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Abstract

We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the Calderén-
Zygmund kernel to obtain some fine estimates on the operator and prove the T(1) theorem on Besov and
Triebel-Lizorkin spaces. This extends previous results of Frazier et al., and Han and Hofmann.
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1. Introduction

In recent years, there has been significant progress on the problem of boundedness of
generalized Calderén-Zygmund operators on various function spaces. The operators
in question can be described as follows. Let K (x, y) be a continuous function defined
on (R” x RO\{x = y}andlet T : 2 —> 2’ be the linear operator associated with
the kernel K (x, y), that is,

(To, ¥) = / / K (x, y)e () ¥ (x) dy dx
R*xR"

where ¢, ¥ € 2 are C™-test functions on R” with disjoint supports. For convenience,
we write

AKGx, x'3y,¥) =K, y) — K& )|+ |k, x) = K x)].
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It is customary to assume that K (x, y) satisfies the following pointwise conditions:

(1.1) IK(x, )| = Clx —y|™, and
(12)  JAKO, x5y, I < Clx" = x"x =y for |x —y| = 2lx" — x|,

where 0 < y < 1.

In their celebrated paper [4], David and Journé characterized the type of ker-
nel K (x, y) for which T is a bounded operator on L2. This is now called the T (1)
theorem. They proved that under conditions (1.1) and (1.2) on K (x, y), T extends
to a bounded operator on L? if and only if both 7(1) and T*(1) are BMO functions,
and T has the following weak boundedness property (WBP): For ¢, ¥ € 2 with
diam(supp ¢), diam(supp ) < ¢,

(1.3) KT, ¥)1 < "(lello + 11 V@lloo) (1¥ lloo + £V lloo)-

Later, Meyer [11] improved the theorem by replacing the pointwise assumption
with the following integral assumption on K (x, y):

(L.1) SUP/ (IK(x, ) +1K(y,x)])dy < C, and
r>0 Jr<le—yi<2r
(1.2) Z(k + 1)B(k) < 00, with
k=0
B(k) = sup (/ AK(x+u,x;y+v,y)dy).
|MH"I)I(JJ|SV Br<ix—y|<24+ty

The T(1) theorem has also been considered by Lemarié on the Besov spaces [10],
Frazier et al on the Triebel-Lizorkin spaces [7], and Han and Hofmann on both classes
of spaces [8]. The definitions of such spaces can be stated as follows (see [13]):

Let . (R") be the space of tempered test functions. Let ¢ € #(R") with supp¢ C
(£ eR":1/2 < |§] <2} and @) > ¢ > 0for3/5 < |§] <5/3; put ¢; (x) =
2o x)and Q;(f)(x) = ¢; xf(x). Fora € Rand 0 < p, g < 00, the Besov
spaces B;"” is the collection of all f € /2 (the tempered distributions modulo
polynomials) satisfying

1/q
If ll oo = (Z 2N Q;f ||,,)“) < .

J

The Triebel-Lizorkin space is defined analogously, F:'“ being the collection of
all f e /2 such that

1/q
If e = ” (Z @10 f ')q> < 0o.

p
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In this paper, we will prove the following two theorems:

THEOREM 1.1. Suppose T satisfies the WBP (1.3), the kernel K (x, y) satisfies

1) (1Y and (1.2'). If T(1) = T*(1) = 0, then T is bounded on Bg"’, 1 <p,
q < 00.

(i) (L.1) and 332 2*B(k) < oo. If T(1) = O, then T is bounded on B%",
O<a<landl <p,q < o0

THEOREM 1.2. Suppose T satisfies the WBP (1.3), the kernel K (x, y) satisfies

@) (1.1’).and Yootk + 1)VIBk) < o0. If T(1) = T*(1) = O, then T is
bounded on F:"’, 1 <p,q<oc.

