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HOLOMORPHIC SOLUTIONS ABOUT
AN IRREGULAR SINGULAR POINT OF
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Abstract

It is shown that that an ordinary linear differential equation may possess a holomorphic solution in a
neighbourhood of an irregular singular point even though the usual linearly independent solutions
corresponding to the two roots of the indicial equation both have zero radius of convergence.

1980 Mathematics subject classification (Amer. Math. Soc): primary 34 C 05; secondary 34 A 25.

1. Introduction

The literature concerning solutions of an ordinary linear differential equation
about an irregular singular point has been concerned primarily with the possible
number of regular solutions and the nature of the remaining solutions. Ince ([8],
page 422) states that if z = 0 is an irregular singular point of the equation

where the dj are all holomorphic in a neighbourhood of the origin, then there can
exist a regular solution

(1) • » = z p t fa"
n-0
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[21 Holomorphic solutions 179

about the origin only if all but a finite number of the constants /„ vanish.
Otherwise the series £/nz" has zero radius of convergence. Ince's argument is not
entirely rigorous and can only be taken as an indication of what happens in the
main.

Forsyth [3] establishes the same result. However, referring to the possibility of a
non-terminating series E/nz", he notes (page 236) that "it is not inconceivable
that for special values • • • the series would converge: and an exception to the
general theorem would occur. But it is clear that such an exception is of a very
special character."

In fact such instances do exist. Examples are provided by the equations

z2w" - ( 1 - z2)w' - w = 0

and

z2w' + aw' - b(a + bz2)w = 0

which have respective solutions wl = exp(-z) and w1 = exp(bz) about the irregu-
lar singular point z = 0.

The problem of characterising the non-regular solutions proved remarkably
obstinate. Two important lines of research have arisen. The first of these starts
with the full set of formal solutions (in general divergent)

w, = zr'CT,(z)exp£>,(z), 1 < / < n,

which is known from the work of Fabry [2] to exist in all cases. Here

s = 0

and /,, m,., k, are integers (w, > 0, /c, = r'jpl for integer r[ ^ 1). A general theory
of such asymptotic series has been established by Trjitzinsky [11] following ideas
inspired by the work of Birkhoff.

The other development has used Poincare's formal Laplace integral representa-
tion /0

ccexp(-z0",(0 dt or ^exp(z0«,(0 dt for a, to lead to expansions for a, in
terms of convergent factorial series

00

We note the work of Horn ([6], [7]), Trjitzinsky [12], Evans [1] and in particular
Turrittin [13] who gives an admirable rigorous treatment of this difficult problem.
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Hille [5] gives a clear summary and biblography (pages 198-209) and discusses
also the problem in a more general Banach algebra setting (pages 250-272).

Either of the above developments leads to an expression for an arbitrary
solution about an irregular singular point as a sum of solutions of known
asymptotic behaviour. This general approach is not very convenient for the
investigation of regular solutions. In practice, the determination of regular
solutions (1) centres about the indicial equation. If p is a root of the indicial
equation, a corresponding regular solution will have a branch point at the origin
if p is non-integral and a pole at the origin if p is a negative integer. In the event
that two roots of the indicial equation differ by an integer, logarithmic solutions
also may arise. It may also happen (the "usual" case) that the power series T.fnz"
has zero radius of convergence.

Let us restrict our attention to holomorphic solutions. In the event that the
indicial equation has roots p = 0,1 general theory provides as candidates two
corresponding power series developments wx = E"_0//nz", w2 = E^_i/2n2". Usu-
ally we choose wx with/u = 0.

In this paper we shall furnish a constructive example in which both these power
series are divergent (have zero radius of convergence) but which nevertheless
possesses a holomorphic solution in the vicinity of the origin in the form of a
non-terminating power series in non-negative integral powers of z with positive
radius of convergence. This is a linear combination of the two formal divergent
power series solutions. This phenomenon does not appear to have been remarked
previously in the literature. As the number of roots of the indicial equation must
be less than the order of the differential equation for the origin to be an irregular
singular point, such behaviour can arise only with differential equations of order
at least three.

