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ALMOST PARACONTACT AND PARAHODGE

STRUCTURES ON MANIFOLDS

SOJI KANEYUKI AND FLOYD L. WILLIAMS

§ 0. Introduction

In this paper we study the paracomplex analogues of almost contact

structures, and we introduce and study the notion oΐparahodge structures

on manifolds. In particular, we construct new examples of paracomplex

manifolds and we find all simply connected parahermitian symmetric coset

spaces, which are the adjoint orbits of noncompact simple Lie groups,

with parahodge structures induced by the Killing forms. This is done by

(i) observing that a version of the results of A. Morimoto [4] on almost

contact structures can be formulated and proved for almost paracontact

structures, and by (ii) the methods of geometric quantization [3] applied

to parahermitian symmetric triples [1] in conjunction with results of [7].

Two of the main results are Theorem 2.5 (which ties together the above

structures) and Corollary 3.9.

The first author would like to express sincere thanks to the mathe-

matics department of the University of Massachusetts for providing us

the pleasant surroundings and facilities to carry out this work.

NOTATIONS.

R+ the group of positive real numbers,

id the identity mapping,

e the unit element of a group,

G° the identity component of a Lie group G,

%(M) the Lie algebra of all smooth vector fields on a manifold M.

The Lie algebra of a Lie group G is denoted by the corresponding Ger-

man small letter g and also by Lie G.

§1. Almost paracontact structures

DEFINITION 1.1. Let M be a 2n + 1 dimensional smooth manifold. Let
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φ be a (1, l)-tensor field, ξ a vector field, and η a 1-form on M. Then the

triple Σ = (φ, ξ, η) is called an almost paracontact structure on M, if the

following conditions are satisfied:

(1.1) φ(ξ) = O, V o φ = 0f V(ξ)=l,

(1.2) φ2X = X - η(X)ξ, X e 3E(M),

(1.3) if we denote by {η}L the subbundle of the tangent bundle T{M) of

M consisting of all vectors annihilated by η, then the tensor field

φ induces an almost paracomplex structure (cf. [1]) on each fibre

Of {η}\

The pair (M, Σ) is called an almost paracontact manifold.

EXAMPLE 1.2. On the real line R with coordinate t, put φ — 0, ξ —

d\dt and η — dt. Then Σo = (φ, ξ, η) is an almost paracontact structure

on R.

EXAMPLE 1.3. Let C be the cone {(xl9 x2, x3) e 2?3: x\ + x\ — x\ > 0}.

Consider the submanifolds Ht (t > 0) in C defined by the equation x{ +

x\ — x\ = t. It is known [1] that H1 has a natural paracomplex structure

/j. Let us consider the vector field and the 1-form

*\ ^\ ^
v — X\ — — ~~ι X2 "τ~ Xz 9

(1.4) dxx dx2 dx3

η = (x? + x\ — xt)'\xιdx1 + x2dx2 — x3dx3).

The differential system η = 0 is invariant under the diffeomorphism exp tξ

on C. Therefore, by using the action of exp tξ, one can extend smoothly

Ix to the bundle homomorphism I of {η}1 with I 2 = id. The tangent bundle

T(C) of C can be written as a whitney sum T(C) = Rξ Θ fy}1. We define

the (1, l)-tensor field φ by putting 0 = 0 on Rξ and φ = I on {27}1. Then

it can be verified that (φ, ξ, η) is an almost paracontact structure on C.

PROPOSITION 1.4. Let (M, Σ) and (M, Σ) be two almost paracontact

manifolds, where Σ = (φ, ξ, η) and Σ = (φ, I, rj). For X e 3£(M), X e

let us put

(1.5) I(X, X) = (φX + ,(X)f, ^X + η(X)ξ) .

I is an almost paracomplex structure on M X M.

