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Abstract

We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the Calderon-
Zygmund kernel to obtain some fine estimates on the operator and prove the T(\) theorem on Besov and
Triebel-Lizorkin spaces. This extends previous results of Frazier et at., and Han and Hofmann.
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1. Introduction

In recent years, there has been significant progress on the problem of boundedness of
generalized Calderon-Zygmund operators on various function spaces. The operators
in question can be described as follows. Let K(x, y) be a continuous function defined
on (K" x W)\[x = y} and let T : 9 —> 9' be the linear operator associated with
the kernel K(x, y), that is,

o, ir) = If
J J R

(T<p,ir)= K(x,y)cp(y)f(x)dydx
xR"

where (p,^/ e Q are C°°-test functions on W with disjoint supports. For convenience,
we write

AK(x,x';y, y') = \K(x, y) - K(x\ y')\ + \K(y,x) - K(y',x')\.
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It is customary to assume that K(x, y) satisfies the following pointwise conditions:

(1.1) \K(x,y)\< C\x -y\-", and

(1.2) \AK(x,x';y,y)\<C\x'-x\y\x-y\-n-y for \x - y\ > 2\x' - x\,

where 0 < y < 1.
In their celebrated paper [4], David and Journe characterized the type of ker-

nel K(x, y) for which T is a bounded operator on L2. This is now called the 7(1)
theorem. They proved that under conditions (1.1) and (1.2) on K(x, y), 7 extends
to a bounded operator on L2 if and only if both 7(1) and T*(l) are BMO functions,
and T has the following weak boundedness property (WBP): For cp, xp- 6 3> with
diam(supp<p), diam(supp V0 < t,

(1.3) I(7V, f)\ < tn(\\<p\\ o)-

Later, Meyer [11] improved the theorem by replacing the pointwise assumption
with the following integral assumption on K(x, y):

(1.1')

(1.2')

s u p / (\K(x,y)\ + \K(y,x)\)dy<C, and
r>0 Jr<\x-y\<2r

< oo, with
k=0

B(k) = sup I / AK(x + u,x\y + v, y)dy I .

The 7(1) theorem has also been considered by Lemarie on the Besov spaces [10],
Frazier et al on the Triebel-Lizorkin spaces [7], and Han and Hofmann on both classes
of spaces [8]. The definitions of such spaces can be stated as follows (see [13]):

Let y(W) be the space of tempered test functions. Let cp € y{W) with supp<£ c
{£ € R" : 1/2 < |£| < 2} and \$(£)\ > c > 0 for 3/5 < |£| < 5/3; put <p}(x) =
2in<p{2>x) and Q}(f)(x) = <pj *f(x). For a 6 R and 0 < p, q < oo, the Besov
spaces Bp-q is the collection of all / e y'/& (the tempered distributions modulo
polynomials) satisfying

< oo.

q being the collection of

< 00.

The Triebel-Lizorkin space is defined analogously,
a l l / 6 y/&> such that

11/11/--' =
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In this paper, we will prove the following two theorems:

THEOREM 1.1. Suppose T satisfies the WBP (1.3), the kernel K(x,y) satisfies

(i) (1.1') and (1.2'). / / 7(1) = 7*(1) = 0, then T is bounded on B°p", 1 < p,
q < OO.

(ii) (1.1') and XX02*aB(Jfc) < oo. / / 7(1) = 0, then T is bounded on Ba
p",

0 < a < 1 and 1 < p, q < oo.

THEOREM 1.2. Suppose T satisfies the WBP (1.3), the kernel K(x, y) satisfies

(i) (1.1') and 5Xo(Jfc + \)2-xl"B{k) < oo. 7/7(1) = 7*(1) = 0, then T is
bounded on Fp-

q, 1 < p, q < oo.
(ii) (1.1') and ^=02

kaB(k) < oo. 7/7(1) = 0, then T is bounded on Fa
p\

0 < a < 1 and 1 < p, q < oo.

We remark that the two theorems extend the results of Han and Hofmann [8]; they
need to assume that B(k) < C2~ke for 0 < a < e in both theorems. For — 1 < a < 0,
Theorem 1.1 and Theorem 1.2 also hold by interchanging the role of 7(1) and 7*(1)
because of the duality (the dual of Bp

q is Bp"'q and similarly for Fp
q).