(i) (1.1) and 332 2**B(k) < oo. If T(1) = O, then T is bounded on F2*,
O<a<landl <p,q < o0

We remark that the two theorems extend the results of Han and Hofmann [8]; they
need to assume that B(k) < C27* for 0 < o < € in both theorems. For —1 < a < 0,
Theorem 1.1 and Theorem 1.2 also hold by interchanging the role of 7(1) and 7*(1)
because of the duality (the dual of Bl‘f"’ is Bp',“"’, and similarly for I:";j"” )

Note that F? is of special interest because it is the Hardy space H' when p = 1
and is L? when p > 1. For the Hardy space H!, the kernel condition in Theorem 1.2
is >, (k + 1)*?B(k) < 0o. In [5], T is proved to be bounded on L? under the kernel
condition Y_, (k + 1)!/*B(k) < co. By the interpolation theorem, a direct application
of the theorem yields the following result, which is stronger than the corresponding
case stated in (i).

COROLLARY 1.3. Suppose T satisfies the WBP (1.3), the kernel K(x,y) satis-
fies (1.1') and Y, (k + 1)/*3Vp=122IB(k)y < oco. If T(1) = T*(1) = O, then T is
boundedon L?, 1 < p < oc.

The main tool used in proving the theorems is wavelets, initiated in [2] and [5].
This is quite different from the approaches in [7, 8, 10, 11]. The proof of Theorem 1.1
depends on the Beylkin-Coifman-Rohklin wavelet decomposition of the operator T.
For Theorem 1.2, we first prove the boundedness of T on F,“ ‘T using an atomic
decomposition on this space. This, together with an interpolation on 1:“:"’ (= Bl‘j"”),
yields the boundedness of T for the other case.

The paper is organized as follows. In Section 2 we will give some preliminaries
on wavelets and the BCR decomposition of T. We also set up the proof in terms of
wavelet terminology. The T(1) theorem on the Besov spaces is proved in Section 3
and on the Triebel-Lizorkin spaces in Section 4.
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2. Preliminaries

For simplicity, we only consider the one dimensional case. The higher dimensional
case is similar.

Let us recall the concept of multiresolution analysis in L*(R) [12]: it is an in-
creasing sequence of closed linear subspaces {V;};cz € L*(R) with the following
properties:

() Mz Vi =10}, U,z Y is dense in L*(R);

(i) Foreveryj eZandf € L*(R),f € Vi < f(2-) € V413

(11i) There exists a ¢ in Vj such that ¢(x — k), k € Z, is an orthonormal basis for V;.

The above ¢ is called a scaling function. Note that by adjusting a normaliza-
tion constant, Y, ¢(x — k) = 1 for all x € R [3]. For each j € Z, we define
@ix(x) = 2292 x — k), k € Z. The sequence {g;}xez forms an orthonormal ba-
sis for V;. From ¢ we can construct a wavelet function y. Then {y;,}icz forms
an orthonormal basis for W;, the orthogonal complement to V; inside V., that
is, V1=V, ® W,. It follows that {1;}; «ez is an orthonormal basis for L*(R).
In this paper, we assume that the wavelets are compactly supported, say supp ¢,
supp ¥ < [0, M] for some integer M. Also we assume that they have the desirable
degree of smoothness whenever needed.

We need the following characterizations of the Besov and Triebel-Lizorkin spaces
(6, 12].

PROPOSITION 2.1. Suppose ¢ € CY isacompactly supported wavelet and (i} rez
forms an orthonormal basis of L*(R). Let f be locally integrable and write f (x) =

ij a(j, k)yj(x) formally.
(i) ForO<a <y, 1<p,g<oof € B;r,q if and only if

l/q

q/p
Z (Z 12(—1/p+a+l/2)ja(]-, k)lp) < 00,
k

J

(i) ForO<a <y, 1 <p,g<oo,f € F:"’ if and only if

1/q :
A(f)x) = (Z 20, )" x (2 x — k)) € L*(R),

Tk
where x denotes the characteristic function of [0, 1). Inthis case, ||f || zo0 = ||A(f) |,