Proof. By straight-forward computations we have P = id. We have

to show that the ± 1-eigenspaces of I are of the same dimension. Let
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{η}1 and {η}1- be the subbundles of T(M) and T(M) denned by the differ-

ential systems η — 0 and η — 0, respectively. Then the restrictions of I

to {η}1- and to {η}1 are equal to φ and 0, respectively. Furthermore, since

we have I(ξ, ± ξ) — (± ξ, I), I induces the natural paracomplex structure

on Rξ Θ i??. Consequently, the two eigenspaces of I have the same

dimension.

The almost paracomplex structure I above is called the almost para-

complex structure induced by Σ and Σ. Now we will give some definitions

which are analogous to those in Morimoto [4].

DEFINITION 1.5. Let (M, Σ) be an almost paracontact manifold. Σ is

called integrable if the almost paracomplex structure on M X M induced

by Σ and Σ is paracomplex.

DEFINITION 1.6. Let (M, Σ) be an almost paracontact manifold and

let (R, ΣQ) be the almost paracontact manifold in Example 1.2. If the

almost paracomplex structure on M x R induced by Σ and Σo is para-

complex, then Σ is called normal

DEFINITION 1.7. Let Σ = (φ, ξ, η) be an almost paracontact structure on

M. Let us define a (1, 2)-tensor field ψ and a 2-form θ on M by putting

( 1 6 ) ψ(X, Y) = φ[X, Y] - [φX, Y] - [X, φY] + φ[φX, φY]

+ (φX.v(Y)-φY.v(X))ξ,

(1.7) Θ(X, Y) = η([X, Y]) - X η(Y) + Y.η(X) + η([φX, φY}) ,

where X, Y e 3£(M). ψ is called the torsion tensor field of Σ.

THEOREM 1.8. Let (M, Σ) and (M, Σ) be almost paracontact manifolds,

where Σ = (φ, ξ, rj) and Σ = (φ, | , η). Then the almost paracomplex structure

I on M x M induced by Σ and Σ is paracomplex, if and only if the tor-

sion tensor fields ψ and ψ of Σ and Σ vanish identically.

Proof. The proof is similar to that for almost contact structures (cf.

Morimoto [4]). Let T be the torsion tensor of I. Then I is paracomplex

if and only if T vanishes identically (cf. [1]). The condition T = 0 is

equivalent to the following

, X), (Y, Ϋ)]

= [I(X, X), (Y, Ϋ)] + [(X, X), 7(7, Y)] - I[I(X, X), 7(7, 7)] ,

where X, Y e 36(M) and X, Y e X(M). This condition is equivalent to the
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following two conditions:

φ[X, Y] + η([X, Y])ξ

(1.9) = Ψx_ + ψ^> y l - F " ' ^ + [X,ΦY

+ X• η(Y)ζ - φ[φX + Tj(X)ξ, φY + η(Ϋ)ξ]

- vdΦX + v(X)l ΦΫ + y(Y)Bξ + f(X, X, Y,

φ[X, Y] + V([X, Y])ξ
(1.10) = [$X + ^ ( Z ) f ' F ] ~ γ-v(χ)ξ + K φY + y{Y)ξ]

+ X-η(Y)ξ~ φ[φX + η(X)ξ, φf + η(Y)ξ]

- η([φX + η(X)ξ, φY + η(Y)ξ])ξ + f(X, X, Y, Ϋ)ξ ,

where we put

( 1 u ) f(x, x, Y, Ϋ
Ϋ

(112)

= φY-η{X) - φ(X)-η(Y) + v(Y)(ξ-V(X)) - η(X)(ξ.V(Y)) .

B y p u t t i n g X = Γ = 0 o r X = F = 0 i n (1.9) a n d (1.10) we h a v e

(1.13) ψ(X,Y) = 0,

(1.14) Θ{X, Y) = 0 ,

(1.15) ψ(X, Y) = 0 ,

(1.16) Θ(X, Y) = 0 .