Note that F®-2 is of special interest because it is the Hardy space 77' when p = 1
and is Lp when p > 1. For the Hardy space H', the kernel condition in Theorem 1.2
is J2k(k + l)y2B(k) < oo. In [5], 7 is proved to be bounded on L2 under the kernel
condition ^2k(k + l)l/2B(k) < oo. By the interpolation theorem, a direct application
of the theorem yields the following result, which is stronger than the corresponding
case stated in (i).

COROLLARY 1.3. Suppose T satisfies the WBP (1.3), the kernel K(x,y) satis-
fies (1.1') and J^k(k + i)i/2+2|i/P-i/2i5(jt) < ^ y r ( 1 ) _ r * ( 1 ) = 0 | then T is

bounded on Lp, 1 < p < oo.

The main tool used in proving the theorems is wavelets, initiated in [2] and [5J.
This is quite different from the approaches in [7, 8,10, 11]. The proof of Theorem 1.1
depends on the Beylkin-Coifman-Rohklin wavelet decomposition of the operator 7.
For Theorem 1.2, we first prove the boundedness of 7 on F"'q using an atomic
decomposition on this space. This, together with an interpolation on Fp

p(= Bp-
p),

yields the boundedness of 7 for the other case.

The paper is organized as follows. In Section 2 we will give some preliminaries
on wavelets and the BCR decomposition of 7. We also set up the proof in terms of
wavelet terminology. The 7(1) theorem on the Besov spaces is proved in Section 3
and on the Triebel-Lizorkin spaces in Section 4.
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2. Preliminaries

For simplicity, we only consider the one dimensional case. The higher dimensional
case is similar.

Let us recall the concept of multiresolution analysis in L2(R) [12]: it is an in-
creasing sequence of closed linear subspaces [Vj}j€i c L2(K) with the following
properties:

(0 Hjei VJ = {0}, U;6z Yi i s d e n s e i n L 2 W ;
(ii) For every; € Z a n d / e L 2 ( R ) , / € V- < = > / ( 2 - ) € VJ+l;

(iii) There exists a ^ in Vo such that <p(;c —k),ke Z, is an orthonormal basis for Vo.

The above <p is called a scaling function. Note that by adjusting a normaliza-
tion constant, X^t^C* — k) = 1 for all x e K [3]. For each _/ € Z, we define
<?/*(*) = 2j/2<p(2jx - k), k e T. The sequence {(pjk}kez forms an orthonormal ba-
sis for Vj. From <p we can construct a wavelet function i/r. Then {Vo*}itez forms
an orthonormal basis for VV,, the orthogonal complement to Vj inside Vi+\, that
is, Vj+i = Vj• © VV,. It follows that {Vo-*}y,tez is an orthonormal basis for L2(K).
In this paper, we assume that the wavelets are compactly supported, say suppip,
suppi/^ c [0, M) for some integer M. Also we assume that they have the desirable
degree of smoothness whenever needed.

We need the following characterizations of the Besov and Triebel-Lizorkin spaces
[6, 12].

PROPOSITION 2.1. Suppose \jr e CY is a compactly supported wavelet and [\{rjk}j,kei

forms an orthonormal basis of L2($L). Let f be locally integrable and write f (x) =

£ ; * « ( / . * ) fj k (x) formally.

(i) For 0 < a < y, I < p, q < oo, f e Ba-q if and only if

< oo.

(ii) For 0 < a < y, I < p, q < oo, f e F^q if and only if

p-where x denotes the characteristic function of [0, 1). In this case, ||/||/•«•'' ^ II/!(/") U

Let Pj : L2(K) —>• Vj be the orthonormal projection and Qj = PJ+] — Pj.

Then Qs : L2(1R) —> Wj is the corresponding orthonormal projection. In [2], Beylkin,
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Coifman and Rokhlin give a decomposition of T in terms of Pj and Qj:

(2.1) T = J^ Pj TQj + J2 Qj TPj +
-OO - 0 0

The corresponding distribution kernel is

(2.2) K(x,y) =
jki jki

where

a(j,k, I) = (TfJh <pjk) = (K, <pJk

b(j,k, I) = {T<pjh irjk) = (K, fjk

c(j,k, I) = [Tfjh fJk) = [K, xlrjk

We call such a(j ,k,l), b(j ,k,l), c(j, k, I) the BCR-coefficients.