Let P, : L*(R) — V, be the orthonormal projection and Q; = P;,, — P;.
Then Q; : L*(R) — W, is the corresponding orthonormal projection. In (2], Beylkin,
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Coifman and Rokhlin give a decomposition of T in terms of P; and Q;:
o0 (o o} o0

@.1) T=Y PATQ+) OTP+Y OTQ.
-0 -0 -0

The corresponding distribution kernel is

Q2 K@y =) al. k Doty + Y bG k. DY)e)

ki ki

+ 3 ek DY) ),

jkl
where
aG, k. D) =T, o) = (K, 01 ® V1),

G,k D) = (T, ¥ie) = (K, ¥k ® 931).
Gk, 1) = (T ¥ = (K. ¥ ® ¥1).

We call such a(j, k, 1), b{j, k, 1), c(j, k, I) the BCR-coefficients.
It is easy to show that

PROPOSITION 2.2. Suppose T satisfies the conditions in Theorem 1.1 or Theo-
rem 1.2, then T*(1) = O implies that for any j,l € Z, Zka(]', k, 1) = 0; similarly
T(1) = O implies that forany j, k € Z, )", b(j, k,1) = 0.

PROOF. Assuming that T*(1) = 0 and using Y_, ¢(x — k) = 1, we have

Za(j, kD= Z(w,,, oix) = (T, 27%) = (¥, 27 T*(1)) = 0.
k k
The second part can be proved similarly. O

PROPOSITION 2.3. Suppose T satisfies the conditions in Theorem 1.1 or Theo-
rem 1.2. Let

A(m) = sup Z (laG. k. Dl + laG, L o)+ 1bG, k, DI + 1bG , 1, K1)
P kam <ik-ti<2m

Then there exists C such that A(m) < CB(m) forallm > 0.
Moreover we have

(23) s_quZ(IC(]',k,m +leG, L k)) < o0.
Ik
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PROOF. We first observe that A(m) < oo for each m > 0. This comes directly
from the WBP in (1.3) and the expressions for a(j, &, I) and b(j, k, [). By using this,
it suffices to prove the inequality for 2™ > M.

Let yo = 2771, then

aGj k1) = f f K (x, 9)03 ) ¥5:() dx dy
_ // (K(x,y + y0) = K(x.30))0@x — )y (2 y) dx dy

< C sup / |K(x,y+ y) — K(x, yo)| dx.
(k27 (k+M)27 |

y€[0.2-1 M)

Hence for 2™ > M,

> laG.kDI<C sup f|1<<x,y+yo)—1<(x,yo>|dx,
E

k2m <lk—1] <27+ yel0.27 M)

where E = {x € R: 2" < |x — yo| < 2™~/ 427/ M}. According to the definition
of B(m), we have 3 .. _y_ycpmn 1@G, k, )| < CB(m) for 2" > M. The same
argument applies to the other terms in A (m), which completes the proof for the first
assertion.

The proof of (2.3) is essentially the same. We consider

sup [Z (IeG, &, DI + e, 1, k)|)} .

s ket

Itisboundedif J = {k:Jk—I| < M};anditis < CB(m)if J ={k:2" < k-1 <
2741y if 21 > M. This implies (2.3). a

3. T(1) Theorem on Besov spaces

In view of Proposition 2.2 and Proposition 2.3, we will prove the following theorem
in terms of the BCR-coefficients, which implies Theorem 1.1.

THEOREM 3.1. Let T : @ —> @' be a Calderdn-Zygmund operator with the
wavelet decomposition as in (2.1), (2.2) and satisfying (1.1), (2.3).

