the conscientiousness facets that are most
relevant to one’s performance in a certain job. We start by using unsu-
pervised learning to define the construct and determine its structure (i.e.,
conceptualize the construct). For example, we ask incumbents to describe
characteristics that help them successfully perform the job, and use unsu-
pervised learning (e.g., topic modeling) to identify the common themes
mentioned in the textual descriptions. Suppose the analysis identifies two
main themes — dutifulness and order.

Next, we use supervised learning to develop empirical keys for measuring
dutifulness and order. To do this, we begin by collecting data for model
training and evaluation. Supervised learning requires two types of data:
features and “ground truth.” Features are variables used to estimate the
construct. For instance, features for dutifulness and order include video
recordings of an individual completing a work sample, email correspondence
and log files related to certain work tasks, and human resource records on
attendance — they all convey behavioral and psychological traces that reflect
the construct. “Ground truth” is an operationalization of a construct pro-
vided by an existing, valid measure.” For instance, the “ground truth” of
dutifulness and order could include self-reported facet-level scores from the
NEO Personality Inventory-Revised (Costa & McCrae, 1992).

To train and evaluate an ML model, we split the dataset into two parts:
training and test sets. The training set is used for training the model (or
finding the empirical keys), and the test set is used to evaluate the
performance of the model.

During model training, we first select an ML algorithm, and use the
training data to find an optimal set of parameters that most accurately
estimates the “ground truth” from the features. Hyperparameter tuning
and cross-validation are used to find the optimal parameters, and the
resulting model is called the trained model. For example, suppose we want
to train an elastic net ML model to measure individuals” dutifulness and
order. The elastic net model includes a number of parameters (e.g., feature

3 The choice of “ground truth” is critical for construct validation. For a discussion of this issue, see
Braun and Kuljanin (2015) and Tay et al. (2020).
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weights) whose value could be adjusted to more accurately estimate the
construct. We use hyperparameter tuning and cross-validation to system-
atically review a range of potential values for the parameters and identify
the best set of values that provide the construct estimates most closely
resembling the “ground truth” (e.g., self-reported dutifulness and order).
These selected parameter values are used to specify the trained model.

Following model training, the next step is to evaluate the model using a
test set. For example, we use the trained model to estimate individuals’
dutifulness and order from their task completion log files and compare the
estimates with self-reported dutifulness and order (the “ground truth”).
If the model estimates approximate the “ground truth” well, the model
passes the evaluation. The final model could be used to measure dutiful-
ness and order in new samples.

In the following section, we describe the common ML algorithms used
for measurement. The algorithms, as well as their example applications, are
summarized in Table 1.1.

1.1.2 Unsupervised Learning Algorithms

r.1.2.1  Clustering Methods
Clustering methods are a type of unsupervised learning that seeks to
discover distinct groupings (e.g., types of symptoms, groups of people).
Clustering has been used to conceptualize collaborative problem-solving
skills from log data of online simulation tasks (Polyak et al., 2017) and
identify depressive symptoms from self-rated and clinician-rated depres-
sion scale scores (Chekroud et al., 2017).

k-Means Clustering: #-means clustering is one of the earliest and most
commonly used clustering algorithms (MacQueen, 1967; Steinhaus,
1956). It first calculates the “mean” of % random sets of observations and
uses them to determine £ initial center points. Then, for each initial center
point, the algorithm identifies a cluster of data that is closest to the center
point and updates the location of the center point based on the mean of
the new cluster. The algorithm iterates through these steps until the total
within-cluster variance is minimized and the center points no longer
change substantially (Hastie et al., 2009).

1.1.2.2  Topic Modeling

Topic modeling is used to find recurring semantic patterns among texts.
One of the most popular topic modeling approaches is latent
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Table 1.1 Description of common ML algorithms and their example measurement applications

Brief description

Algorithms

Example

Resources

Unsupervised learning

Calculates the “mean” of % random sets of
data to determine # initial center points.
For each initial center, the algorithm
identifies a cluster of data that is closest to
the center point, and repeatedly updates
the location of the center point until the
total within-cluster variance is minimized
and the center points are stable.

Identifies themes within documents.

A common topic modeling algorithm,
LDA, uses the distribution of the
keywords in the documents.

k-means clustering

Topic modeling

Supervised learning

Linear regression
OLS regression OLS regression models the linear relation
between the features and the outcomes of
interest by minimizing the squared
differences between the estimated and
observed outcomes (i.e., the residuals) in
the training data.
Regularization
Ridge Ridge regression aims to reduce model overfit
by shrinking feature weights roward zero
without fully eliminating them through
regularization.

Classify collaborative problem-
solving skills of individuals
from log files of online
simulation (Polyak et al.,
2017)

Identify facets of job satisfaction
from textual reviews (Jung &
Suh, 2019)

Measure dark side of personality
from social media status

updates (Akhtar et al., 2018)

Measure Big Five personality
traits from Facebook profile
status messages (Park et al.,
2015)

Steinhaus (1956)

Blei et al. (2003)

Kenney and Keeping (1962)

Hoerl and Kennard (1970)
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Table 1.1 (cont.)

Algorithms Brief description

Example

Resources

LASSO Similar to ridge regression, however, LASSO
allows certain feature weights to be shrunk
to zero, enabling both feature selection and
regularization (shrinking foward zero).