B y p u t t i n g X = F = 0 o r X = F = 0 i n (1.9) a n d (1.10) w e h a v e

(1.17) [X, v(Y)ξ] - φ[φX, τj(Y)ξ] - v([v(X)l ΦΫ])ξ + v(Ϋ)(ξ-y(X))ξ = o ,

(1.18) [v(X)l Y] - φ[v(X)ξ, φΫ]- η([φX, r)(Y)ξ])ζ - η(X)(ξ • y(Y))l = 0 ,

(1.19) [η(X)ξ, Y] - φMX)ξ, φY] - V([ΦX ηiY)~ξ])ξ - v(X)(ξ-V(Y))ξ = 0 ,

(1.20) [X, η{Y)ξ] - φ[φX, η{ Y)ξ] - v([y(X)ξ, φY])ξ + y(Y)(ξ • y(X))ξ = 0 .

Note that (1.9) and (1.10) are equivalent to (1.13M1.20). By setting Y=ξ

in (1.13), we have

(1.21) φ[X, ξ] =-• [φX, ξ], Xe3e(M).

We have to prove the "if" part of the theorem. This is equivalent to

saying that (1.13) and (1.15) imply (1.14), (1.16) and (1.17)-(1.20). This can
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be done in the following way: (1.17) (resp. (1.18)) is equivalent to (1.19)

(resp. (1.20)). (1.13) and (1.15) imply (1.17) and (1.20), by using (1.21). On

the other hand (1.13) (resp. (1.15)) implies (1.14) (resp. (1.16)). The proof of

these facts is quite similar to Morimoto's [4], so we can omit the details.

COROLLARY 1.9. Let (M, Σ) be an almost paracontact manifold. Then

Σ is ίntegrable if and only if ψ = 0.

COROLLARY 1.10. An almost paracontact structure Σ is ίntegrable if

and only if Σ is normal. In particular, Σ is normal if and only if ψ = 0.

We will give an example of almost paracontact structure with ψ = 0.

PROPOSITION 1.11. The almost paracontact structure Σ = (φ, ξ, η) on the

cone C given in Example 1.3 satisfies the condition ψ = 0.

Proof. Since f is a tensor field, it is sufficient to show that

ψ(X, Y) = 0 (X, Y e 3£(C)) for the following three cases: (a) X = Y = ξ,

(b) X = ξ and Y satisfies η(Y) = 0, and (c) X and Y satisfy η{X) =

η(Y) = 0. The case (a) is trivial. Consider the case (b). We have then

Ψ(f, Y) = Φlξ, Y] - [ξ,ΦY]. Since dη = 0, we have 0 = d^f, Y) =

— η([ξ, Y]). This implies that [ξ, Y] is tangent to the leaves of the dif-

ferential system η = 0. Therefore we get ψ(f, Y) = I[ξ, Y] - [ξ, IY]. But

I is invariant under exp tξ; so the right-hand side of the equality is zero.

For the case (c), we have

(1.22) f(X, Y) = I[X, Y] - [IX, Y] - [X, IY] + I[IX, IY] .

Since Iλ is a paracomplex structure on Hί9 the restriction of / to a leaf Ht

of the differential system η = 0 gives a paracomplex structure on Ht.

Therefore the right-hand side of (1.22) vanishes (cf. [1]).

§2. Principal circle bundles

Let M(M, £7(1), π) be a principal circle bundle over a smooth manifold

M with projection π. Suppose that M has a linear connection η. Then

one can find a unique 2-form Ω on M such that

(2.1) dη = ττ*β .

PROPOSITION 2.1. Under the above circumstances, suppose that M has

a paracomplex structure I and that Ω satisfies

(2.2) Ω(IX, Y) + Ω(X, IY) = 0, X, Y e 3E(M) .
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Then there exist a (1, ϊ)-tensor field φ and a vector field ξ on M such that

(φ, ξ, y) is a normal almost paracontact structure on M.

Proof, The proof is similar to that of Theorem 6 in [4]. Let X be

a tangent vector at peM, and let us denote by hX (resp. vX) the hori-

zontal (resp. vertical) component of X with respect to the linear connection.

We denote by Xξ e TP(M) the lift of a tangent vector X e TP(M), p = π(p).

Now we define a linear endomorphism φp of TP(M) by putting

(2.3) φp(X) = (Iπ*hX)* .