(i) If > om+ DAGn) <ooandd ,a(j, k,1)=>,b(, k1) =0, thenTis
a bounded operator on B"S"’, 1 <p,qg < o0

Gi) IfY < ,2°"A(m) < coand Y b(j, k1) = O foranyj, k € Z, then T is
bounded on B,‘j”’ O<a<l,1<p,qg<o0.
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Let us rewrite
o0 o0 oo
T=) PTQ+> QTP+ QTQ =TV +T%+T%
—oQ —0Q -0

We will first consider the term 7?. Its distributional kernel is

K@, y) = Zb(j, k, DYj()e(y).

ki

Let J, = {(k,]) : 2™ < |k — 1] < 2™}, and

b(jvk7 l) (kv l) € Jm;
(3.1) b kD) =8 =% e bl kon)  I=k
0 otherwise,

where m = 0, 1,2, .... The definition implies that ), b,(j, k, ) = O for each j,
k € Z. Since ) _,b(j, k,I) = 0 by assumption, we have

b(j,k,k):—i > bk D.

m=0 l:(k,[)eJ,,

Hence K®(x, y) can be decomposed as
32 KP,y) =) b,k DYx)e()
Jk

+ Z Zb(j, k, DYj(x)eji(y)

jk Lk

= Z (— Z Z b(j,k, l)) Y ()@ (y)
Tk

m=0 l:(k,D)eJ,,

+ Z Z Z b, k, DY) (y)

m=0 jk l(kDel,

=3 bl kDY@ () = D K2 (x, ).
m=0

m=0 jki

Let T? denote the operator with distributional kernel K (x,y). Then we can
decompose T® as: T® = Y > T®. We call each TP a block operator. The
following lemma together with the assumption on A(m) will imply that T® is a
bounded operator on B;}'q .
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LEMMA 3.2. Under the hypothesis of Theorem 3.1, let | < p,q < 00,0 <a < 1.
Then T? is a bounded operator on B,‘f"’, and the operator norm satisfies

C(m + 1)A(m) a =0;
C2°" A(m) O<a<l,

I < |

where C is independent of m.

PROOF. Let f (y)= ija(j, k)Y (y) bein B;’"’, andlet g(x)= ij By, k)¥ie(x)
be in the dual space Bp",""". Noting that (g;;, ¥;») 7 O implies that j > j’
and 2k <1 < 27 (k' + M) + M (recall that ¢, ¥ have compact supports
contained in [0, M), one can write

(T2f,8) =" a(', K)buli . k, DBG . 5 {01, Ve

Jk ik

= Z <Za(i/’ k/)bm(jvk’ l)ﬁ(],k) <‘le» wj’k’))

JjJ0<j—j'<sm \ kk'l

+ Z (Za(i', KYbu (G k, DBG, K (@)1, Wi'k'))

Jti—i=ml \ kKl

=1+1IL

Let F,'('Z;‘ = b,(G' + s, k, D{@j 451, ¥jw). By using Proposition 2.1 and the Holder
inequality, we obtain

msijZ

Y oG Kb+ 5,k DBG + 5, K) (@501, Yyok)

s=1 ' | kkd
m 1/p P\ VP
. p . i's
=3 z(zwm) SIS 86+ v
s=1 ! I Y
m
< €Y 20 £ ) g
=1
a Y V7

o'

AP

j &

~1/p'—a+1/2)(j'+5 :
2 /p' —a+1/2)(j +5) Z’B(]' + s, k)Fl':Z’l‘
ki
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We will make a separate estimation of ) _,, - - - . Note that

> <2 N bal + sk D (9 = D, ¥ 27x — &)
] k

ki

mj's
1—‘kk’l

<2724 Y |lo(x — D, ¥ 27x — k)|
!