Elastic net Improves upon ridge and LASSO regression
by including both the penalty terms so
that feature weights are shrunk both
toward zero (regularization) and to zero
(feature selection) and allows adjustment
of the strength of regularization and
feature selection.

Nearest neighbor

A-NN Classifies or estimates the value of an
unknown observation through its nearest
neighbors whose values are known. The
final classification or estimate is
determined by majority vote or through
averaging.

Tree-based models

Decision trees Partitions (or splits) data using if-then

decision rules determined by the features.
The feature that accounts for the most
unexplained variance is introduced first,
followed by the next most discriminatory
feature, and so on.

Measure HEXACO personality
from Facebook activities
(Youyou et al., 2015)

Measure Big Five personality
from automated video
interviews (Hickman, Bosch,
et al., 2022)

Measure likelihood of a user
spreading disinformation on
social media by comparing
their writing style to other
known disinformation
spreaders (Cardaioli et al.,
2020)

Measure leadership style
preference using educational
degree, major, gender, and
marital status (Salehzadeh,
2017)

Tibshirani (1996)

Zou and Hastie (2005)

Fix and Hodges (1951)

Quinlan (1986)
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Bagged trees and
random forest

Gradient-boosted
trees

Support vector
machine

Neural network

Bagged trees: trains multiple decision trees
with bootstrapped samples from the
training data.

Random forest: trains multiple decision trees
with bootstrapped samples, but the
features of each decision tree are
introduced at random.

For both algorithms, the trained trees are
separately used to estimate construct
scores, and the final construct estimate is
the average across (regression) or majority
vote of (classification) the decision trees
estimates.

Trains decision trees that improve upon each
other by learning from the previous
decision tree. Stochastic gradient-boosted
trees use random subsets from the training
data to improve estimation.

Estimates construct scores from linear and
nonlinear relations by finding the optimal
hyperplane (or threshold) that denotes the
separation between data of different classes
(classification) or the best approximation
of the relation between outcomes and
features within a given margin of error
(regression).

Consists of complex interconnected
structures that allow discovery of patterns
and underlying relations in a set of data.

Measure job performance from Breiman (1996)
performance appraisal Breiman (2001)
narratives from supervisors
(Speer, 2020)

Measure suicide intention from
individuals’ health care
registry data (Gradus et al.,

2020)

Measure the degree that a job Friedman (2001, 2002)
applicant taking a personality
assessment was inflating their
true personality trait scores
(Calanna et al., 2020)
Measure emotion from Drucker et al. (1996)
electroencephalography
signals (Hassanien et al.,
2018)

Measure psychopathy from Hanson and Salamon (1990)
tweets (Ahmad et al., 2020)
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Dirichlet allocation (LDA; Blei et al., 2003), which aims to find the
thematic structure within text documents. LDA identifies the theme of
the documents based on the distribution of the keywords included in the
documents (Chaney & Blei, 2012). Other topic modeling approaches
include structural topic models (Roberts et al., 2014), which take into
account covariates when creating topics; hierarchical LDA (Blei et al.,
2003), which identifies topic hierarchies; and Top2vec (Angelov, 2020),
which converts each of the /N documents into a series of X numbers
representing their standing on a variety of underlying dimensions (i.e., a
document embedding, e.g., Doc2Vec, Universal Sentence Encoder,
BERT) and applies clustering methods to the /V x K data matrix.

Example Applications of Unsupervised Learning Algorithms

Clustering: Polyak et al. (2017) used k-means clustering to identify pro-
files of collaborative problem-solving skills exhibited in an online simula-
tion game scenario. In the online game, players collaborate with an
automated virtual agent to complete various missions (e.g., solve a pass-
code to unlock a door, discover a sequence of power transfer steps). The
players engage in dialogues with the virtual agent, where in each dialogue,
the virtual agent provides a prompt, and the player reacts by choosing a
response among multiple options. The player’s response choices, as well as
other behavior data (e.g., number of mouse clicks, keystrokes, dialog
selection timing) are recorded in a log file — this log file provides organic
data with behavioral traces that reflect the player’s collaborative problem-
solving skills. The researchers conducted 4-means clustering analysis on the
log files and identified different profiles of collaborative problem-solving
skills among players. These profiles allow researchers to further develop
measures (e.g., games, response options) that better capture a comprehen-
sive range of collaborative problem-solving skills.

In general, compared to traditional approaches where researchers manually
code qualitative data to distill and categorize patterns (e.g., types of collabo-
rative problem-solving skills), unsupervised learning methods offer more
efficiency and scalability. This is especially important for measuring and
studying collaborative problem-solving skills under new contexts, such as
during remote and hybrid work. For example, researchers could analyze Slack
(the online messaging application) data with the clustering method demon-
strated in Polyak et al. (2017) to study how coworkers are collaborating with
each other to solve problems during in-person and remote work settings.

Topic Modeling: Jung and Suh (2019) used LDA to identify facets of
job satisfaction from 35,063 textual employee reviews posted on an online
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job site (that capture employees’ organic description of their jobs). The
algorithm identified 30 different facets of job satisfaction, ranging from
satisfaction toward organizational culture to work intensity and efficacy.
Among these facets, some (e.g., satisfaction toward supervisor and pay)
align with existing theory, while others (e.g., satisfaction toward project,
interfirm relationship) provide new insights to existing literature. Topic
modeling contributed to improved understanding and measurement of
employee job satisfaction.