Then the assignment φ:p-+φp is a (1, l)-tensor field on M. The choice

of a vertical vector field ξ is quite the same as in [4]. Then φ, ξ and η

satisfy the condition (1.1). (1.2) is also proved analogously as in the

almost contact case (cf. [4]). φ leaves horizontal subspaces invariant, and

if X is a horizontal vector, then from (2.3) we have π*φX — Iπ*X, which

implies (1.3).

Let us denote by X* the horizontal lift of a vector field X e 3£(M).

Then φX* = (IX)* holds. So, we have (cf. [4])

φ[x*9 Y*] - (i[χ, YD* = nix, Y] + [x, iγ] - nix, m r

(2.4) = [φX*, y*] - η([φx*, y*])f +[x*, ΦY*]

-η([X*,φY*])ξ-φ[φX*,φY*].

On the other hand, we have

(2.5) η([φX*, y*]) = - dyfiφX*, Y*) - - π*Ω((IX)*, Y*) - - Ω(IX, Y) .

Similarly we have

(2.6)

Substituting (2.5) and (2.6) into (2.4), and taking (2.2) into account, we get

ψ(X*, y*) = 0. For the same reason as in [4], we get ψ(Z*, ξ) = 0. Thus

we have ψ = 0.

Let M(M, 17(1), π) be a principal circle bundle over a smooth mani-

fold M. Let 7] be a linear connection in M, ξ be the fundamental vector

field with η(ξ) = 1, and let Ω be the 2-form on M satisfying (2.1). Then,

as the converse assertion of Proposition 2.1, we have

PROPOSITION 2.2. Given the above notation, suppose that M has a

(1, l)-tensor field φ such that Σ — (φ, ξ, η) is a normal almost paracontact
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structure. Then M has a paracomplex structure I satisfying (2.2).

Proof. The proof is similar to that of Theorem 1 in Morimoto [5].

Let X e TP(M) and let us define Ip by putting

(2.7) IPX = π*φX* ,

where π(p) = p and Xf is the lift of X with respect to η. By the same

reason as in [5], Ip is defined and the assignment I: p —> Ip is an almost

paracomplex structure on M. We have also

(2.8) (IX)* = φX* ,

where * denotes the horizontal lift. Then, by the same argument as in

[5], we have

( 2 g ) (I[X, Yl)* •= [IX, Y]* + [X, IY1* - (I[2X, IY1)*

+ {V([(IXr, Y*]) + ?([X*, (IY)*])}f .

On the other hand, since Σ is normal, the almost paracomplex structure

on M X M given in (1.5) has zero torsion tensor. Hence (1.14) is valid.

Therefore we have

( 2 1 0 ) η{[φX*, Y*]) = φX*-V(Y*) - Y*-η(φX*) - jfiφ'X*, φY*])

= - V([X* - v(X*)ξ, φY*]) = - V([X*, φY*]),

which implies that the term enclosed by { } in (2.9) is zero. Thus, it

follows from (2.9) that I is torsion-free and consequently I is a paracom-

plex structure. By using (2.10), it is easily seen that Ω satisfies (2.2).

DEFINITION 2.3. Let (M, I, g) be a parakahler manifold, and let us

define a 2-form Ω by putting β(X, Y) = g(X, IY), X, Y e X(M); Ω is closed

and is called the fundamental 2-form of (M, I, g). If Ω is integral, that

is, the cohomology class [Ω] is an integral class in H2(M, R), then the

parakahler metric g is called a parahodge metric, and (M, I, g) is called

a parahodge manifold.

EXAMPLE 2.4. A parahermitian symmetric space (M, I, g) with the 2nd

betti number zero is always parahodge. Let M be the cotangent bundle

Γ*(M0) over a symmetric i?-space Mo. Then M i s a parahermitian sym-

metric coset space of a semisimple Lie group (cf. [1]). The parakahler

metric g of M is then induced by the Killing form of the Lie algebra of

G. If Mo is, e.g.,t/(n), SO(rc), Sp(n), U(2n)jSp{n\ or the rc-sphere (n>2\
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then the 2nd betti number of M vanishes; so g is parahodge. Non-trivial

examples of parahodge manifolds will be given in the next section.