It is easy to show that

PROPOSITION 2.2. Suppose T satisfies the conditions in Theorem 1.1 or Theo-

rem 1.2, then 7**(1) = 0 implies that for any j , l e i . , ^,ka(j, k, 1) = 0; similarly

T(l) = 0 implies that for any j ,keI,J2, b(j ,k,l)= 0.

PROOF. Assuming that T*(l) = 0 and using £ t <O(JC — &) = 1, we n a v e

k k

The second part can be proved similarly. •

PROPOSITION 2.3. Suppose T satisfies the conditions in Theorem 1.1 or Theo-
rem 1.2. Let

A{m) = sup £ {\a(j,k, 01 + IflO'. I *)l + 1*0'. *. 01 + !&(/.'. *)l)

Then there exists C such that A (m) < CB(m) for all m > 0.
Moreover we have

(2.3) su
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PROOF. We first observe that A(m) < oo for each m > 0. This comes directly

from the W B P in (1.3) and the expressions for a(j, k, I) and b(j ,k,l). By using this,

it suffices to prove the inequality for 2m > M.

Let y0 = 2~J /, then

a(j,k,l) = jf K(x,y)

= 2/ f f (K(x, y + y0)- K(x, yo))<p(2/x - k)f(2'y) dx dy

< C sup / \K(x,y + y0)- K(x,yo)\dx.
V€[O,2-J M\ J\k2-i ,(k+M)2-i ]

Hence for 2m > M,

sup f \K(x,y + yo)-K(x,yo)\dx,

where E = {x e K : 2m~J < \x - yo\ < 2m+]-J +2~> M}. According to the definition
of B(m), we have J2k-.2'"<\k-n<2"*' \a(j, k, l)\ < CB(m) for 2m > M. The same

argument applies to the other terms in A{m), which completes the proof for the first
assertion.

The proof of (2.3) is essentially the same. We consider

sup \Y{\c(j,kJ)\ + \c(jJ,k)\) .

It is bounded if J = {it : |it - /| < M}\ and it is < CB{m) if J = {k : 2m < \k - l\ <
2m+l} if 2'"+' > M. This implies (2.3). •

3. T(l) Theorem on Besov spaces

In view of Proposition 2.2 and Proposition 2.3, we will prove the following theorem
in terms of the BCR-coefficients, which implies Theorem 1.1.

THEOREM 3.1. Let T : 3> —> <&' be a Calderon-Zygmund operator with the
wavelet decomposition as in (2.1), (2.2) and satisfying (1.1'). (2-3).

(') 'fZZoi™ + D^C™) < ° ° ond Zk a(j,k, I) = Ei b{j,k, I) = 0, then T is
a bounded operator on BOq, 1 < p, q < OO.

(•') / /E^=o2 <"" ' 4 ("1) < ° ° and J2, b(j, k,l) = 0 for any j , k e Z, then T is
bounded on Baq, 0 < or < 1, \ < p, q < OO.
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Let us rewrite

T = E Pj TQj + E Qj TPJ
-OO

We will first consider the term T(2). Its distributional kernel is

, y) =

L e t Jm = {(* , l):2m <\k-l\< 2 m + 1 ) , a n d

b(j,k,t) (k,l)eJm;

(3.1)

0 otherwise,

where m = 0, 1, 2, The definition implies that J^i bm(j ,k,l) = O for each j ,

k e 2. Since ^ b(j ,k,l) = Oby assumption, we have

m=0 l:{k.l)eJm

Hence ^< 2 )(JC, y) can be decomposed as

(3.2) Km(x, y) = J2b(J,k, k)irjk{x)<pjk{y)

jk

m=0 l:(kJ)€J,n

+ E E E b(j,k,l)f]k{x)Vji{y)
m=0 j t i.(k,l)zJm

00 00

E E fc«0".
m=0 jkl m=0

Let 7^2> denote the operator with distributional kernel K^(x,y). Then we can
decompose T(2) as: Tm = Y^=o T™. We call each T®> a block operator. The
following lemma together with the assumption on A{m) will imply that T<2) is a
bounded operator on B°-q.
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LEMMA 3.2. Under the hypothesis of Theorem 3.1, let 1 < p, q < oo, 0 < a < 1.
Then 7^2) w a bounded operator on B"'q, and the operator norm satisfies

C(m + \)A(m)

C2amA(m)

a = 0;

0 < a < 1,

where C is independent of m.