< C2*A(my),
(the last inequality holds because ¢ has compact supportand ), |¢(x —1)| is bounded)

and

SO el < 272 S b + 5, kD) <|qo(x ~Dl. Y |perx - k,)|>

Kl ! &

< C275?A(m).
Hence
o
33 DD oBG +s I
k' kil

mj's
I1kk’l

P,/P
) ( .S- r"’lj, 3 )
ki

) (2‘v/2A (m))P'/p

=3 (Z]ﬁ(}"+s, N
14 ki

C(Zlﬂv/ﬂ, OIS
k

k'l

mj’s
Fkk’l

IA

<C (Z |BG' +s, k)|”') (272 A (m)) (2S/2A(m))”'/”
k
— C2s(P'/P—1)/21A (m)lp' Z |/3(], + s, k)IP' )
k
It follows that

m
|I| < CZ2(1/pr+a—1/2)32S(1/p—I/P')/Z . A(m)llf ”B,;""

s=1

a'/p’
X122 (Z |27 e U s, k)l"l)

7’ k

1/q'

IA

CY_ 2" Am)If Nazligh g mr

y=1

Com+ DAM)ISf Nazolighyer =0
CEmAMNS Ny lgl goer O<a<l.

[A
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We now estimate the expression II. For convenience, we use the same notation C to
denote the different constants in the different place. Define

[e o]

ge(x) = / b ks Doy = Ddy and P = (gr(x), /(27 — B)).
- {
Then

1| = Z Za(i’,k’)bm(i,k, DBG . k) (@1, ¥yow)

JJtj—jzm+l kk

=C i Zw: D o2 )a(j’, K)BG' + s, )T

s=m+1 j'=—0c0 kk'

<C Y 2P f |l g

s=m+1

< Zz<—l/p'-a+l/2u'q‘ 2:
T

k'

Y BG +s, Y
k

We claim that

.
G Y < C26+ DM Am) P 3 |BG + 5. )|
k

Iy

Y BG + s, T
k

In fact, the condition ), b, (j, k, I) = Oimplies thatsupp g;x < [k—2"*', k+2"*'M].
Then

o
>\

I

= C<|gj’+xk(x)’ , Z |v'@x — k)| >
o

< C{|gjru)], 1) < C2"A(m).

On the other hand, for s = j — j' since supp ' (27"x — k') C [2°k’, 2° (k' + M)], we
know that |k — 2°k'| < 2°M + 2™ + M < C2°. It follows that

2

k

s
i

< €D (lgrwa @], [’ @7x —K)|) < C2*"A(m).
k
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Combining these two estimates we have

P

2

I

Y BG + s, T
k
Qe

pl/p
4 k k

< C26me =0 Am)P S (BG + s, b
k

This proves the claim. We return to the estimate of |II|

)
|Hl < C Z 2(1/P'+a—2).\' ”f ”B,‘f‘" Z (2(s+m)(p/_])2mlA(m)|p!

it

s=m+] J
Y VA

q/p
x Z HRT, k)lp,>
k

< C( Z 2(a—l)x2"'A(m)) ||f ”3:‘/: ”3”3;,‘”"

s=m+1

< C2"A(m)\f Nggllgh o

By the estimates of |I} and [II| we conclude that T*® is a bounded operator on B>,
1 <p,q <00,0<a < 1 with the operator norm as specified. O

LEMMA 3.3. Under the hypothesis of Theorem 3.1, let ] <p,q < 00,0 <a < L.
Then TV is a bounded operator on B34.

PROOF. We can write

(TVF, 8) =3 ali, k, DBG', )G, D (@10 V)

JJ kK

withj > j'and 2 ~V'k’ <1 < 2~ (k'+M)+ M as in Lemma 3.2. For the case o« = 0,
we have by assumption that Y, a(j, k, [) = 0, and we can apply the same proof as in
Lemma 3.2 (by replacing ), b(j, k, ) = 0).