1.1.3 Supervised Learning Algorithms

1.1.3.1 Linear Regression

Linear regression models a linear relation between the features and the
outcomes of interest. For example, in simple linear regression, feature X
and outcome Y are modeled as: y = B, + B, X, where B, represents the
intercept of the regression line (i.e., the outcome value when the features
are held constant at 0), and B, represents the slope of the regression line
(i.e., feature weights, or how the outcome changes given one unit
increase in a feature). Multiple linear regression consists of multiple
features and one outcome and is expressed as: y =B, + B, X,+
BX, +...4+BX,

Ordinary Least Squares (OLS) Regression: OLS regression (Kenney
& Keeping, 1962) aims to minimize the squared differences between the
estimated and observed outcomes in the training data. This squared
difference is termed the least squares error and is calculated as:
Zﬁ\; (yl. —)’/})2, where 171 is the estimated outcome obtained using the
regression model and y, is the observed outcome value. OLS regression
aims to find a set of intercept and feature weights that minimize the cost
function, and the resulting model provides the best linear representation of
the relation between the feature and the outcome.

Although linear regression models are simple and commonly used for
measurement, they are prone to model overfit (and high bias, as we discuss
later). That is, linear regression models have the tendency to capture
uniqueness in the training data, resulting in inaccuracy when they are
used for measurement in new data or a new sample. For example, in
Figure 1.1, Panel 1 shows a regression line (dashed line) that is trained with
the training data (triangles). Although the regression line fits the training
data well, as shown in Panel 2, it does not accurately model the test set
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(circles), suggesting that the regression model overfitted to the training
data and will not perform well in a new sample.

1.1.3.2 Regularization

Regularization is a family of regression algorithms introduced to overcome
the risk of model overfit. Figure 1.1, Panel 3 shows the regularized
regression line (solid line). Compared to the overfitted linear regression
line (dashed line), the regularized line fits well with both the training and
test sets, resulting in higher estimation accuracy in the test set.

This improvement in regularization model accuracy is related to model
bias and variance. Model bias refers to the systematic difference between
the true population estimate and the model estimate; and variance refers to
the variation in model accuracy when the model is applied to different sets
of data. The combination of bias and variance determines the overall
accuracy of a model: a model has higher accuracy when both the bias
and variance are small. When training a model, we aim to lower both bias
and variance. However, it is difficult to minimize both bias and variance in
a model (a problem known as “bias-variance tradeoff”; Hastie et al., 2009).
Regularization algorithms aim to increase estimation accuracy by striking
an optimal balance between bias and variance. This is done through the
regularization cost function, which includes the OLS least squares error
term, a penalty term to regularize bias (and thus variance), and a tuning
parameter to find an optimal balance between bias and variance.
Regularization includes ridge (Hoerl & Kennard, 1970), LASSO
(Tibshirani, 1996), LARS (Efron et al., 2004), and elastic net regression
(Zou & Hastie, 2005).

Ridge Regression: Model overfit could be caused by multicollinearity
(or redundancy among features) and large feature weights. Ridge regression
aims to reduce model overfit by shrinking (regularizing) the feature
weights (or regression coeflicients) toward zero without fully eliminating
them (Hoerl & Kennard, 1970). The ridge regression cost function is:

N ~\2 M , . .
Doy (yi - )’i) +7lzjzow; where w is the feature weight for each j
feature and 2 is the tuning parameter that determines the regularization
strength. The cost function includes a least squares error term,

Zﬁ\il (yl —j;)z, and a ridge regression penalty term, Z]Aiow]z The pen-
alty term adds to the overall error of the model, especially for large feature
weights, and the strength of the regularization is adjusted by A. As shown

in Figure 1.2, the ridge regression penalty term (represented by the bolded
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circle border) constrains the feature weights to a limited solution space
(represented by the gray-shaded circle area). The intersection between the
solution space (gray-shaded circle) and the least squares error (ellipse)
provides a solution that minimizes the ridge regression cost function and
strikes an optimal balance between bias and variance.

LASSO Regression: LASSO regression, similar to ridge regression, also
aims to reduce model overfit; however, unlike ridge regression, LASSO
allows certain feature weights to be shrunk #o zero, enabling both feature
selection and regularization (shnnkmg toward ze10; Tibshirani, 1996). The

LASSO cost function is: 3 (y,—7)" + M i—o|wj|> where the penalty

term is }w ‘ Compared to the ridge penalty term

i—ot; (sum of
squared coefﬁc1ents) the LASSO penalty term is the sum of squared
absolute coefhicients, which allows the feature weights to be zero.
As shown in Figure 1.2, the intersection between the solution space
constrained by the LASSO penalty term (represented by the gray-shaded
diamond) and the least squares error (ellipse) is where the feature weight,
[3,, is zero, effectively dropping that feature.

Elastic Net Regression: Elastic net regression combines the characteris-

tics of both ridge and LASSO regressions (Zou & Hastie, 2005). The elastic

net cost function is: SN U-7) +7l[a jﬂio‘wj} + (1 — a)zjﬂiowf ,

and the penalty term consists of both the ridge and LASSO penalty terms,
where a determines how much emphasis each term receives. The optimal a
value could be specified by the user or found via hyperparameter tuning.