PROOF. Let/ (y)= £ ; t a(/\ be in B"p
q, and let g(x)= J^jk P(j -

be in the dual space B~"'q . Noting that / 0 implies that j > j '
and 2j~J'k' < I < 2j~j'(k' + M) + M (recall that q>, \]/ have compact supports
contained in [0, A/]), one can write

= E E«o-',*')

O", k!)bm{j,k,

= 1 + 11.

Let r"/)s = fcm(/' + J. ^' 0{<Pj-+si, Vo'*')-
inequality, we obtain

u s m § Proposition 2.1 and the Holder

a(/", k')bm(j' + s, k, l)B(j' + s, k) [<pjl+,h Ifj
kk'l

E ENuor

.1=1

EE s,

W
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We will make a separate estimation of J2k'''' • Note that

37

kl

1 kk'l

I k

\(<p(x - 1),

< CT'2A(m),

(the last inequality holds because cp has compact support and £ ( \q>(x — I) | is bounded)
and

< C2-s/2A(m).
Jt'/

Hence

(3.3) E
k'

kk'l

k' \ kl

Kl

It follows that

,v=i

p'/P

P'lp

\P'/P

, I'/P' 1/9'

0 <a < 1.

https://doi.org/10.1017/S1446788700010132 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010132


38 Ka-Sing Lau and Lixin Yan [10]

We now estimate the expression II. For convenience, we use the same notation C to
denote the different constants in the different place. Define

gjk(x) =/
J -oo i

bm(j, *, l)<p(y - Ddy and fQ = (&.+,*(*), if'QT'x - *)).

Then

/', k')bm(j,k,

OO CXI

s=m+\ j'=-oo kk'

s=m+]

£*-

We claim that

(3-4)
k' k

i' + s , k ) \ p ' .

In fact, the condition
Then

= 0 implies that suppg^ c [k~2m+], k+2m+iM]

E ^ c ( Ift'+I*(')|. E l^/(2~v* -
<C{\gj.+sk(x)\,l)<C2mA(m).

On the other hand, for s =j -j' since supp f'(2-sx - )t') c [2s k\ 2s (k' + M)], we
know that |Jfc - 2sk'\ < 2sM + 2m + M < C2S. It follows that

kk' , \P(2-'x - k')\) < C2'+mA(m).
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Combining these two estimates we have

E

39

kk'

p'/p

1 kk'l

< C2(s+m)<"'-"2m|A(m)r'2] | £ ( / ' + *,*)!'' •
k

This proves the claim. We return to the estimate of |II|

[](2(f+'n)<p'-1)2m|A(w)|p'
i' \

, n' In' \ '/?'

s=m+\

x £ |2(-I>''-"+1/2)<''+-'>j8(/"' + s, k)\"

By the estimates of |I| and |II| we conclude that 7<2) is a bounded operator on B^-q,
I < p,q < oo,Q < a < \ with the operator norm as specified. •

LEMMA 3.3. Under the hypothesis of Theorem 3.1, let 1 < p, q < oo, 0 < a < 1.
Then T(i) is a bounded operator on B"q.

PROOF. We can write

. 8) =

with) > j'and2J-j'k' < I < 2>''>'(k' + M) + M as in Lemma 3.2. For the case a = 0,

we have by assumption that ^k a(j ,k,l) — 0, and we can apply the same proof as in

Lemma 3.2 (by replacing J^ / b(j:, k, I) = 0).

