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Abstract In this paper, we study partitions of totally positive integral elements « in a real quadratic
field K. We prove that for a fixed integer m > 1, an element with m partition exists in almost all K. We
also obtain an upper bound for the norm of a that can be represented as a sum of indecomposables in
at most m ways, completely characterize the a’s represented in exactly 2 ways, and subsequently apply
this result to complete the search for fields containing an element with m partitions for 1 < m < 7.
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1. Introduction

Additive number theory studies properties of subsets of the positive rational integers Z>4
with respect to addition. Many of its problems can be translated to other commutative
semigroups but the results are scarce. One flourishing area at the intersection of additive
number theory and combinatorics is the theory of partitions. A partition is a way of
representing n € Z>; as a sum of positive integers, while two partitions that differ
only by the order of their parts are considered to be the same. There are many results
about the partition function p(n), defined as the number of partitions of n. Hardy and
Ramanujan [10] proved an asymptotic formula for p(n), which was further improved
by Rademacher [26]. Ramanujan [28, 29] also discovered his famous congruences for p(n)
modulo powers of 5, 7, and 11. The effort to find congruences for other moduli culminated
in the paper [25] by Ono, who proved among other things that for every prime m > 5,
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2 M. Zindulka

there exist infinitely many n € Z>; such that p(n) = 0 (mod m). There are countless
partition identities, for example Euler’s identity, the first and second Rogers—Ramanujan
identities, and the two Golnitz—Gordon identities. For an introduction to the theory of
partitions, we refer the reader to the elementary [2] or the more advanced classic [1].
Partitions can be made sense of in the setting of number fields. Let K be a totally real
number field, Ok its ring of integers, and (9?; the set of totally positive integers in K. A
partition of a € OIJQ is a way of representing a as a sum of totally positive integers, i.e.,

a=A1+ A+ -+ A

where \; € (’)} for 1 < i < /. Again, two partitions are considered to be the same if they
differ only by the order of their parts. We define px () to be the number of partitions
of a and call pg the partition function associated with the number field K. We also set
PK (0) = 1.

Compared with the integer partition function p(n), the function px (n) is poorly under-
stood. The problem to determine the asymptotic behaviour of px(«) as the norm of «
grows to infinity was proposed by Rademacher [27] and solved by Meinardus, first for a
real quadratic field [22] and then in general [23]. If K is a totally real field of degree d
and discriminant A, then [23; Satz 3, p. 346] shows that

1

ety N(a)) o)),

VA

as N(a) — oo. Here ¢ denotes the Riemann zeta function. This result was further
generalized to a number field which is not required to be totally real by Mitsui [24].

Some basic properties of px were established in a paper of Stern and the author [31].
In particular, px(a) satisfies a recurrence formula similar to a well known recurrence
for p(n) [31, Theorem 1], which can be used to compute particular values of px(«).
It can also be applied to prove a result about the parity of px(n), where n € Z>q
[31, Theorem 2]. In two recent papers, Jang, Kim, and Kim developed a framework
for extending partition identities from Z to Ok and used it to prove a version of the
Euler-Glaisher Theorem [14, Theorem 4.1], Sylvester’s Theorem [15, Theorem 3.2], and
the Rogers—Ramanujan identities over a totally real field [15, Theorem 3.8, Corollary
3.13]. The Frobenius problem for totally positive integers was studied by Fukshansky
and Shi [9].

A natural generalization of integer partitions is vector partitions; see [1, Chapter 12]
for an introduction to this topic. Vector partitions of v € Z% are of the form v =
vi+ vy + -+ vy, where v; € Zio is non-zero for 1 <1 < /. If K is of degree d, we can

logpk(a) = (d+1) <

fix an integral basis (o, as,...,aq) and view o € O as a vector in Z?. Thus, the two
types of partitions are closely related, even though the positivity condition is different:
we require the parts to lie in the “totally positive cone” defined by

{(ml,xg,...,xd) GZd|a:: T10q + Tatg + -+ + Tgoy >0}.

The proofs of some of the most fascinating results in the theory of integer partitions such
as the ones in the previously mentioned paper [25] use modular forms. A major obstacle
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Totally positive elements with m partitions 3

to extending these results to either vector partitions or partitions in number fields is that
the corresponding generating functions are not known to satisfy any interesting modular
properties.

Let us mention that there is also another type of partitions in number fields. Namely,
for a fixed S € C, one can consider partitions of a € C, where the parts are powers of [,
i.e., partitions of the form

a=a;f +a; 17+ + a1+ ao, a; € L>o.

If 3 =m € Z>o, then these are the so-called m-ary partitions. Kala and the author [19,
Theorem 1] characterized the quadratic irrationals 5 such that the number of partitions
of a is finite for every a € C. The theorem was extended to an algebraic number g8 of
arbitrary degree by Dubickas [8, Theorem 1.3].