For the case 0 < a < 1, we have not assumed that Zk a(j, k,1) = 0 and we need
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to modify the proof by separating out the diagonal term (as in (3.2)):

’(Tmf’ g)l < Z Zﬂ(i/’ Kya(j, k, kya(j, k) (ijv 1/0"/«)

JJ'g—j'>0 kk

Z Z Z Z'B(j/‘k/)a(j'k'l)a(j’l)(wjksWj’k’)

m=0j.j';j—j'>0 (kDeln K

+

By using the same argument as in Lemma 3.2, we can show that the first term is
bounded by C3 7, 27*|If lssllgllg«s and the second term is bounded by

CA(m) Y72, 27 |If llgosllgll y-or (noOte that in here the term Y >, 27 converges
P.’ - . . - .

and we only need to use the estimation for |I| without recoursing to the estimation |11

in the last proof). This proves the lemma. g

LEMMA 3.4. Under the hypothesis of Theorem 3.11let1 <p,q < 0,0 <a < L.
Then T® is a bounded operator on the Besov spaces B,

PROOF. We can write

(TVf.8) = c(. k. Dag, B, D),

jkl

where f, g are defined as in Lemma 3.2. By using the duality and condition (2.3), it
can be checked as in Lemma 3.2 that [(T?f, g)| < CIIf g2+l gll g~ O

Theorem 3.1 follows directly from Lemmas 3.2-3.4. 0

4. T (1) Theorem on Triebel-Lizorkin spaces

In view of Proposition 2.2 and Proposition 2.3, we will prove the following theorem
in terms of the BCR-coefficients, which implies Theorem 1.2.

THEOREM 4.1. Let T : 2 —> Z' be a Calderén-Zygmund operator with the
wavelet decomposition as in (2.1), (2.2) and satisfying (1.1), (2.3).

() If 3 (m+ D*V1A@m) < oo, and Y a(j, k1) = > b(j, k1) =0,
then T is a bounded operator on I:’,?"’, 1<p,g<oc

(1) IfY2 ,2°"A(m) < o0 and Y, b(j, k, 1) =0 forany j,k € Z, then T is
bounded on F;,”” O<a<l,1<p, g<o0

We will first prove the theorem for F{*?, then apply an interpolation theorem
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on F{*? and F;‘-" (= B;"q ), and a duality argument to conclude the theorem. We need
the following notion of atom which can be found in [9].

DEFINITION. Let a(x) = Zj 2, k)Y (x) be alocally integrable function. We

say that a(x) is an (a, 1, q)-atom if there is a dyadic cube I C R such that
(1) suppa(x) C I;
(ii) f,a(x)dx =0;
i) A@l, < V-1,

where A(a) is defined by

1/q
4.1) Aa)(x) = (Z 20V, k)| x (2 x — k)) :

ik
Forj,k € Z, let I;; denote the interval [27k, 277 (k + 1)]. Let

(4.2) gy =Y al K)¥ue@).

j',k’:lj/ycljk

Note that the sum is actually adding all j/, k' with j <j' k' € [2" 7k, 2" (k + 1)).
It follows that the support of a;,(x) is contained in [27k,277(k + M)]. By the
definition, we know that a;,(x) is an (a, 1, g)-atom if

l/q
q

”ajk"(a‘]'q) = {27/6-D Z 2(~1/q+a+l/2)j’q Ia(].,’ k')

KL Cli

< O0.

LEMMA 4.2. Let aji(x) be the atom as in (4.2), and let T”(lz) be defined as in
Lemma 3.2. Then we have

_|com+ >3 A(m) [|a;|
A= 1 caom A (m) "ajk”

172 wo  *=0

@l O<a<l,

where C is independent of m, j , k.

PROOF. Without loss of generality we consider ag(y) and denote it by a(y) for
simplicity, that is, a(y) = ) 4., 2_o<xey @, K)¥j:(y). Noting that (g;;, Y;«) # 0
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implies that j > j'and 2 7'k’ <1 <2 ~'(k + M) + M. One can write

(TPa) (x) =YY a(', K)bn k. D (051 Vo) Yjalx)

Jki 'k

= Z (Z a(’, kKYb,(, k, D (fpjh V’j’k’)‘/’jk(x)>

jm \jkk'l

+Z( Z Za(j’,k’)bm(j,k,l)(<pjz,llfjfkf)wjk(x))

j>m \j'0<j—j'<m kk'l
Z( DO D al K)ba(  k, 1)(¢,1,w,k)¢,k(x)>
j>m \Jj'ij—j'>m kk'l

=a;(x) + ay(x) + a3(x).