For the case 0 < a < 1, we have not assumed that ]T^ a(j ,k,l) = 0 and we need
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to modify the proof by separating out the diagonal term (as in (3.2)):

, S)\ < E
•:/-/ '>0 kk'

j ' . k')a(j, k, k)a(j, k) (<

E E E E^'
/__/ Z_-? Z—* Z—* ^ v

m=0 j-j'j-j'>O(k,l)eJm k'

By using the same argument as in Lemma 3.2, we can show that the first term is
bounded by C ^ ^ . , 2~™'v||/||B«-«||^||^-«.,' and the second term is bounded by

CA(m) YlT=i 2~°"11/ IIBy IIgIIB--i' (note that in here the term Y1T=\ 2~"s converges
and we only need to use the estimation for |I| without recoursing to the estimation |H|
in the last proof). This proves the lemma. •

LEMMA 3.4. Under the hypothesis of Theorem 3.1 let 1 < p, q < oo, 0 < a < 1.
Then T<3) is a bounded operator on the Besov spaces B^q.

PROOF. We can write

where / , g are defined as in Lemma 3.2. By using the duality and condition (2.3), it

can be checked as in Lemma 3.2 that |<7(3>/, g)\ < C\\f WB^WBWB-""'- D

Theorem 3.1 follows directly from Lemmas 3.2-3.4. •

4. T(l) Theorem on Triebel-Lizorkin spaces

In view of Proposition 2.2 and Proposition 2.3, we will prove the following theorem
in terms of the BCR-coefficients, which implies Theorem 1.2.

THEOREM 4.1. Let T : S> —> & be a Calderon-Zygmund operator with the
wavelet decomposition as in (2.1), (2.2) and satisfying (1.1'). (2-3).

(') '/T,~=o(m + D^'Mdn) < oo, and £*«(/.*./) = EtW>kJ) = 0,
then T is a bounded operator on F°q, 1 < p, q < oo.

(ii) / / ]Tr=o 2°"M(m) < oo and £ , b{j,k, 1) = 0 for any j,k e I, then T is

bounded on F^q, 0 < a < 1, 1 < p, q < oo.

We will first prove the theorem for F"'q, then apply an interpolation theorem
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on F\q and F^-q{= B^q), and a duality argument to conclude the theorem. We need
the following notion of atom which can be found in [9].

DEFINITION. Let a(x) = J2jkaU^)^jk(x) be a locally integrable function. We
say that a(x) is an (a, 1, q)-atom if there is a dyadic cube / c IR such that

(i) suppaCO c / ;

(ii) f,a(x)dx = 0;
(iii) HA(a)| | , < I / I ' / ' " 1 ,

where A (a) is defined by

/ V"1

(4.1) A(a)(jc)=l^2( a + 1 / 2 )^|aO'.*)l ' ;K2^-*)J .

For./, k 6 T , let /,* denote the interval [2~jk, 2'J (k + 1)]. Let

(4.2) ajk(x)=

Note that the sum is actually adding a l ly ' , k' with j < j ' , k' e [2i'~i k, 2J'~J {k + 1)).

It follows that the support of ajk(x) is contained in [2~jk, 2~] (k + M)]. By the

definition, we know that ajk(x) is an (a, 1, <5f)-atom if

1/9

2-Hi-n Y 2(-1/«+a+I/2y'«|a0"'. *')!'[ <oo.

LEMMA 4.2. Let ajk(x) be the atom as in (4.2), and let Tj,2) be defined as in
Lemma 3.2. Then we have

where C is independent ofm,j,k.

PROOF. Without loss of generality we consider aoo(y) and denote it by a(y) for
simplicity, that is, a(y) = £ 0 £ j Y.o<k<v a{j,k)\jrjk{y). Noting that (<pJh fj-T) ^ 0
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implies that; > j ' and 2j~J'k> < I <2j~j'(k' + M) + M. One can write

(T™a) (x) =

[14]

jki j'k

i'kk'l

E( E
j>m \j':O<j—j'

( E Ea "̂'
—j'<m kk'l

E
kk'l

Since B"A = F"A C F"q, 1 < q < oo, it follows that there exists a constant C
such that ||/ || f"-i < C||/ ||̂ «.i. Using Proposition 2.1 and the Holder inequality, we
obtain

II«. II F"" < j \ k')bm(j, k,
j<m j'kk'l

< CA(m) £
j'<j 0<k'<2i'

E
\0<j'<m

1/9'

1/9

j'k'

' C{m+\)2-x">A{m)\\a\\«Xq) a = 0 ;

0 < a < 1.