2. Basic construction

THEOREM 1. Suppose that ()//(«);« > 0), (f(«); n > 0) are sequences of positive
numbers satisfying

(2) $(n) -* oo as n -* oo with \p strictly monotone for n > n0

and

(3) • ?(«)/</'(«) < c foralln>n0

for some constant c > 0 and integer n0 > 0. Then to a scale factor there is a unique
non-trivialsequene ( /(«); n > 0) satisfying the recurrence relations

(4) / ( » + 2 ) = * ( » + ! ) / ( / ! + ! ) - £ ( n ) / ( / i ) , n>0,
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for which

(5) |/(n + l)//(w)|-» oo asn^> oo.

77J/S unique sequence has the property that the series T.™f(n)z" is convergent for
\z\ < c"1 and w manifestly the only non-trivial sequence for which the series has
positive radius of convergence.

PROOF. Suppose that (/(n); « > 0) is any not identically vanishing sequence
satisfying (4) and (5). For brevity we shall refer to such a sequence as regular. The
assumption that such a sequence exists leads to a construction for (/(«)) which
manifests the desired properties. We note a priori that regularity implies that it is
never the case that two consecutive terms/(j), f(j + 1) both vanish, for then a
backward and forward recursion based on (4) and the non-vanishing of («K«))
and (f(«)) would yield that/(n) = 0. In particular, a regular sequence cannot
possess only a finite number of non-vanishing terms.

Let M be the set of all real-valued maps defined on the non-negative integers
with

(6) g(n + 1) > g(n) s* 1 f o r « > 0

and satisfying g(n) -» oo as n -* oo and

(7) g («) /* («) "» 0 a s « ^ o c .

For g0 G M, define

(8) M(g0) = { g e M\g{n) < go(n) for all n > 0}.

Select 0 < d < c'1 and g0 e Af. Then for n > n0,

i/<(« + 1) > cdi(n) +(1 - o/)«K/i + 1).

so that there exists an integer N(d, g0) > «0 such that n ^ N(d, g0) implies by
(3) and (7) that

and hence by (6) and (8) that

(9) t(n + 1) > dS(n)/g(n) + g(n

for all gG M(gQ).
If our regular sequence satisfies

(10) /(»i + l )> / ( t i ) g i (« i ) / r f>0

for some integer n1 > N(d, g0) and gx G Af(g0), then (4), (9) and (10) imply

/(»! + 2)> Uin, + 1) - dSin^/g^)]/^ + 1)
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Then by mathematical induction

/(« + 1) >f(n)g1(n)/d> 0 for all n > nx

and so/(« + 1)//(«) —> oo as n —> oo, in contradiction to (/(«)) being regular.
Thus for every nl 5* iV(d, g0), relation (10) cannot occur for any gx e M(g0). As
gj is an arbitrary element of M(g0), it follows that for any e > c"1, there exists an
integer N(e) such that n > N(e) implies / (« + 1) > ef(n)> 0 never occurs. A
similar argument holds for the inequality/(« + 1) < ef(n) < 0. Since i/<(n) -» oo
as /i -» oo, equation (4) implies that there exists an TV such that n ^ N entails that
the possibilities f(n + 1), / («) are of opposite sign or / («) = 0, f(n + 1 ) ^ 0
never occur. Since no two consecutive terms/(«), /(« + 1) can vanish, the terms
f(n) must ultimately be of fixed sign and without loss of generality we may take
this sign as plus.

Fix e > c"1. Then for all n sufficiently large, n > NY> N, n0 say, we may
assume

(11) 0 < f(n + I) < ef(n)

and

(12) e^M-
Then for m > Nv

e/(m + 1) > f(m + 2) = 4>{m + l)/(w + 1) - £(m)f(m) > 0,

whence from (11)

(13) S(m)f(m)Mm + 1) < / ( m + 1) < f(#n)/(m)/[*(m + 1) - e].
This relation can be employed as a basis for a backward recursion using (4) to
show that for Nx < j ^ m + 1, the value oif(j) lies between

and an expression (15) which is the same except that ^(m + 1) - e replaces
^(w). Here

*(1) x(2) x(r)
- y(2)- y(r)

is used to denote the continued fraction

(16) - [ 7 ^ - *(1)[^(1) - A2)[y(2)

(see Khovanskii [10]).
It is readily verified that (2) and (3) guarantee that as m -> oo the continued

fractions in (14) and (15) converge to a common limit
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and if c' > c then

[ -Hi - i) I00

(17) 0 < - , , < c' for ally sufficiently large.
L ^(0 \

fory

ij

We thus have

(is)

and a further backward recursion extends this result to hold fory > «0. If

the recurrence relations (4) may be solved to yield that (18) holds also for
1 <y < n0, that is,

(20) f(j)=-f{j - 1 ) 1 " , , _ , ' \ , J>0.