1.1.3.3 Nearest Neighbor Algorithms

Nearest neighbor algorithms are memory-based methods where an
unknown point is classified or estimated using information from other
data points close to it (i.e., the nearest neighbors). Nearest neighbor
algorithms include A-nearest neighbors (k-NN), approximate nearest
neighbors (Arya et al., 1998), and t-distributed stochastic neighbor
embedding (Van der Maaten & Hinton, 2008), among which £-NN is
the most widely used.

k-Nearest Neighbors: #-NN could be used for both classification and
regression. When used for classification, #-NN classifies an unknown
observation through its “nearest neighbor” whose outcomes are known
(Altman, 1992; Fix & Hodges, 1951). k represents the number of nearest
neighbors used to classify the unknown observation. As shown in
Figure 1.3, Example 1 (top panel), when # = 1, we label the unknown
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Figure 1.2 Comparison among three regularization algorithms: ridge, LASSO, elastic net
Note. This figure provides a comparison among the three common regularization algorithms. For each algorithm, the penalty term (represented by
the black bolded border) constrains the feature weights to a limited solution space (represented by the gray-shaded area). The intersection between
the solution space (gray-shaded area) and the least squares error (ellipse) provides a solution that minimizes the cost function of each algorithm

(ridge, LASSO, elastic net).
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Note. /NN uses the nearest neighbors to determine how to classify the unknown value (represented by the star). If # = 1 (Example 1), the unknown is
determined by the data point that is closest to it. As the nearest neighbor is a triangle, the unknown value is also labeled a triangle. If # = 5 (Example 2),
the classification of the unknown is determined by the five data points closest to it. As four out of the five nearest neighbors are triangles (while one is
a circle), the unknown data point is classified as a triangle.
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(represented by the star) based on the closest data point, which is a triangle.
Thus, the unknown value is also classified as a triangle. If # > 1, the
classification of the unknown observation is determined by a majority vote
from the 4 nearest neighbors. As shown in Figure 1.3, Example 2 (bottom
panel), if # = 5, we first identify five nearest neighbors of the unknown
point (star). The five nearest neighbors include four triangles and one circle.
Thus, through majority vote, the unknown value is labeled as a triangle. For
regression models, the predicted outcome of an unknown observation is a
weighted average, where the weights are the inverse distance between each
neighbor and the unknown observation.

k-NN has a number of advantages. It does not assume linearity, and
thus could be used to model different relations flexibly. It is also a
memory-based model where no pretraining of the algorithm is required
(i.e., “lazy learning”; Bontempi et al., 1999). However, #-NN requires
observations from all possible feature combinations, and thus is susceptible
to the “curse of dimensionality” (Kouiroukidis & Evangelidis, 2011) and
requires high computational power (Kotsiantis, 2007). It also assumes all
features are equally important, unlike regularization that allows for feature
selection or regularization of less important features.

1.1.3.4 Tree-Based Models

Tree-based models are recursive partitioning methods that are
nonparametric and highly flexible. The most common tree-based models
include decision trees (Morgan & Sonquist, 1963), bagged trees (Breiman,
1996), random forests (Breiman, 2001), and gradient-boosted trees
(Friedman, 2001).

Decision Trees: Decision trees are the simplest of the tree-based
algorithms and use if-then decision rules (Quinlan, 1986). The algorithm
begins by selecting features that account for the most unexplained variance
in the data. It then partitions the data based on different values of the
features, and this process is repeated until all the observations are classified
or estimated. For classification trees, the outcome is the probability (%) of
an observation belonging to a certain group; for regression trees, the
outcome is a continuous estimate (James et al., 2013). Figure 1.4 provides
an example of a decision tree for classification. In the example, Feature 1 is
first used to partition the data. The data points that meet Feature 1’s cutoff
is classified as “A,” and the rest is further partitioned using Feature 2. The
remaining features are subsequently introduced to the model, and the
process is repeated until the classification is complete.
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Figure 1.4 Illustration of decision tree

Note. llustrates a classification tree. Data is split based on the cutoffs (or decision rules)
determined by the features. For example, Feature 1 (in light gray) is the feature that accounts for
the most unexplained variance in the data and therefore is introduced to the model first. The data

points whose Feature 1 value is greater than the 5.8 cutoff (as indicated by the dashed line) are
classified as “A” and the rest is further partitioned using Feature 2. The data points whose Feature
2 value is greater than the 4.5 cutoff (as indicated by the dotted line) are classified as “B.” The rest
of the data points are classified as “C.”

Decision trees allow for intuitive interpretation and visualization
(as demonstrated in Figure 1.4). They are also flexible in detecting non-
linearity and interactions between features and outcomes (Quinlan, 1986).
However, decision trees are limited in that they exhibit high variance (and
are thus susceptible to model overfit): the effect of an error in a decision
rule affects all of the following splits. Because of this, a second independent
sample of observations is often used to prune the decision rules to reduce
overfitting and high variance in estimations (Hastie et al., 2009; Myles
et al., 2004).

Bagged Trees: Bagged trees address the limitations of decision trees by
aggregating the results of multiple decision trees to find one stable out-
come (i.e., lower variance; Breiman, 1996). First, the algorithm trains a
number of decision trees using independent bootstrapped samples of the
training data. These trained trees are then used to estimate the constructs
in the test data, and the individual estimates are aggregated to form the
final construct estimate. We demonstrate this process in Figure 1.5. First,
decision trees are trained using bootstrapped samples of the training data.
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Figure 1.5 Illustration of bagged trees
Note. The aim in this example is to classify or estimate the unknown data point (the star). y is
the model estimate and  is the number of decision trees. The light gray area presents the model
training process, and the dark gray area presents the process of using the model to estimate
constructs in the test set. First, decision trees are trained using bootstrapped samples of the
training data. These trained trees are then used to estimate the construct scores in the test set
(V1> ¥» -+ » ¥m)- The resulting construct estimates from individual decision trees are then aggregated
to form the final construct estimate (j). For regression, the final construct estimate is the average
across the decision trees; for classification, the final construct estimate is a majority vote from
the classification outcomes of each tree.