THEOREM 2.5. Let (M, I, g) be a 2n-dίmensional parahodge manifold

with fundamental 2-form Ω. Suppose that the 1st betti number bλ(M) of

M is zero. Then there exist a principal circle bundle M over M and a

connection η satisfying dη = π*ί2, where π is the projection of M onto M.

Also M has a normal almost paracontact structure and it has a contact

structure.

Proof. Since Ω is integral, there exists a principal C*-bundle L*

with connection η such that dη = τr*42 (cf. Kostant [3]), where π: L* -+ M

is the projection. Since bλ{M) — 0, the connection η is a metric connec-

tion (cf. Wallach [8]). Therefore η can be considered as a connection in

the [/(l)-subbundle M of L*. Hence, by Proposition 2.1, M has a normal

almosc paracontact structure. On the other hand, since Ω is non-degen-

erate, we have ηA(drj)n = η/\π*Ωn Φ 0 at each point of M. Thus η is a

contact form on M.

Remark 2.6. We give here a class of manifolds satisfying the assump-

tions of Theorem 2.5. Let (M, J, g) be a parahermitian symmetric space

with Aut (M, I, g) simple, where g is induced from the Killing form of G.

Then (M, I, g) is parahodge with bλ(M) = 0 if and only if M is the cotan-

gent bundle over a covering manifold of a symmetric i?-space Mf, which

is not the Silov boundary of an irreducible symmetric bounded domain.

§3. Parahodge structures on parahermitian symmetric spaces

Let g be a real semi-simple Lie algebra, ^ a subalgebra of g and let

o be an involutive automorphism of q such that ϊj is the + 1-eigenspace

of a in g. Then the triple {g, \ σ} is called a semisimple symmetric triple.

We assume that the pair {g, ϊj} is effective. For an effective semisimple

symmetric triple {g, ζ, σ}, let us consider the following condition (C):

(C) There exists an element Z e g satisfying

i) ad Z is a semi-simple operator with eigenvalues 0, ± 1 only,

ii) ϊj coincides with the centralizer of Z in g.

Note that the condition (C) is equivalent to the condition (C3) in [1] (cf.

[1]). Now let {g, ή, σ} be an effective semi-simple symmetric triple satisfy-

ing (C), and let m be the — 1-eigenspace of a in g, which is stable under
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adZ. Then we have the decomposition m = m+ + m~, where m* are the

±l-eigenspaces of a d Z in g.

Remark 3.1. If g mentioned above has a structure of complex Lie

algebra, then {g, ϊ), σ) is called an effective complex semi-simple symmetric

triple. In this case, a becomes involutive automorphism of g regarded as

a complex Lie algebra [9]. Furthermore, if {g, ϊj, σ} satisfies the condition

(C), then the eigenspaces § and m* of a d Z are complex subspaces of g.

But, later on, we will always regard complex semi-simple symmetric tri-

ples as real ones, unless otherwise stated.

Now suppose g is real simple. Then we have the following two cases:

Case I (g has no complex Lie algebra structures). In this case the

center g(ή) of ζ is one-dimensional and it is generated by Z. So we have

the decomposition

(3.1) $ = ft, ή] + {Z}, (direct sum)

where ft, ζ] is the commutator subalgebra of ϊj. Let G be the analytic

subgroup generated by g in the simply connected Lie group corresponding

to the complexiίication gc of g. Let C(Z) be the centralizer of Z in G, and

let us denote by S the (closed) analytic subgroup of G generated by ft, ϊj].

Case II (g does have a complex Lie algebra structure and conse-

quently, g is complex simple). In this case, the center g(ϊ)) of ή is two-

dimensional over R and it is generated by Z and iZ. We have then the

decomposition

(3.2) ή = (ft, fl + {/Z}) + {Z}. (direct sum)

Let G be the simply connected (complex) Lie group corresponding to g.

Then the centralizer C(Z) is connected (cf. [1]). Let S denote the (closed)

analytic subgroup of G generated by ft, ϊ)] + {iZ}.