To estimate ||a2||F"-', we first observe that the condition 0 < k' < 2j' implies
that 0 < 2~J I < M. By the expression of a2(x), we know that k e Ej =
[_2"-+', 2m+l + 2' + 2' Ml and hence

c (J (J[2~J/t, 2"y
c [-1
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Let r $ = bm(j,k, l)(<Pjl, ^ _ r f ) . Then

43

E
m oo

= 1 >=m+l «.,

,(a+1/2)79

s=l > 'R \ /=m+l

m I oo

dx

s=l l7=m+l * k'l

Similar to the estimate (3.3) in Lemma 3.2, we have

1/9

E £< iffy A'
kk'l - 5, i

It follows that

\j=m+\

1/9

< CA{m)
U=m+1 f

a=0;

0 < a < 1.
j

~ (C2amA(m)||a||(a,1,17)

We now turn to estimate the term a3(x). Like a20O> suppa3(x) c [—1, 2M].
Let ^t(jc) be defined as in the estimate of |II| of Lemma 3.2 and f ,̂ = {gjk(x)>
xlf'(2-sx-k')).Then

I^MIIF,-" <

<

<

c

00
CE

i=m+l

oo

i=m+l

2 - 3 J / 2

2-3.v/2

0 0

[ E E
L=m+1 *

oe(j — s, k')rJ
k"k,\jrjk(x)

2-7+(«+l/2)79 E«f-

1
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By the same estimate as (3.4) in Lemma 3.2, we obtain

/ L-, a{j - s, k'Wil, \a(j - j , *')

k'

Hence

oo I oo 1 1/9

i=m+l l y = m + l *' J

oo f 1 '/9

— ^^» (^) / 2. 2, k y 2. p ^ v — ^ > ^ ) i
.v=m+l I y it' J

< C2amA(/?I)||a||(a,1,(7).

We have hence proved Lemma 4.2 by combining the estimates of ax(x), a2(x)
anda3(;c). D

Now we state the following atomic decomposition of F"'q, which is given in [1]
for f f ' 2 (= / / ' ) and in [6] and [9] for the general case. For completeness we modify
their proof and sketch it here.

LEMMA 4.3. Let f (x) = ^,jka(j,k)\}/jk(x) be in F"'q. Then there exists a se-
quence {hsn{x)}Sin of {a, 1, q)-atoms and {Xsn} € K such that

(4.3) fix) = 22 Knhxn(x) and C, ||/ | | ^ < ^ |A«| < C2||/ Ur
s.n s,n

for some fixed C\,C2> 0 independent off.

PROOF. By Proposition 2.1, / e F"'q has an equivalent norm given by
11/II ^ « IIA (/•)!!,.

If 2s, s e I, is a given threshold, we define Qs = {x : A(f)(x) > 2s}. This
allows us to write £2,. = [Jn€N Qsn , where each Qsn is a maximal dyadic interval
in Qs. The intervals Qsn, being dyadic and maximal, are either identical or disjoint.
For each s € Z, n e N, consider the family &sn of all dyadic intervals IJk such
that ljk C Qsn which are contained in no Qs+\p for any p . By the above construction,
we can write
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For each s e 1, n e N, let

(4-4) hsn(x) = \Knrl J2 «(/

where ksn = \Q,n\W[ £ / j t £ , m 2<-1/«-H'+1/2W«|a(/\*)|*}1". Then, fcin(jc) is
an (a, 1, g)-atom and

(4.5) f(x) =

gives an atomic decomposition of/. For the details we refer the reader to [ 1,6,9]. •

PROOF OF THEOREM 4.1. By Lemma 4.4 we can write / (x) e F"'q as an atomic
decomposition/ (x) = J^. n ksnhsn(x), where each hsn(x) is an (a, 1, g)-atom defined
in (4.4). For each/ijn(jc), we can rewrite it as the form in (4.2) by assigning a (j, k) = 0
for Ijk c Qsn but Ijk g &sn. Using Lemma 4.2 and Lemma 4.3, we have

< I C { m

where C is independent of m, 5, n. It follows that 7( 2 ) is bounded on F,"'9. Similarly as
in Lemma 3.3, and Lemma 3.4, we can show that both 7( 1 ) and 7( 3 ) are also bounded
operators on F"'q. Hence, we have proved that 7 is bounded on F"'q', and

where 0 < a < 1, 1 < < 7 < O O .