These trained trees are then used to estimate the construct in the test set
(> Y2 - > Y indicated by the star). The resulting construct estimates
from the individual decision trees are then aggregated to form the final
construct estimate (y). For regression, the final construct estimate is the
average across the decision trees; for classification, the final construct
estimate is a majority vote from the classification outcomes of each tree.

Bagged trees are more recommended than decision trees as they account
for the latter’s tendency to overfit. However, bagged trees are not without
limitations. For example, in bagged trees, the estimated values of the
individual decision trees tend to be highly correlated with each other,
lacking the diversity needed to reflect the full outcome space and, there-
fore, may result in low estimation accuracy (Quinlan, 1996).

Random Forests: Random forests address the limitations of bagged
trees through feature sampling (Breiman, 2001). Similar to bagged trees,
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Figure 1.6 Illustration of random forests

Note. y is the model estimate and 2 is the number of decision trees. Similar to our example of
bagged trees (Figure 1.5), the aim is to classify or estimate the unknown data point (the white star).
The light gray area presents the model training process, and the dark gray area presents the process

of using the model to estimate constructs in the test set. First, decision trees are trained using
bootstrapped samples of the training data, where the features included in the trees are randomly selected.
These trained trees are then used to estimate the construct scores in the test set (y;, 3, - . ., ¥,,). The

resulting construct estimates from individual decision trees are then aggregated to form the final
construct estimate (j). For regression, the final construct estimate is the average across the decision

trees; for classification, the final construct estimate is a majority vote from the classification
outcomes of each tree.

in random forests, multiple decision trees are trained using independent
bootstrapped samples, and the trained trees are then used to obtain
estimates. The final construct estimates are obtained by aggregating the
estimates from the individual decision trees. However, unlike bagged trees
that use all features to train the trees, random forests randomly choose the
features to train each tree (i.e., feature sampling). By randomly sampling
the features, the estimates from the decision trees are less likely to be
correlated with each other and thus are more reflective of the outcome
space, contributing to improved estimation accuracy (Breiman, 2001).
Figure 1.6 illustrates a random forest. Compared to bagged trees
(Figure 1.5), in random forests, each decision tree is fitted onto boot-
strapped samples of the training data using random features, as shown in
Figure 1.6, where the various features (boxes) are randomly presented
across the decision trees.
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Gradient-Boosted Trees: While the bagged trees and random forests
independently train decision trees, in gradient-boosted trees, the subse-
quent decision trees improve upon the previous decision trees, further
increasing estimation accuracy. The algorithm first trains a decision tree
using the full training data. The residuals, or the unexplained variance,
from the first tree are then used to train a second decision tree, and this
process is repeated until the residuals become smaller than a user-specified
threshold. Figure 1.7 shows an illustration of gradient-boosted trees.

Stochastic Gradient-Boosted Trees: Gradient-boosted trees train deci-
sion trees using the full training data, and thus could be computationally
intense and sensitive to local minima. To address this issue, scholastic
gradient-boosted trees (SGBT) randomly sample subsets of the training set
to train the individual trees. Each new tree is trained based on previous
trees to reduce residuals and improve measurement, especially in areas not
well estimated in previous samples. Compared to gradient-boosted trees,
SGBT tends to provide more stable and accurate estimates, and is com-
putationally more efficient (Hastie et al., 2009).

1.1.3.5 Support Vector Machines

Support vector machines (SVM) (Drucker et al., 1996) offers a robust
method for predicting outcomes with nonlinear relation to the features.
SVM does so by using kernel functions to apply mathematical trans-
formations of the feature space to model complex relations. SVM also
relies only on a small but critical subset of the training data to guide
classification and estimation, and thus is less influenced by outliers.
Thus, when there are many features compared to the sample size (i.e.,
high p to # ratio), SVM tends to perform better compared to regression
and tree-based approaches (Kotsiantis, 2007). Finally, SVM uses an
“error tube” to allow for a certain level of error in classification and
estimation, making it possible to make classification or estimation in
cases of complex relations.

1.1.3.6 Neural Networks

Neural networks are inspired by the way the human brain operates. Similar
to the way neurons propagate signals, neural networks consist of complex
interconnected structures that allow them to discover patterns and recog-
nize underlying relations within a set of data (Hanson & Salamon, 1990).
In addition, unlike other ML algorithms that require the data to be
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(a) Perceptron Network (b) Feedforward Network

Input Layer Output Layer Input Layer Hidden Layer = Output Layer

Figure 1.8 Illustration of neural networks: a perceptron neural network and a
feedforward network with a single hidden layer
Note. Panel (a) represents the perceptron network, where multiple features connect to one output
layer. X represents the input variables (or features). B represents a weight value which the value of
the connected variable is multiplied by to obtain the output passed to the receiving node. This
weight is adjusted during training to minimize prediction error. j represents the estimated
construct score which is computed from multiplying, summing, and transforming the values of
the connected input variables. Panel (b) represents the feedforward network which adds the
additional “hidden layer” between the input variables and the estimate. In this panel, A represents
the value computed from multiplying, summing, and transforming the values of the
connected input variables.

distilled into important features, neural networks perform feature engi-
neering within the network. These properties make neural networks adept
at analyzing unstructured data with ill-defined features, including text,
images, and audio.