Then the following proposition is known in Kaneyuki-Kozai [2]:

PROPOSITION 3.2. For Case I, C{Z) has at most two connected com-

ponents; its identity component C°(Z) is a direct product of the semi-simple

derived subgroup S of C\Z) with the center R+ = exp tZ, that is,

(3.3) C°(Z) = S R+ (direct product)

For Case II, C(Z) is connected and we have

https://doi.org/10.1017/S0027763000021565 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021565


182 SOJI KANEYUKI AND FLOYD L. WILLIAMS

(3.4) C(Z) = S R+, (direct product)

where R+ = exp tZ.

LEMMA 3.3. Let B be the Killing form of g. Then we have

(3.5) B&> Z > > ° >

B(Z, m) = B(Z, β, $]) = 0 .

Furthermore, if g is complex semi-simple, then

(3.6) B(iZ, Z) = 0 ,

where B denotes the Killing form of g regarded as a real Lie algebra.

Proof. We have B(Z, Z) = Tr(adZ) 2 = Tr((adήZ)2 + (adm Z)2) =

Tr(adm Z)2 = dim m > 0. On the other hand, we have B(Z, m) = 0, since

J3(l), m) = 0. Since Ij is the centralizer of Z, we get B(Z, flj, ζ]) = 0. Sup-

pose that g is complex. Let us denote by B the Killing form of the com-

plex Lie algebra g. Then we obtain B(ίZ, Z) = 2Re B(iZ, Z) = 2Re iB(Z, Z).

From the condition (C) and Remark 3.1, it follows that B(Z, Z) > 0.

Therefore B(ίZ, Z) = 0.

Let us define the linear form fz on ϊj by putting

(3.7) fz(X) = B(Z,X) Xeϊ).

Then, by Lemma 3.3, fz is a nontrivial character of ζ. It is known [1]

that, in both Case I and Case II, G/C(Z) is a parahermitian symmetric

coset space with parakahler metric g induced by the Killing form B of

g. Let us consider first Case I. By (3.3), an arbitrary element a e C°(Z)

can be written in the form a = sr, where seS, reR+. For Case II, by

(3.4), an arbitrary element a e C\Z) — C(Z) can be written as a = sr,

where seS, reR+. Define a mapX of C°(Z) to the 1-torus T1 in either

case by putting

(3.8) X(a) = e2πiB<lo°r'Z) .

LEMMA 3.4. X is a character of C°(Z) and X — 2πifz, where X denotes

the differential of X.

Proof. It is easy to see that % is a character of C°(Z). Let us take

X e ίj. In Case II, by (3.2), we can write X = (Xt + X2) + Zl9 where

Xx e ft, $], X2 = ^iZ, Zi = μZ{λ, μ e i?). Then
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d
dt

~ dt

Z(exp

= 2πiB(X - 2

1X) - ί t-=o

Zl-Z) = 2πίB(Zι, Z)

r, - x*, z)

Γ, + X2)-expiZ,)

(3.9)

By Lemma 3.3, we obtain B(XU Z) = B(X2, Z) = 0. Hence we have X(X)

= 2πίB(X, Z) = 2πίfz(X). By the same argument, the lemma is valid for

Case I.

LEMMA 3.5. Every almost effective parahermitian symmetric coset space

M of a semi-simple Lie group G is a hamiltonian G-space.

Proof. One can express M as a coset space G/H, where H is an open

subgroup of the centralizer C(Z) in G of an element Z e g satisfying the

condition (G) (cf. [1]). Therefore G/H covers G\C{Z\ Let G be the uni-

versal covering group of G and C(Z) be the centralizer of Z in G. Then

we have G/C(Z) - G/C(Z) (cf. [1]). Also we express M = G/F as the

coset space G/H, where H is the complete inverse image of H in G. The

coset space GIC(Z) is considered to be the adjoint orbit of G through

Zeg, which is identified with the co-adjoint orbit of G through fze§*

(= the dual space of g) via the Killing form B of g. Therefore M = G/JHΓ

= G/F is a hamiltonian G-space (by Kostant [3]), which implies that M is

a hamiltonian G-space.