Since 7 is bounded on B^q{= F"q), the interpolation theorem [13] implies that 7
is bounded on Fa-q, 0 <a < 1,1 < p < q. Similarly as in the proof of Theorem 3.1F
and Theorem 4.1, we can show, by interchanging the role of 7(1) and 7*(1), that 7
is bounded on both F"q and F"'q with — l < a < 0 , l < g < o o . Again, applyingF
the interpolation theorem and the duality, 7 is bounded on F^q, 0 < a < \, p > q.
This finishes the proof of Theorem 4.1. •

PROOF OF COROLLARY 1.3. With the above notation, we have ^ ( ,

C(m + l)3 / 2A(m) and ||7^2)||(r-,^) < C(m + l ) 1 / 2A(m) for some C > 0 indepen-
dent of m. For 1 < p < 2, by the interpolation theorem we have ||7j;2)||(i.,.,/>,,,, <
C{m + l)1 / 2 + 2 ( 1 / p~ l / 2 )A(m). Using the duality argument, for 2 < p < oo we
have \\T™\\{U.M) < C(m + l )1 /2 + 2 | 1" ' -1 /2 |A(m). It follows from the assumption
on A{m) that 7<2) is bounded on Lp. Similarly, 7(1> and 7( 3 ) are bounded operators
on U\ so is 7 . This completes the proof of Corollary 1.3. •

https://doi.org/10.1017/S1446788700010132 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010132


46 Ka-Sing Lau and Lixin Yan [18]

Acknowledgement

We thank the referee for valuable comments and suggestions.

References

[1] J. Aguirre, M. Escobedo, J. C. Perel and Ph. Tchamitchian, 'Basis of wavelets and atomic decom-
positions of «'(R") and //'(K" x R"),\ Proc. Amer. Math. Soc. I l l (1991), 683-693.

[2] G. Beylkin, R. Coifman and V. Rokhlin, 'Fast wavelet transforms and numerical algorithms',
Comm. PureAppl. Math. 44 (1991), 141-183.

[3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Appl. Math.
61 (SIAM, Philadelphia, 1992).

[4] G. David andJ. L. Journe, 'A boundedness criterion for generalized Calderon-Zygmund operators',
Ann. of Math. 120(1984), 371-397.

[5] D. G. Deng, L. X. Yan and Q. X. Yang, 'Blocking analysis and 7X1) theorem', Science in China
41(1998), 800-808.

[6] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of functions, CBMS-
Regional Conference Series in Mathematics 79 (AMS, Providence, RI, 1991).

[7] M. Frazier, R. Torres and G. Weiss, 'The boundedness of Calderon-Zygmund operator on the
spaces F£-i', Rev. Mat. lberoamericana 4 (1998), 41-72.

[8] Y. Han and S. Hofmann, T ( l ) theorem for Besov and Triebel-Lizorkin spaces', Trans. Amer.
Math. Soc. 237 (1993), 839-853.

[9] Y. Han, M. Paluszynski and G. Weiss, 'A new atomic decomposition for the Triebel-Lizorkin
spaces', Contemporary Math. 189 (1995), 235-249.

[10] P. G. Lemarie, 'Continuite sur les espaces de Besov and operateurs definis par des integrales
singulieres', Ann. Inst. Fourier (Grenoble) 35 (1985), 175-187.

[11] Y. Meyer, La minimalite de I'espace de Besov 5°' el la continuite des operateurs definis par des
integrales singulieres, Monografias de Matematicas, 4 (Univ. Autonoma de Madrid, 1986).

[12] , Ondeletles et operateurs, Vols I, II (Hermann, Paris, 1990).
[13] H. Triebel, Theory of function spaces (Birkhauser, Basel, 1983).

Department of Mathematics Department of Mathematics

The Chinese University of Hong Kong Zhongshan University

Shatin, NT, Hong Kong Guangzhou, 510275

e-mail: kslau@math.cuhk.edu.hk P. R. China

e-mail: lixin@ics.mq.edu.au

https://doi.org/10.1017/S1446788700010132 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010132