The simplest form of a neural network is called a perceptron.
Perceptrons have a series of input nodes (the features) that connect to a
single output node. Figure 1.8a presents a perceptron with two input
nodes that correspond to two features: x, and x,. It also includes a constant
node; if the constant is 1 (as shown in Figure 1.8a), the perceptron is
mathematically equivalent to a linear regression. Each connection has a
specific weight (e.g., Bo, By, B, in Figure 1.8a) that the neural network can
modify to better estimate the outcome.

Neural networks typically consist of multiple perceptrons, allowing
them to model complex relations. Perceptrons whose outputs are inputs
into another perceptron are called “feedforward neural networks” (Bengio,
2009). As demonstrated in Figure 1.8b, feedforward neural networks add
an additional layer of neurons between the input and the output, called the
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hidden layer (in Figure 1.8b, the two nodes in the hidden layer are labeled
“H,” and “H,”). The hidden layers allow feedforward networks to model
complex relations between inputs and outputs (Lu et al., 2017). Networks
with many hidden layers are termed “deep neural networks.”

The goal of training a neural network is to adjust the weight values in
the network so that the transformation of the input features is as close to
the desired output as possible. Neural networks are trained in an iterative
process. Rather than sending all of the training data at once through the
network, the network works on a subset of the training data in each
iteration. In each iteration, the weights obtained from the previous
iterations are used to estimate outputs in the current subset, and the
estimated outputs are compared to the “ground truth.” Based on how
well the estimated outputs approximated the “ground truth” (i.e., the
magnitude of the error), the weights are further updated. After being
provided all of the data, the network can revisit the dataset, and continue
to adjust its weights, until the errors reach a certain acceptable threshold.
This process of using errors in previous weights to inform further weight
updates is called “backpropagation.” An example of backpropagation is
shown in Figure 1.9. The goal of the network is to identify whether the
9 pixel X 9 pixel image (on the left of the figure) is a diamond or a
square. The network includes 81 input features (see “Input Layer”),
representing the color (gray vs. black) of the 81 pixels in the image.
First, the network generates a set of weights through forward propaga-
tion. The network uses this set of weights to identify the image, and the
output suggests a 20% probability that the image is a diamond, and an
80% probability that the image is a square. Because the image is a
diamond (i.e., the ground truth is 100% probability that the image is a
diamond and 0% probability that the image is a square), the current
outputs are inaccurate. To improve the accuracy, the network revisits the
dataset and continues to adjust its weights through backpropagation.
Backpropagation allows the network to eventually approximate the data
with high accuracy (Lu et al., 2017).

Neural networks can easily overfit to the training data, especially if the
model is overly complex. One can mitigate this problem by limiting the
number of times (i.e., epochs) the training data passes through the neural
network when finding weights or using ridge or LASSO to regularize the
weights. Some analysts mitigate overfitting through “dropout,” or tempo-
rarily removing a random proportion of nodes. Additionally, analysts can
control the learning rate so that changes to the weights are gradual and less
influenced by individual data points.
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Figure 1.9 Illustration of neural networks: backpropagation
Note. When estimating the shape within the far-left image, data are input into the input layer (pixels) and forward propagated through the hidden layers
and to the output. As seen in the output layer, the neural network inaccurately estimated that the shape is likely a square (0.80). To correct this error,
the network updates the weights (white circles) in the hidden layers to through back propagation (indicated by the bolded arrows). This process is
repeated until the correct shape is estimated the majority of the time.
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Example Applications of Supervised Learning Algorithms

The applications of most supervised learning algorithms follow the same
procedures described in Section 1.1.1 “General Procedures of Using ML
Algorithms in Measurement” (e.g., identify “ground truth,” train model,
test model). We now briefly describe a number of example applications.

Elastic Net Regression: Hickman, Bosch, et al. (2022) used elastic net
regression to measure Big Five personality traits from automated video
interviews. The researchers separately trained two kinds of elastic net
models, each treating self-reported and interviewer-reported Big Five
personality traits as the “ground truth.” To train the models, the
researchers first extracted verbal, paraverbal, and nonverbal behavior indi-
cators from video clips of individuals responding to interview questions.
The behavior indicators were converted to numerical vectors, and elastic
net models were trained to obtain personality estimates that approximate
the “ground truth.”

Random Forest: Speer (2020) used random forest to measure job
performance from performance appraisal narratives. Performance appraisal
narratives are textual descriptions of employee job performance, typically
provided by supervisors; they provide organic descriptions of employees’
performance, as illustrated by the supervisor. The researchers first used
natural language processing techniques (e.g., #-gram scoring) to convert
texts into numerical vectors, and then used random forest to obtain job
performance estimates from the numerical vectors. Results showed that the
job performance estimates converged with human ratings of the textual
narratives and demonstrated validity across different samples.

Neural Networks: Ahmad et al. (2020) used deep neural networks to
measure personality dark triads from tweets (from Twitter). Three psychi-
atrists annotated each tweet in the training set to “dark triad” (e.g.,
psychopath) and “light triad” (e.g., nonpsychopath); these annotations
served as the “ground truth” for model training. To train the neural
network model, the researchers first used natural language processing
techniques (e.g., work embedding) to preprocess the textual tweets into
numeric vectors, and then trained neural network models to obtain
personality dark-triad estimates from the numeric vectors.