Stern and the author [31] studied the following problem: For a fixed m € Z>1, deter-
mine all the real quadratic fields K such that px(a) = m for some a € Of. We
let

D(m) := {D € Z>5 squarefree | m ¢ px (OF)},

i.e., D(m) is the set of D’s such that m does not belong to the range of px in K = Q(v/D).
If m is one of the values of the integer partition function p(n), then D(m) is finite

(this is a consequence of [31, Theorem 7]). In particular, D(m) was determined for m €

{1,2,3,5,7,11} in [31, Theorem 3] and additionally for m = 4 in [31, Theorem 11]:

D(1)=0, D2)=0, DB)={5}, DH4) =0, D()={2,3,5}

D(7) = {2,5}, D(11) = {2,3,5,6,7,13,21}.

The main result of the present paper is that an element with m partitions exists in
almost all real quadratic fields in the sense that real quadratic fields K having an element
a with pg(a) = m are of density 1. This is surprising in view of the fact that by the
asymptotic formula of Meinardus, px(«) grows exponentially with the cube root of the
norm of « in a fixed K. In particular, the result of Meinardus implies that there is no
totally real K such that for all m € Z>1, there exits an a € O} with px (o) = m.

Theorem 1.1 Let m € Z, m > 4, and
E(m, X) = {2 < D < X | D squarefree, {1,2,...,m} ¢ pr(O}) for K = Q(\/ﬁ)}
For every X > 2 satisfying X > (2m — 5)12(log X)*, we have
#E(m, X) < 100(2m — 5)%/%(log X)>/2X /8.

Proof. This will be proved as a part of Theorem 4.3. O

A consequence of Theorem 1.1 is that D(m) has density zero for every m € Z>;. This
is stated explicitly in Corollary 4.4.
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The above list of the sets D(m) does not include the case m = 6. We completely
characterize the elements o € O} such that px(a) = 6, and then determine D(6) in
Theorem 7.9.

A distinguished role in the study of partitions in (’)}"{ is played by the so-called indecom-
posable elements. An element o € O;Q is indecomposable if there do not exist 8,v € O;Q
such that @ = B + 7. Thus, these are the elements o € Of satisfying px(a) = 1.
They were used by Siegel [30] in 1945 to show that if K is a number field, K # Q and
K # Q(/5), then there exists an o € O} which cannot be represented as a sum of
squares, and they found many other applications in the theory of universal quadratic
forms since then [3, 4, 20].

Let K = Q(v/D), where D € Zss is squarefree. Dress and Scharlau [7, Theorem 2]
characterized the indecomposables in (’)} in terms of the continued fraction of v/D. As
a corollary, they proved the following: the norm of an indecomposable « € (’)}E satisfies

D it D=2,3 (mod 4),

Ll if D=1 (mod4).

N(a) <cp :=

If the fundamental unit € in Ok has norm —1, then the bound is optimal. In the case
when the norm of € equals 1, it was refined in [13] and [32].

In general, no satisfactory description of indecomposables is known in fields of degree
higher than 2. It is not difficult to show that there exists a constant cx > 0 such that if
a € OF is indecomposable, then N(a) < cx (for the argument, see [7, p. 292]). Brunotte
[5] obtained a bound for the norm in terms of the group of units of K. Kala and Yatsyna
[18, Theorem 5] found a simple argument showing that in a totally real number field K of
arbitrary degree d and discriminant A, every indecomposable element o € (9} satisfies
N(a) < A. This bound is usually much better than Brunotte’s. In [18, Theorem 6] it is
used to construct a universal diagonal quadratic form over O of rank < C-A(log A)4~1,
where the constant C' > 0 depends only on d.

Kala and Tinkové [16, Theorem 1.2] characterized indecomposables in the family of
the simplest cubic fields. Cech, Lachman, Svoboda, Tinkové and Zemkové [6] studied
biquadratic fields and found sufficient conditions for an element to be indecomposable.
Recently Man [21] completely characterized the indecomposables in certain families of
biquadratic fields, see for example [21, Theorem 1.6].

Let us introduce one more piece of notation. We define px(a|Z) as the number of
partitions of a with indecomposable parts, i.e., partitions (A1, Ag, ..., A¢) such that A; is
indecomposable for 1 < i < ¢. Hejda and Kala [11] called an element a € O} uniquely
decomposable if px(a|Z) = 1. By [11, Theorem 10], the norm of these elements can
bounded as

N(a) < \/Z(2\/Z+ 1) (3\/Z+2) :

A natural question is how to estimate the norm of a non-uniquely decomposable element.
Our next result is an extension of the theorem of Hejda and Kala.
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Theorem 1.2 Let K = Q(\/ﬁ), where D € Z>o is squarefree and let m € Z>y. If
a € (’);} can be represented as a sum of indecomposables in at most m ways, then

N(a) <m?(2m+1)(2m +3) - VA (\/K—I— 2)2,

where A is the discriminant of K.
Proof. This will be proved as Theorem 5.5. 0

The norm of a convergent is bounded by 2D'/2, the norm of an indecomposable by D,
and the norm of a uniquely decomposable element by a constant times D3/2. The theorem
states that for a fixed m, the norm of an element o € O} such that px (a|Z) < m is also
bounded by a constant times D3/2. Let us compare this with a bound for the norm of
an « such that pg(a) = m. We will prove in Theorem 5.6 that if m > 2, then N(«) is
bounded by a constant (depending only on m) times v/D. This is not true for m = 1,
when « is indecomposable.