Since B*!' = F*' ¢ F{", 1 < g < 00, it follows that there exists a constant C
such that ||f ||« < CIf I g Using Proposition 2.1 and the Holder inequality, we
obtain

llayll o < C

YN aG KbaG kD {0 W) Vi

j<m jkkl By
< CZ Z 2(a—l/2)j la(]-/’ k/)b,,,(i, k, D ((pjly wj’k')|
j<m kK1

<CAm) Y 3N 20 g k)|

0<j<m 0<j'<j <k’ <2’

1/q
< CA(m) Z 2% ( > 2-“1"‘")

0<j<m O<j'<m

1/q
% (Z 2 (=1/q+a+1/2)j'q ‘a()'/, k/)V)

e
. JCim+ D21 Am)all@r.qg a=0;
C2°"A(m)lall(a.1.q) O<a <l

To estimate |a|l s+, we first observe that the condition 0 < k' < 2 implies
that 0 < 27/l < M. By the expression of a;(x), we know that k € E, =
[—2m+!, 2m+l 4 2/ 4 2/ M], and hence

suppaxv) € | J | J127k, 27 (k + ) S [-1,2M).

j>mkeE;
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Let T52; = bm(i, k, D){@j1, ¥j o). Then

Y Y S aG KbaG kD {0 Vi) Y 0)

jo>mjr0<j—j'<m kk'l

<CZ Z 3D al - s KT

s=1 ilj=m+1 kI O<k’<2i-s

sy [ maen

j=m+1 k

< CZ[ YD 2ot

j=m+1 k

lazllfpes < C

F]u.'l

,,'*;lv'l

1Y el — s, KT,

k'l

Za(] s, k)T

l/q
x(2jx - k)) dx
q ] l/q
Similar to the estimate (3.3) in Lemma 3.2, we have
q
Y 1Y G s, KT < 20D AMmT Y el — s, k)]
PR

k!
It follows that

/q
lazll p=e < CA(m) Z[ Z =i +Hea+1/Djgps(- q/q’)/ZZ |a(l —s, k')|q]
i

s=1 j=m+1

m ® /q
< CA(m) Zzas [ Z 22(-1/0+a+1/2)0—.\‘)q ‘a(’ —s, k,)lq

s=1 j=mel K

C2*"A(m)lallw,1.9) O0<a <l

We now turn to estimate the term a;(x). Like a,(x), supp a3(x) [—1,2M].
Let g.(x) be defined as in the estimate of |II| of Lemma 3.2 and I‘kk = (gj«(x),
Y¥'(27*x — k')). Then

Yo S el Kbk D (@0 Ye) Yiax)

Jemjtj—j'>m kk'l

<C Z il Z D a — s KO V@)

- [am +DAMlalery @ =0;

flas Gl per < C

g
£

s=m+1 Jj=m+1 ki Fea
Vg
<C Z 2-3‘/2{ Z Zz—j+(d+]/2)}q Za(] — s, k)F ] ]
s=m+1 j=m+l k
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By the same estimate as (3.4) in Lemma 3.2, we obtain

> }Z a(j —s, k)T,
"

3

q

< C22m T A e — s, k)|
=

Hence

(o<} 00 1/q
”a3”F|"'" < C Z 2—34\'/2 { Z 2—j+(a+1/2)142s+m2mq/q' Z Ia(] —s, k/)l‘I]

s=m+1 Jj=m+1 14

00 1/q
< CA(m) Z gmyla=1s {Z 2(—1/q+a+l/2)(j—s)q Ia(] —, k/) IIJ
K

s=m+l

< C2"A(m)||all(a1,q)-

We have hence proved Lemma 4.2 by combining the estimates of a;(x), a,(x)
and a;(x). O

pr we state the following atomic decomposition of F{*?, which is given in [1]
for F1°‘2(= H') and in [6] and [9] for the general case. For completeness we modify
their proof and sketch it here.