More generally, suppose that

(21) *(-» [ Mr)

for one or more values 1 < sl < s2 < • • • < s, < n0. In this event the recursion
argument leads to (20) fory > s, with/(s, - 1) = 0. Further,

/(*,) = -S(s, - 2)f(s, - 2)

and

f(s, - 2) = Us, ~ 3)f(s, - 2,)Ms, - 2) = _[ j

by virtue of (21). An elementary induction leads to the recurrence relations

f(s, - 1) = 0, 1 < i < t,

f(st) = -S(Sl - 2)f(Si - 2), 1 < / < t,

fU) = -fU -

It follows that (/(«)) is uniquely determined to a scale factor.
Thus (/(«)) is uniquely determined to a scale factor whether or not (19) holds

and it is trivial that the sequence so constructed does in fact satisfy (4). Inequality
(17) ensures that T,f(n)z" is convergent for \z\ < c"1 and the theorem is proved.
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COROLLARY. Under the conditions of Theorem 1, the unique sequence concerned is
prescribed by

(22)

/ ( « ) = B Y\ Aj otherwise,
1

where

(23)

+ i

Y\' / ij+2

otherwise.
j

3. Minimal solutions

A three-term recurrence solution

( 2 4 ) yn + i = Kyn + « J n - i . an*0,n>l,

is said to have a minimal solution (hn) if (/»„) is non-trivial and if for some
solution (kn) we have the relation

hn/kn -* 0 as « -» oo

(cf. Jones and Thron [9], page 163).
It is readily seen that if (yn) is a solution not proportional to (hn) then

(25) hn/yn~>0 a s / i ^ o o .

A minimal solution, if it exists, is unique up to a scale factor. As (25) indicates, a
minimal solution may be regarded as a difference equation analogue of a
principal solution for a linear second order differential equation (cf. Hartman [4],
page 355, Theorem 6.4).

By a theorem of Pincherle (see [9], page 403, Theorem B.4) the recurrence
relations (24) have a minimal solution if and only if [ar/br]f is convergent, and
in the event that this occurs hm/hm_1 = -[ar/br]™. It is evident that the regular
solution constructed in the previous section is a minimal solution for the
recurrence relation (4).
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4. Main Theorem

THEOREM 2. There exists a linear ordinary differential equation L(w) = 0 with an
irregular singular point at the origin and possessing the following properties:

(i) corresponding to roots p = 0,1 of the indicial equation there are formal power
series solutions

bof/i o/ w/i/'c/i /iaue zero radius of convergence;
(ii) f/iere is a holomorphic solution about the origin in the form of a non-terminat-

ing power series with a positive radius of convergence.

PROOF. Consider the equation

z2(l - *z)w"'(z)-{a0 - axz + a2z
2)w"(z)

+ (bo-b1z)w'(z)-cow(z) = 0,

where the a,, fyand c0 are all positive and <j> > 0. It is immediate that the origin is
an irregular singular point with class (characteristic index) unity and that the
indicial equation has only the roots p = 0,1.

Formal series substitution of T.fnz" for w in (26) furnishes the recurrence
relations

-fn + 2"o(n + 2)(n + 1) + / B + 1 (« + 1)[«(» - 1) + axn + b0]

-fn[<t>n(n - l)(n - 2) + a2n(n - 1) 4- bxn + c0] = 0, n > 0,

which is of the form (4) with

*(«) = [(« - 1)(« - 2) + fll(n - 1) + 6o]/[flo(» + 1)],
f (n) = [««(« - 1)(« - 2) + a2n(n - 1) + V + co]/[ao(« + 2)(n + 1)].

Because of the stated positivity of the coefficients in equation (26), the sequences
(^(n)) , (£(«)) can be seen trivially to be eligible candidates to act as the forcing
sequences in Theorem 1 for any value of c satisfying c > <t> and the theorem
follows at once.

We remark that the results of Theorem 1 give convergence of Y.fnz
n for

\z\ < <f>~1. Inspection of (26) shows that this result is best possible in general.
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