In Theorem 6.1, we characterize all the elements o € O} which can be represented as
a sum of indecomposables in exactly 2 ways, i.e., px(a|Z) = 2. We obtain an improved
bound for the norm of these elements in Theorem 6.10.

Let us say something about the importance of the problems considered in this paper.
Proving that px has certain property for a fixed K is usually hard. For example, the
problem whether there exist infinitely many distinct values pg (a) such that pg () =0
(mod m), where m € Zx>o, is wide open. Thus, it was of interest to find some weaker
property of the range that we could prove. This naturally led to the question of deciding
whether a given m belongs to the range of px. An analogous question for the integer
partition function reduces to a finite computation but in the setting where K varies, it
becomes non-trivial. Our approach was to first study partitions into indecomposables
because the other partitions can be built from them by combining the indecomposable
parts together. Since the only indecomposable element in Z>; is 1, studying integer
partitions with indecomposable parts would not be very interesting. The new results in
this paper, e.g., Theorem 4.1 and Theorem 7.9, show how certain properties of px for
K = Q(v/D) depend on the continued fraction of wp (defined in § 2).

The rest of the paper is organized as follows. In § 2, we collect the preliminaries about
continued fractions and indecomposables. In § 3, we find all possible representations of
elements in a certain specific form as a sum of indecomposables. These results are applied
to prove Theorem 1.1 in § 4 and Theorem 1.2 in § 5. Elements « such that pg(a|Z) = 2
are characterized in § 6 and D(6) is determined in § 7.

2. Preliminaries

We always work in a real quadratic field K = Q(\/ﬁ), where D € Z> is squarefree. The
Galois conjugate of o € K is denoted by o', and we let N(a) = aa’ and Tr(a) = a + o’
be the norm and trace of a. The element « is totally positive if @« > 0 and o’ > 0, and
we denote this fact by a = 0. We also write a = fif a— 8 > 0and a = g if a > [ or
« = . The relation > is a partial order on K.
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The pair (1,wp), where

VD ifD=23 (mod4),
H%@ if D=1 (mod 4),

is a Z-basis of O . We also set

VD ifD=23 (mod 4),

@ if D=1 (mod 4),

{p = —wp =

and op := |€p]+wp. Next, we describe how to characterize the indecomposable elements
of K in terms of the continued fraction of op, following the exposition in [11, p. 3]. The
continued fraction expansion op = [Gg, U1, - - -, Us_1] is purely periodic. We have |wp| =
(%] = %r(”’), hence wp has a continued fraction expansion wp = [[ug/2], a1, - -, Us),
where us = ug. Let £t be the convergents to wp defined by % = [[uo/2], w1, ..., u;] for
1 > 0. We have the recurrence relations

Dit+2 = Uit+2Pi+1 + Di,

Gi+2 = Yit2qi+1 + ¢i,

for ¢ > —1 with the initial conditions (p_1,9-1) = (1,0) and (po,q0) = ([uo/2],1).
We let o; := p; + q;ép for i > —1 and «;, := a; + rayyq for r € Z>o. By an abuse of
terminology, the a;’s are also called convergents and the «; ,’s are called semiconvergents.
The sequence («;) satisfies

Qjyo = Uip20i4+1 + O,

for i« > —1 with the initial conditions a—; = 1 and ag = [ug/2| +&ép = |wp] +&p- Tt
follows that v y,,, = ciy2,0. We have a; = 0 if and only if 4 is odd. Dress and Scharlau
[7] proved that all the indecomposable elements of K are ; ,, where i > —1 is odd and
0 <r < wuipo — 1 together with their conjugates ag)r.

Let € > 1 denote the fundamental unit in Ox and et > 1 the smallest totally positive
unit in Og. We have € = a,_1 and

" &= 4_1 if s is even,

€2 = qog_1 if s is odd.

It is not difficult to show that ec; = g1y, hence eta; = a,y; if s is even and ety =
Qgsys if s is odd. Consequently, there are only finitely many indecomposables up to
multiplication by totally positive units.
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If we let
A={ai,|i>—10dd,0 <7 <uis — 13\ {1},

and A" := {a/|a € A}, then the set of indecomposables equals Z := A’ U {1} U.A. The
indecomposables «; , get larger when (7, r) increases with respect to the lexicographical
order, while o} . get smaller. We order the elements of Z into a two-sided sequence

<P Pa<P=1l<Bi<B<. ..,

so that f_; = 3} for j € Z.