1.2 Recommendations for Using ML Algorithms in Measurement

A number of factors could influence our choice of ML algorithms for
measurement. These factors include: (1) the balance between
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interpretability and estimation accuracy, (2) the missingness present in the
training data, and (3) the computational demands of the models.

1.2.1 Interpretability versus Estimation Accuracy

ML models differ in their interpretability: for some models, it is easy to
understand how the inputs are transformed into an output value, while that
is not the case for others. Models whose learned relations are easy to infer
and describe are called “white-box” models. Models that generate complex
rules more difficult to understand are referred to as “black-box™* models.

1.2.1.1  White-Box Models

Overview of White-Box Models: Linear regression is an example of a
“white-box” model, where the intercept and regression coefhicients clearly
illustrate the relation between the features and the estimates and provide
sufficient information to reproduce the estimates. In a regression model,
the intercept represents the expected value of the outcome, when the
features are 0. The regression coeflicients of a feature represent the amount
of expected change in the outcome per one-unit increase in that feature,
holding all other features constant. Decision trees are also considered
white-box models because the process of obtaining an outcome from the
features is expressed using intuitive declarative rules (e.g., whether a feature
value is greater or smaller than a cutoff). Comprehension of these rules
does not require sophisticated mathematical training, making the model
clear and easy to interpret.

Benefits of White-Box Models: The benefits to using white-box
models include (1) theoretical development, (2) defensibility, and (3)
model evaluation. White-box models provide clear processes that illustrate
the relations among variables, which could help derive parsimonious
explanations and thus improve the theoretical understanding of the vari-
ables. Additionally, white-box models offer clarity on the features used, the
relative importance of the features, and the relation between the feature
and the outcome, allowing one to defend the conclusions of the model.
Finally, white-box models are intuitive, facilitating the evaluation of the
model coefficients to what would be expected by theory, thus promoting
greater confidence and trust in the model (Winkielman et al., 2003).

* We restrict this term to opaqueness caused by complexity and not proprietary secrecy (Rudin, 2019).

https://doi.org/10.1017/9781009099813.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009099813.003

36 Q. CHELSEA SONG ET AL.

1.2.1.2  Black-Box Models

Overview of Black-Box Models: Models with architectures that cannot
translate to concise explanations are called black-box models. Random
forests, SVM, and deep neural networks are considered “black-box”
models. Random forests contain hundreds of trees, each with their own
set of features and decision rules. SVM projects the feature onto a multi-
modal nonlinear surface to create decision boundaries. Neural networks
contain dozens of sequential hidden layers that nonlinearly transform the
outputs of each prior layer. These models are complex, which can confer
many advantages, but at the expense of the interpretability, defensibility,
and intuitiveness.

Benefits of Black-Box Models: The benefits of black-box models
include (1) potentially higher model accuracy, (2) robustness across differ-
ent problems, and (3) feature engineering capability. First, compared to
white-box models, black-box models have the potential to better capture
the relation between features and outcomes because they typically contain
many more parameters than their white-box counterparts. Second, black-
box models are useful for modeling a wide range of feature-outcome
relations, especially when the relation is complex. Black-box models are
often useful when one does not yet have an a priori picture of the
underlying relation. Third, black-box models can automatically engineer
features, allowing the models to capture key higher-order relations.
Researchers often seck to generate new feature variables from existing
variables, such as by aggregating personality items to form a composite.
Models like neural networks and random forests create higher-order rep-
resentations of variables based on the relations reflected in the data, thus
increasing the accuracy of the model.

1.2.2 Data Missingness

Training data commonly consist of missing inputs. For example, partici-
pants may forget or refuse to complete a response; they may run out of time
or not understand the instructions; and data collection software
may experience an error or internet outage. These missing data points could
significantly impact the performance of some ML algorithms (Rubin, 1976).

Linear regressions, SVM, and neural networks require the input data to
be complete (and without missingness). For those algorithms, researchers
are advised to use an imputation approach that approximates the true value
of the missing data point (e.g., stochastic model-based imputation) to meet
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the requirement of the algorithm while preserving information conveyed
in the data (Newman, 2014). Decision trees, random forests, and gradient-
boosted trees can automatically handle missingness through methods such
as surrogate identification (e.g., imputing missing value using complete
value from a neighboring/similar case; Batista & Monard, 2002), median
imputation (e.g., imputing missing value with the median of the observed
data for that column), and more sophisticated sparsity-aware splitting (e.g.,
building decision trees by assigning missing entries to different split sides
and determining which assignment provides the largest maximum gain;
Chen & Guestrin, 2016). These algorithms do not require any prior
imputation, which is useful for situations where imputation is computa-
tionally infeasible. However, these missing data treatments that only
impute the single most-likely value for a given set of predictor values tend
to demonstrate greater error in reproducing the natural variability within
the original data. To more accurately reproduce the variance of the
columns, researchers can use stochastic model-based imputation, which
applies randomness to the predicted/imputed values. (Newman, 2014).

1.2.3 Computational Resources

Users often have limited computational resources and time for training
ML models. Certain models require more advanced computational
resources, such as random access memory (RAM), computational proces-
sing unit (CPU), and graphics processing unit (GPU).