LEMMA 4.3. Let f (x) = Y, a(j, k)Y;(x) be in F9. Then there exists a se-

quence {hg,,(x)};. of (a, 1, g)-atoms and {A,,} € R such that

@3)  f) =) huhu(x) and Clif g < Y Ianl < Gollf flges

for some fixed Cy, C, > O independent of f .

PROOF. By Proposition 2.1, f € F*? has an equivalent norm given by

1 1l per = NAG) 1.
If 2, s € Z, is a given threshold, we define Q; = {x : A(f)(x) > 2}). This
allows us to write 2, = UneN Q.. , where each @, is a maximal dyadic interval

in ,. The intervals Q,,, being dyadic and maximal, are either identical or disjoint.
For each s € Z, n € N, consider the family #,, of all dyadic intervals /;; such
that I;, C Q,, which are contained in no Q,,,, for any p. By the above construction,
we can write

Ua=U( U

s.n ix€Fm
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Foreachs € Z,n € N, let

(4.4) han(®) = Dl ™ Y @y DY),
I
where A, = |Qul VI T, . 20V 00 )7} Then, hy(x) is
an (a, 1, g)-atom and
4.5) F@) =Y a(, bvuG) =Y Auhu(x)
j.k s.n

gives an atomic decomposition of f . For the details we refer the readerto [1,6,9]. O

PROOF OF THEOREM 4.1. By Lemma 4.4 we can write f (x) € F{"? as an atomic
decomposition f (x) = ZM Asnhgn(x), where each hy, (x) is an («, 1, g)-atom defined
in (4.4). Foreach h;,(x), we can rewrite it as the form in (4.2) by assigninga(j, k) = 0
for I;; C Q,n but I, & Z,,. Using Lemma 4.2 and Lemma 4.3, we have

1971 = [ S 0 ATl
' C2°"A(m) 3" Al O0<a<l,

where C is independent of m, s, n. It follows that T is bounded on F{*?. Similarly as
in Lemma 3.3, and Lemma 3.4, we can show that both T4 and T® are also bounded
operators on F;"?. Hence, we have proved that 7T is bounded on F"?, and

CY > o(m+ 1)*"19A(m) a =0;

ITl o oy < {22
(FP R CZmzozamA(m) 0<a<l,

where 0 < o < 1, 1<q<oo

Since T is bounded on B"‘ I(= F .4}, the interpolation theorem [13] implies that T
is bounded on F “10<a < 1,1 < p < q. Similarly as in the proof of Theorem 3.1
and Theorem 4. l we can show, by interchanging the role of 7(1) and T*(1), that T
is bounded on both F‘“’ and F with —1 < o < 0,1 < g < 00. Again, applying
the interpolation theorem and the duality, T is bounded on F “0<a<lp=gqg.
This finishes the proof of Theorem 4.1. O

PROOF OF COROLLARY 1.3. With the above notation, we have || T( My <
C(m + 1)*?A(m) and || T?|| 2.2y < C(m + 1)!/*A(m) for some C > 0 indepen-
dent of m. For 1 < p < 2, by the interpolation theorem we have || T ||1v.1r) <
C(m + 1)V/2*2Up-UD A(m). Using the duality argument, for 2 < p < 00 we
have |[T® o 1vy < Clm + 1)V/2AVp=12A(m). 1t follows from the assumption

on A(m) that T® is bounded on L?. Similarly, T and T® are bounded operators
on L?; sois T. This completes the proof of Corollary 1.3. [
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