Lemma 2.1. ([11, Lemma 1]) For each j € Z we have that
viBj = Bj-1+ Bjt1,

where

Vs = 2 Zfﬂl]‘:alﬁ‘ with Odd'LZ*l andlgrguu_Qfl’
! Ui+1 + 2 Zfﬁm = 05,0 with odd 1 Z —1.

Much of our paper is motivated by the following result of Hejda and Kala [11]. Tt was
proved independently by Se Wook Jang in his unpublished manuscript [12].

Theorem 2.2 ([11, Theorem 3]) If a € (’)?}, then there exist unique jo,e, f € Z
with e > 1 and f > 0 such that o = efj, + fBjo+1-

Every relation of the form Y hjB; =0 (with h; € Z and only finitely many non-zero)
is a Z-linear combination of the relations Bj_1 — v;B; + Bj+1 = 0, where j € Z.

The uniquely decomposable elements are characterized as follows.

Theorem 2.3 ([11, Theorem 4]) Let a € Of and j € Z, e € Z>1, f € Z>o such
that o = ef; + fBj41. We have pr (a|Z) =1 if and only if

1<e<w;—1, 0<f<wjpz1—1 and (e, f)# (v; —1,vj41 —1).
Proof. This is an equivalent statement of [11, Theorem 4], see also [11, (8)]. O
Finally, we collect some elementary properties of partitions and the partition function
in K. A partition A\; + A2 + - - - + A¢ will also be denoted by (A1, A2, ..., A¢). Let us stress
that this will always be viewed as an unordered tuple. The partition function satisfies

pir(a’) = pi(a) and if 1 is a totally positive unit, then px(na) = pi(a). The same is
true for pg (-|Z). We also have pg (o) < px(8) and pk (a|T) < px(B|T) if o < B.
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3. Partitions with indecomposable parts

From Theorem 2.2, we know that every a € (9;; can be expressed in the form a =
ef; + fBj+1 for a (unique) j € Z. In this section, we determine px (a|Z) for particular
choices of (e, f). This is an intermediate step in proving some of our theorems. Throughout
the paper, v; € Z>s for j € Z are the numbers from Lemma 2.1.

Lemma 3.1. Let t € Zx¢. If there exists ko € Z>o such that v, = 2 for k € {j —
ko,...,j+/€0+t}, then

Bi + Bixt = Bi—1 + Bj+i4t = - = Bi—ko—1 + Bjtho+1+t-

Proof. By Lemma 2.1, we have 208, = fBr—1 + Br+1 for k € {j — ko,...,j + ko + t}.
Let k1 € {0,...,ko}. If (k1,t) # (0,0), then summing over k € {j — ky,...,j + k1 +t},

we get
Jt+ki+t Jjt+ki+t j+ki—1+t
S 28e= > (Be-1+Bet1) = Bjmk-1+ Bjk, + > 28
Bkt + Bjrk 141,
hence
Bi—ky + Bjtky+t = Bj—ky—1 + Bjthy+1+¢-
But the last equality holds also for (k1,t) = (0,0). O

Lemma 3.2. Let o = B, + By,, where ji,j2 € Z and j1 < jo. If Bj, = o for some
Js € Z such that j3 > ja or j3 < ji, then vy = 2 for k € {j1,...,J2}.

Proof. We may assume that (3, < a for some jz > ja by considering o’ and 3} . We
have 85,41 < Bj; < a. From Lemma 2.1, we get

VjoBjo = Bja—1 + Bja+1 < Bja—1 + By + Bja
hence
(Wjs = 1B < Bjy + Bjo-1.
If vj, > 2, then
(v, = 1)Bj, > 285, > Bjy + Bijo—1,

a contradiction. Thus, v;, =2 and §;, < B, + Bj,—1-
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We claim that
’Uk:2 and Bk Sﬁjl +6k717 ke{j17"'7j2}- (1)

We showed this for £ = j3. Assume that (1) holds for £ € {j; + 1,...,72}. From
Lemma 2.1, we get

V—1Pk—1 = Br—2 + B < Br—2+ By, + Br—1,
hence
(V-1 — 1)Br—1 < Bj, + Br—2.
If vi,_1 > 2, then

(Vh—1 — 1)Br—1 > 2Bp—1 > Bj, + Br—2,

where we used k—1 > j;. This is a contradiction, hence vix—1 = 2 and Bi_1 < 5j, + Bi—2,
which proves (1) with & — 1 in place of k. O

Lemma 3.3. Lett € {0,1} and o = Bj+Sj4+. Ifv; > 2 orvjy > 2, then pr (a|Z) = 1.
On the other hand, if there exists ko € Z>q such that vi, = 2 fork € {j—ko,...,j+ko+t}
but Vj_gy—1 > 2 OT Vjykoti4t > 2, then pr(a|Z) = ko + 2. Moreover, all the partitions
of o with indecomposable parts are (B, Bj+ktt), where k € {0,1,... ko + 1}.