PROPOSITION 3.6. Let {g, ϊ), σ} 6β an effective semi-simple symmetric

triple, and Z e g be an element satisfying the condition (C). Let G\C(Z) be

a parahermitian symmetric coset space associated with {g, 5, σ} (cf Theorem

3.7 m [1]). Let Ω denote the fundamental 2-form of the parahermitian

metric of G/C(Z) induced by the Killing form B of g. Then Ω coincides

with the symplectic form constructed by Kostant [3].

Proof. We identify the tangent space T0{GjC(Z)) at the origin o in

G/C(Z) with m. Then the paracomplex structure Io of T0(G/C(Z)) is iden-

tified with adm Z on m (cf. [1]). Therefore we have Ω0(X, Y) - B(X, [Z, Y])

= - B([X, Y], Z) = - fz([X, Y]), where X, Ye m. /* is considered to be

a left-invariant 1-form on G. We have then - fz([X, Y]) = (dfz)(X, Y).

Let 7r be the projection of G onto GIC(Z). Then, from the above argu-

ment, we see that π*Ω = c?/z. This implies that our Ω is the same as

the symplectic form constructed by Kostant [3].
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THEOREM 3.7. Let {g, ϊj, σ) be a simple {that is, g is simple) symmetric

triple satisfying the condition (C). Let G be the simply connected Lie group

corresponding to g. Suppose that the centralizer C(Z) in G is connected,

or equίvalently, G/C(Z) is simply connected. Then the parakdhler metric of

the parahermitian symmetric coset space GjC(Z) induced by the Killing

form of g is parahodge.

Proof. In Case II, we have G = G and C(Z) = C(Z). Furthermore,

since G/C(Z) is simply connected in this case, the assumption that C(Z)

is connected is automatically satisfied. So, in view of Lemmas 3.4, 3.5

and Proposition 3.6, a result of Kostant [3] applies and we can conclude

that [Ω] is integral. In Case I, there exists a covering homomorphism π

of G onto G. Since G/C(Z) = G/C(Z) is simply connected, we conclude

that π(C(Z)) = C(Z) is connected. Let us consider the character X of

C(Z) = C°(Z) in Lemma 3.4. The composite map X = X o π is the character

of C(Z) whose differential is 2πifz. Apply the same result of Kostant [3]

as above to X to get the assertion of the theorem.

Remark 3.8. A simple parahermitian symmetric coset space G/C(Z)

has a structure of the cotangent bundle T*(Mf) over a symmetric i?-space

Mf (cf. Takeuchi [6]; also see [1]). So G/C(Z) is simply connected if and

only if Mf is an irreducible hermitian symmetric space, a quaternionic

Grassmannian, p-dimensional sphere (p > 2), Sp(ή) or the octanion pro-

jective plane. Theorem 3.7 has non-trivial meaning only when Mf is

hermitian symmetric, that is to say, when and only when GjC(Z) corre-

sponds to one of the pairs (gί(p + q, C), gl(p, C) + §ί(q, C) + C), (3o(2n, C),

2l(n, C) + C), (So(n + 2, C), $o(n, C) + C), (2p(n9 C), gl(n, C) + C\

(EC

Q, go(10, C) + C) or (£?, ££ + C); see [1]. Because, if M* is the one

above other than a hermitian symmetric space, then the 2nd betti number

62(G/C(Z)) = 62(M*) vanishes (see [7]). So [Ω] is trivially integral in this

case. Thus Theorem 3.7 leads to:

COROLLARY 3.9. Suppose G is simple. Then the simply connected coset

spaces GjC(Z) with a parahodge structure induced by the Killing form are

given up to infinitesimal equivalence by the pairs (g, ζ) (in the symmetric

triple (g, ϊj, σ)) as follows: Those with b2 = 0 are (3u*(2p + 2q), 3u*(2p) +

3u*(2<?) + R), (so(p + 1, 1), §O(P) + R) (P> 2), (2p(n, n), 3u*(2τi) + R)\ and

(E*, 3o(l, 9) + R). Those with b2 Φ 0 are ($ΐ(p + q, C), 3l(p, C) + 3t(g, C)

+ C), (3O(2Λ, C), 3u(n, C) + C), (§o(n + 2, C), 3o(n, C) + C), (Sp(n, C), §t(n, C)
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+ C), (E%, §o(10, C) + C), and (£?, £? + C).