1.2.3.1  Memory Requirements: RAM

RAM is a computer hardware for storing information during computation.
Larger RAM allows for more data and parameters to be processed during
model training. If the model training requirement exceeds the available
RAM, it may result in an error in the model or the computer may
terminate the operation. RAM requirement is determined by the sample
size, number of features, and the model’s parameterization. Larger sample
sizes, number of features, and number of parameters require larger RAM.
This is especially likely when the model is complex. For example, a large
RAM is necessary for random forests with large numbers of trees, SVM
with complex kernels, and neural networks with multiple hidden layers;
while small to moderate RAM could generally satisfy the needs of linear
regression models. When the model requires large RAM for training, one
could consider using batched training (e.g., learning from 5o to 1,000

https://doi.org/10.1017/9781009099813.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009099813.003

38 Q. CHELSEA SONG ET AL.

instances at a time via stochastic gradient descent optimization; Zhang,
2004) to make memory usage flexible and reduce the RAM needs.
Similarly, bagged methods can minimize RAM usage by modifying the
number of features and bootstrap proportions in each iteration.

1.2.3.2  Computation Speed Requirements: CPU
CPU is responsible for carrying out the model training process. A CPU

with faster computational speed (i.e., clock rate) can train a model in a
shorter amount of time. While insufhicient RAM will introduce errors to
model training, an underpowered CPU will prevent a model from being
trained altogether. Typically, faster CPUs are beneficial for complex
models (that require numerous parameters to estimate) and models with
large sample size and number of features. Models that are simple and
require a few computational steps are the least CPU intensive. Linear
regression and A-nearest neighbors generally require less CPU, whereas
random forests, SVM, and neural networks are more CPU intensive.
In cases where the model training requires large CPU capacity, one could
consider using parallel processing (Brownlee, 2020; Kuhn, 2019). Parallel
processing partitions a computational task into multiple smaller tasks (e.g.,
constructing a single tree of the random forest) and distributes them to
multiple cores on a computer to work on simultaneously, therefore short-
ening the total time to complete the task.

1.2.3.3  Graphics Computation Requirements: GPU

GPUs are a component of the computer that is specialized at graphical
computations (e.g., calculating lighting angles, movement trajectory, and
collision). These tasks require linear algebra computations that often take
CPUs weeks, months, or even years to complete, while GPUs could
perform the computation in parallel, greatly reducing the computation
time (Fujimoto, 2008). For example, neural networks typically require
GPUs when the features include text, audio, timeseries, and image analysis.
GPUs are equipped with their own memory storage functionality, yet just
as with RAM, it might not be sufficient for certain applications when the
model is complex or the number of features is large. To address this
limitation, one might use smaller batch sizes or switch the precision of
the calculations to 16-bit instead of the typical 32-bit (akin to rounding a
long decimal number). This precision change negligibly changes the model
coeflicients, but allows the calculations to proceed within memory capacity.
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1.2.4 How to Learn More?

There are many readily available resources to help researchers and practi-
tioners apply ML to measurement, which includes click-and-point pro-
grams (e.g., IBM SPSS Statistics for Windows, IBM Corp., 2020; Shiny
R package, RStudio, 2020), as well as more flexible programming lan-
guages — R and Python. Both R and Python are free and open-source
programming languages that are widely used for machine learning. Yet,
they are distinct in terms of (1) purpose, (2) usability, and (3) flexibility
(Krajewski, 2020). First, the two languages’ purpose is different. R is
specifically developed for statistical analysis, while Python is developed
for more general programming. If your focus is data analysis or statistical
modeling, you may prefer R. However, if your focus is to integrate data
analytics and statistical capabilities into a production workflow, you may
prefer Python. Second, in terms of usability, R is equipped with a wide
variety of packages for statistical analyses and measurement (e.g., general
linear modeling, item response theory); while Python offers packages
focusing on data processing and machine learning (e.g., for natural lan-
guage processing and computer vision). Third, Python is generally more
flexible than R. Python codes can easily be integrated into existing software
architectures including back-end and cloud architecture, while R lacks
such functionalities. Table 1.2 presents a number of useful resources and
tutorials are available for implementing machine learning with

R and Python.

Table 1.2 Resources and tutorials for implementing machine learning

in R and Python

Programming Online
language Official documentation Tutorial books communities
Python https://docs.python.org Géron (2019) Python Machine
https://python.readthedocs ~ McKinney (2012) Learning
.io Miiller and Guido Tutorials
(2018) Python Machine
Nelson (2020) Learning
R https://cran.r-project.org/ James et al. (2013) R-bloggers
manuals.html Kuhn and Johnson  stat.ethz.ch
www.rdocumentation.org (2013) Mailing Lists
Wickham and

Grolemund (2017)
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1.3 Conclusion

The technological advancements in measurement are accompanied by
machine learning. The current chapter provided an overview of common
ML algorithms used in measurement. ML algorithms enable the use of
complex, organic data, and contribute to two key elements of measure-
ment: conceptualization and empirical keying. The current chapter pro-
vided recommendations and resources for using ML algorithms for
measurement, emphasizing the interpretability and estimation accuracy,
and describing best practices for selecting ML algorithms and tools. Recent
developments in technology and measurement — many of them
highlighted in the edited volume — suggest a promising potential for the
future of measurement. Machine learning has a key role to play in the
advancement of measurement, and we hope this chapter could help you be
equipped with this powerful tool.
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