Proof. If t = 0 and v; > 2, then a = 23; is uniquely decomposable by Theorem 2.3.
Similarly, if ¢ =1 and v; > 2 or vj11 > 2, then o = 3; + ;41 is uniquely decomposable.
In both cases, px(«|Z) = 1.

Assume that there exists kg € Z>¢ with the required properties. Lemma 3.1 shows that
(Bj—k, Bj+k+e) for k € {0,1,... ko + 1} are partitions of «, hence px(a,Z) > ko + 2. It
remains to show that o cannot be expressed as a sum of indecomposables in any other
way.

Let ji :=j — ko — 1 and jo = j + ko + 1 + ¢. Assume for contradiction that 3;, = o
for some js € Z such that j3 > jy or j3 < ji. Since o = B35, + B;,, Lemma 3.2 implies
vy =2 for k € {ji1,...,j2}. In particular v;_g,—1 = 2 and v,1g,+14¢ = 2, contradicting
the assumptions.

Finally, suppose that §;, with j1 < js < jo appears in some partition of a. If j, < 7,
then we let j, = j — k and if j4 > j, then we let jy =j + k+ ¢ for k € {0,1,..., ko + 1}
(here we use the assumption ¢t € {0,1}). Since §;_, and [ r4+ are indecompos-
able, the only partition of a containing these elements is (8;_, Bj+k+¢). This proves
pK(Oz|I) :i0+2. O

Proposition 3.4. Let i > —1 be odd, 0 < r < ujpo — 1, and B; = oy We have

pr(26;|Z) = min{r + 1,ujo — 7+ 1},
P (B + Bis1|T) = min{r + 1, u; o — 1},
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and

Pr(28;) = min{r + 2, u;1o — r + 2},
P (B + Bj+1) = min{r + 2, ujpo —r + 1}

Proof. First, consider the case r = 0. We have 8; = o0, hence v; = u;42 +2 > 2. By
Lemma 3.3, px (26;|Z) = 1 and pg (B; + Bj+1|Z) = 1.

Secondly, consider the case 1 < r < u;yo — 2. We have 3; = o, and 41 = @ p41-
Moreover, B, = ;o and B4 (u; s—r) = Qiu, = Qit2,0- From Lemma 2.1, we obtain
Vjp = Uip1+2 > 2, vp = 2for j—(r—1) <k < j+(uigo—r—1) and v (u,,,—r) = Uir3+
2 > 2. Thus, if t = 0, then the number k¢ in Lemma 3.3 is kg = min{r — 1, u;4o — 7 — 1}
and pr(26;]Z) = ko + 2. Similarly, if ¢ = 1, then the number k¢ in Lemma 3.3 is
ko = min{r — 1,u;40 —r — 2} and px (B + Bj+1/7) = ko + 2.

Next, consider the case r = u; 49 — 1. If u; 1o = 1, then » = 0, which was treated above.
Hence, we can assume u;12 > 2. We have §; = a;, and 811 = Qju,,, = Qiy2,0. From
Lemma 2.1, we obtain v; = 2 and vj41 = %43 + 2 > 2. Thus, if £ = 0, then the number
ko in Lemma 3.3 equals 0 and px(25;|Z) = 2, while if ¢ = 1, then Lemma 3.3 implies
pr (B + Bi+1lT) = 1.

The only partitions of 2f; with indecomposable parts are of the form (8;_x,8j+x),
where k € Z>. Hence, the only other partition of 23; is the trivial partition (23;), and
pr(28;) = pr (2B;|Z) + 1. Analogously, px (85 + Bj+1) = pr(B; + Bj+1|T) + 1. O

4. Subsets of the range of the partition function

Our next theorem gives information about the range px (O};) of the partition function
pr . We show that if there exists a large coefficient u; for some odd ¢ > 1, then the range
contains a large set of consecutive integers. As a corollary, we obtain that {1,2,...,m}
is a subset of the range for “almost all” real quadratic fields K.

Theorem 4.1 Let wp = [[ug/2];u1,-.-,Us| be the continued fraction expansion of
wp. If B:=max{u;|i > 1 odd}, then

B
Sy = {1,27...7{2J +2}sz<(0?<)»

and
B +
So:=<1,2,..., 5 +1 CpK(OK|I).

In other words, there exists an element a € O[Jg with m partitions for every m in S1, and
an element with m representations as a sum of indecomposables for every m in Ss.

Proof. Let i > —1 be odd and such that u;;o = B. We note that 1 € pg (O;)
because px (8) = px(B|Z) = 1 for every indecomposable 8 € OFf. If 2 <m < [Z]| +2,
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then we set r = m — 2, so that 0 < r < g. By Proposition 3.4, the element 3; = a;
satisfies

pr(26;) =min{r+2,B—r+2} =r+2=m.
This shows S; C pr(O%).
Next, we prove the second inclusion in the theorem. If 1 < m < L%J + 1, then we set
r=m—1,s0 that 0 <r < %. By Proposition 3.4, the element §; = «;,, satisfies
pr(265|7) =min{r+1,B—r+1} =r+1=m.
This shows Sy C pr(O%). O

Kala, Yatsyna, and Zmija [17] showed that if B > 0 is a fixed bound, then the set of
D’s such that u; < B for every odd ¢ > 1 has density zero.