We shall now see when we can replace the assumption in Theorem 3.7
by a weaker one. Let G be a simple Lie group satisfying the same as-
sumption put before Proposition 3.2. Suppose that C(Z) is not connected.
Then, by Proposition 3.2, we can write C(Z) as

(3.10) C(Z) = C\Z) U x0C°(Z) (disjoint) ,

where x0 € C(Z) satisfies x\ e C\Z).

LEMMA 3.10. Let 1 be a character of C°(Z). Suppose x\ = e. Then X
extends to a character of C(Z) if and only if

(3.11) X(xocxo) = %(c)

holds for every c e C°(Z).

Proof Let H be the cyclic subgroup generated by x0. Then we have
the local direct product decomposition C(Z) = C°(Z) H. Take an element
c e C{Z) and put c = coh, c0 e C\Z), heH. Let us define X(c) = X(c0). Then
1 is the desired extension of X.

THEOREM 3.11. Let {q, §, σ) be a simple symmetric triple satisfying the

condition (C). Let G be the analytic subgroup generated by q in the simply

connected Lie group corresponding to the complexίficatίon of q, and let C(Z)

be the centralizer of Z in G. Let X be the character of C°(Z) whose differ-

ential is 2πίfz. Suppose that there exists x0 e C(Z) satisfying xl = β, (3.10)

and (3.11). Then the parakάhler metric of parahermitian symmetric space

GjC(Z) induced by the Killing form of q is parahodge.

Proof, By Lemma 3.10, X extends to a character of C(Z)9 which is

also denoted by X. Let G be the universal covering group of G, and C(Z)

be the centralizer of Z in G. Then, as is remarked in the proof of Lemma

3.5, we have G/C(Z) = G/C(Z). Let us denote by π the projection of G

onto G. Then, we have π(C(Z)) = C{Z). The composite map X = X o π is

the character of C(Z) whose differential is 2πifz. In view of Lemma 3.5,

a result of Kostant [3] applies and we can conclude that [Ω] is integral.

We will give a sufficient condition for the character X of C°(Z) to

extend to a character of C(Z).

PROPOSITION 3.12. Let x0 be an element satisfying (3.10). Suppose

xl = e, and suppose that x0 normalizes S and R+, where S and R+ are the
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same as in Proposition 3.2, Case I. Then the character X of C°(Z) whose

differential is 2πίfz satisfies (3.11); in other words, X extends to a character

of C(Z).

Proof. Let us write c e C°(Z) in the form c — sr, where s e S and

reR+. Then we have xocxo = xosxo xorxo and so X(xQcx0) = e2πίB(Z'logx°rx°1\

We write r = exp y; then we see XJ-XQ1 = exp ((Ad xo)y). Hence

X(xcx) —
(3.12)

EXAMPLE 3.13. Let G = SL(p + qy R), and let Z - diag ( ( - qj(p + q))Ep,

(PUP + Q))Eq) Then we have

C(Z) = [ ( ^ ^ ) e SL(p + q, R)] = S(GL{p, R) x GUq, R)) ,

C ( Z ) [ ( ; ^)
(3.13) L V 0 5 /

i?+ = e x p ί Z = dmg[e-(q/p+q)Έp, e(p/p+q)tEq] ,

S - UA °\ e C(Z): det A = det £ = lj .

Choose x0 to be

p-l q-1

(3.14) x0 = diag ( - 1, l f ^ , 1, - 1 , 1 ^ , 1) .

Then x0 normalizes S and R+. Therefore the metric on SL(p + q, R)/

S(GL(p, R)χGL(q, R)) induced by the Killing form is parahodge.
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