Lemma 4.2. ([17, Corollary 2.12]) For every X,B > 2 satisfying X >
B'2(log X)*, we have

#{1 <D < X|wp =[[ug/2],ur,uz,...|,usn_1 < B for all n}
< 100B%%(log X )3/2X /8,

As a straightforward application of Theorem 4.1 and Lemma 4.2, we show the following
result, which includes our main Theorem 1.1.

Theorem 4.3 Let m € Z, m > 4, and
E1(m, X) := {2 < D < X | D squarefree, {1,2,...,m} ¢ px(OF) for K = Q(\/B)} ,
For every X > 2 satisfying X > (2m — 5)12(log X)*, we have
#E(m, X) < 100(2m — 5)%/%(log X )3/2X /8,
Secondly, let m € Z, m > 3, and
Ea(m, X) := {2 < D < X | D squarefree, {1,2,...,m} ¢ px(O%|T) for K = Q(\/B)} .
For every X > 2 satisfying X > (2m — 3)*2(log X)*, we have
#E(m, X) < 100(2m — 3)3/%(log X)3/2 X7/,

Proof. As above, we let wp = [[ug/2],%1, - - -, us| be the continued fraction expansion
of wp.
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First, let By := 2m —4, so that | B1/2] +2 = m. Theorem 4.1 shows that if there exists
an odd i > 1 such that u; > By, then {1,2,...,m} C px(O}) for K = Q(v/D). Thus,

E1(m, X) C{2< D < X |wp =[[uo/2],u1,usz,...],uzn—1 < By — 1 for all n}.

Since m > 4, we have By —1 = 2m —5 > 2. For X > 2 satisfying X > (B; —1)*?(log X )4,
the size of this set is < 100(B; — 1)3/2(log X)3/2X7/® by Lemma 4.2.

Secondly, let By :=2m — 2, so that | B2/2] +1 = m. Theorem 4.1 shows that if there
exists an odd ¢ > 1 such that w; > By, then {1,2,...,m} C px(Of|Z) for K = Q(v/D).
Thus,

E(m, X) C{2< D < X |wp =[[uo/2],u1,us2,...],uzn-1 < By — 1 for all n}.

Since m > 3, we have By —1 = 2m —3 > 2. For X > 2 satisfying X > (Bs —1)?(log X )4,
the size of this set is < 100(By — 1)3/2(log X)3/2X7/8 by Lemma 4.2. O

Theorem 4.3 shows in particular that for a fixed m € Z, m > 4, we have

I #E1(m, X) _
im =
X—+oo #{2 < D < X | D squarefree}

We recall from the Introduction that
D(m) := {D € Z>5 squarefree | m ¢ px(O})},

and that D(1) = (), D(2) = 0, and D(3) = {5}. Hence, {1,2} C px(O}) for every K and
{1,2,3} C pr(O}) for every K # Q(1/5). This leads to the following corollary.

Corollary 4.4. Let m € Z, m > 1. The set D(m) has density zero, i.c.,

lim #{2 < D < X, | D squarefree, D € D(m)}

— O~
X—+00 #{2 < D < X | D squarefree}

5. Norm bounds

The aim of this section is to prove Theorem 1.2. First, we introduce some useful notation
and results from [11].

We recall that wp = [[uog/2], W1, - -+, Us) is the continued fraction expansion of wp. Let
Yo = wp and y; = [u;, Uit1, Uipa,...] for i > 1. We have u; < v; = u; + ﬁ < u; + 1 for
i > 1. Moreover, ug = 2|wp | — Tr(wp) < VA, hence u; < ug < VA for every i > 0.

If ¢ > —1, then we let (as in [11, p. 4])

Ip? — Dg?| if D=2,3 (mod 4),

N; = [N(ow)| = (=)' N() = : ot
p? —pigi — 2L if D=1 (mod 4).
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Lemma 5.1. ([11, Lemma 7]) For alli > —1, we have

VA N;

Nij1 = - —
Yit+2  Vit2
We note that N_; = 1 because a_; = 1, and by the preceding lemma, we have
Nip1 < % < u_—\/i for i > —1. Thus, N; < T\/E for every i > —1.

Lemma 5.2. ([11, Lemma 8]) Ifa,b€Z and i > —1 odd, then

)(b\/ZJraNi—b Ni )

Yi+2

N (ac; + ba;q1) = (a —

Yi+2

Lemma 5.3. ([11, Proposition 9]) If a = ea;, + fa; 41, where i > —1 is odd,
0<r<upgo—1,e>1,and f >0, then

A

N(@) < VA(r+De+ (20 e+ ) and  N(o) < (e [P

The next lemma extends Lemma 5.3 and its proof follows along the same lines.

Lemma 5.4. If @ = eq;, + fo 41, where i > —14s odd, 0 < r < ujpe —1, e > 1,
and f >0, then

N(@) < VA (g2 — 7+ 2)e + (wig2 — 7 + 1) f) (wisa — 7+ L)e + (wisa —7)f).

Proof. We have o = aa;+ba; 1, where a = e+ f and b = re+(r+1) f. By Lemma 5.2,
N(a) = N(aw; + baj1) = AB, where

N;
, B:=bvA+aN; —b .
Vi+2 Yi+2

Setting s := w42 — r, we get

1 1o — 1o — 1
A:e<1— r )+f<1—7"+ >=e<1—“’+25>+f<1—““25+>.
Vi42 Yi+2 Yi+2 Yi+2

From w;yo < viyo < uiys + 1 it follows that

A<

es+1+f s _ (s—l—l)e—i—sf.
Yit2 Yi+2 Ui+2

Since b=re+ (r+1)f < (r+1)(e+ f), we have

B < VA +1)(e+ f) + AN, < VB(urys — s + e+ f) + VAET eSS

Ui+2
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Thus,
N(a) = AB < VA((s + e+ sf)(e+ f) + \/Z((SJFI)Z—‘E*SJC)Q
Uit

Since u;42 > 1, we get

N(a) < VA((s +2)e+ (s +1)f) (s + 1)e + sf).

We are ready to prove Theorem 1.2, restated here for convenience.

Theorem 5.5 Let K = Q(v/D), where D € Zsy is squarefree and let m € Zsy. If
a € (’)?; can be represented as a sum of indecomposables in at most m ways, then

N(a) < m?(2m +1)(2m +3) - VA (\/ZJr 2)2,

where A is the discriminant of K.

Proof. By Theorem 2.2, there exist j,e,f € Z with e > 1 and f > 0 such that
o = ef; + fBj+1. By passing to the conjugate if necessary, we can assume that 5; = «; »
for some ¢ > —1 odd and 0 < r < u;yo — 1.

If e > mwj,, then v;8; = Bj—1 + Bj+1 can be used to rewrite « at least m times. More
precisely,

a=kBj_1+ (e —kv;)B; + (k+ f)Bj+1,

for k € {0,1,...,m}, hence px(a|Z) > m + 1, a contradiction. Thus,
e <mu; < m(uit1 +2) <m(\/Z—|—2),

where we used that v; < u;11 + 2 by Lemma 2.1.

Similarly, if f > mv;41, then v; 118,41 = B; + 542 can be used to rewrite a at least
m times, a contradiction. Thus,

f<mujp <m(uipz+2) <m (\/ZJrQ) .

First, we consider the case f = 0. If e = 1, then « is indecomposable and

A
4Nit1

N(a) = N(a; ) <

by Lemma 5.3. If e > 2, then by Proposition 3.4, we have

m > pr(a|Z) > pr(26;|Z) = min{r + 1, u;yo — r + 1}.
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Thus, r <m —1 or u; 1o — 7 < m — 1. In the first case, we use Lemma 5.3 to get

2
N(a) < VA(r 4 1)e? <m3-\/Z(\/Z+2> .
In the second case, we use Lemma 5.4 to get

N(a) < VA(uito — 7+ 2) (w2 —r + 1)e? < VA(m + 1)me?
< (m+1)m3'\/g(\/z+2)2.

Secondly, we consider the case f > 1. By Proposition 3.4,
m > pr(alZ) > pr(B; + Bj+1|T) = min{r + 1, uip2 — 7}

Thus, r <m — 1 or u;42 —r < m. In the first case, we use Lemma 5.3 to get

2
N(a) < VA(me + (m+1)f)(e+ f) < 2m?* + m)2m- VA (VA+2) .
In the second case, we use Lemma 5.4 to get

N(a) < VA ((m +2)e+ (m+1)f) ((m+ 1)e +mf)
< (2m? +3m)(2m? +m) - \/Z(\/K+2)2.

This proves the estimate in each case. O

Our main goal is to show that there exists a bound of the form < C(m)A?%/? rather
than find the best possible value for C(m), and Theorem 5.5 is in fact not optimal. For
m = 1, we have

N(a) < \/Z(2x/Z+ 1) (3x/5+2) ,

by [11, Theorem 10] mentioned above. For m = 2, we will get an improvement in
Theorem 6.10.

Next, we use the same technique to prove a bound for the norm of a € (’);2 such that
pi () = m when m > 2.

Theorem 5.6 Let K = Q(\/ﬁ), where D € Zxq is squarefree, let m > 2, and let
no(m) be the largest n € Z> such that p(n) < m. If a € OF satisfies px(a) = m, then

N(a) < m(m+ )ng(m)? - VA,

where A is the discriminant of K.
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Proof. As in the proof of Theorem 5.5, we may assume that « is of the form o =
efj + fBjt1, where j > 0, e > 1, f > 0, and 8; = «;, for some ¢ > —1 odd and
0 S T S Ui+2 — 1.

We claim that p(e + f) < px (). Let ¢ be a mapping which sends an integer partition
A= (/\1,...,)\@) Of€+ft0

s1—1 s1

(p()\) = (Alﬁja ey )\Slflﬁj, (6 — Z As) ﬁj + (Z )\s — 6) 5j+1a
s=1 s=1

)‘51+16j+17 B /\fﬂj+1>a

where 1 < s7 < £ is the largest index such that Zi!ll As < e. The mapping ¢ is injective,

which proves the claim. From the claim, we obtain e + f < ng(m).

First, suppose that f = 0. Since m > 2, we have e > 2, and then by Proposition 3.4,

m = pr(a) > pr(23;) = min{r + 2, u;42 — 7+ 2}.
Thus, r <m — 2 or u;12 —r < m — 2. In the first case, Lemma 5.3 implies
N(a) < VA(r 4+ 1)e? < (m — 1)ng(m)? - VA.
In the second case, Lemma 5.4 implies
N(a) < VA(uira — 74 2)(uiye — r + 1)e? < m(m — 1)ne(m)? - VA.
Secondly, suppose that f > 1. By Proposition 3.4,
m = pg(a) > px(B; + Bj41) = min{r + 2, w40 —r + 1}.
Thus, r <m — 2 or u;12 —r < m — 1. In the first case, Lemma 5.3 implies
N(a) < VA((m = 1)e 4+ mf)(e + f) < mno(m)? - VA.
In the second case, Lemma 5.4 implies
N(a) < VA((m~+1)e +mf)(me+ (m —1)f) < (m + Dmng(m)? - VA.

O

6. Elements represented as a sum of indecomposables in two different ways

Next, we prove a characterization of the elements « € (9}; which can be expressed as a
sum of indecomposables in exactly two ways.

Theorem 6.1 Let o € Of and j € Z, e € Z>1, f € Lo such that a = eBj + fBj11.
We have pr (a|Z) = 2 if and only if one of the following conditions is satisfied:
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1) vi<e<20;—1,0< f<w;11—2, and
j j j

(evf) 7é (Q’Uj - 17Uj+1 - 2)7 (’Uj*he) 7& (2a2vj - 1);
(Uj—l;ea f) # (272vj - 2ﬂvj+1 - 2)7

(2) 1<e<wv;—2, v41 < f< 20541 —1, and

(6, f) 7& (Uj - 2a2vj+1 - 1)7 (fu Uj+2) 7é (2Uj+1 - 1a2)7
(67 fv vj+2) 7& (Uj - 27 2UjJrl - 27 2);
(3) e=v; — 1, = vj+1 — 1, and (vj*17vj7vj+1ﬂvj+2) # (2727272)'
Proof. The theorem follows from Lemma 6.2 and Lemmas 6.3 to 6.5 below. O

Lemma 6.2. Let a € O and j € Z, e € Z>1, f € Zxo such that o = eB; + fBjt1.
If pr(a|T) = 2, then one of the conditions (1), (2), (3) in Theorem 6.1 is satisfied.

Proof. First, we show that if o can be expressed as a sum of indecomposables in
exactly 2 ways, then either v; <e <2v; —1land 0 < f <vj41—2,0r1 <e<v; —2and
Vi1 < <204 —1l,ore=v;—land f=vj41—1.If1<e<v; —1,0< f<wjq — 1,
and (e, f) # (v; — 1,v;41 — 1), then px(«|Z) = 1 by Theorem 2.3. On the other hand, if
e > 2vj, then

a=efj+ fBjr1=Bj—1+ (e —v;)B; + (f +1)Bj+1
=281+ (e — 2v;)B; + (f +2)Bj+1,

and if f > 2v;41, then

a=efj+ fBir1=(e+1)B; + (f —vjy1)Bjr1 + Bjr2
= (e+2)B; + (f — 2vj41)Bj41 + 2Bj 42,

hence px(a|Z) > 3 in both of these cases. If v; < e < 2v; —1 and v;41 —1 < f, then

a=efj+ fBit1=Bj-1+ (e —v;)B; + (f +1)Bj11
=Bj-1+(e—vi+1)B + (f +1—=vj1)Bjr1+ B,

hence pi («|Z) > 3. Similarly, if v; —1 < e and v;4; < f < 2vj41 — 1, then

a=efj+ fBit1=(e+1)B; + (f —vj+1)Bj+1 + Bj+2
=Bj1+(e+1—v)8; + (f —vjp1 + 1)Bjs1 + Bira,
hence pg (o, Z) > 3.

Secondly, we show that if (e, f) = (2v; — 1,v;41 — 2) or (vj_1,e) = (2,2v; — 1) or
(’Uj*hea f) = (2a2vj - 272Uj+1 - 2)) then pK(OZ‘I) > 3. 1If (evf) = (2vj - ]-vUjJrl - 2),
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then
a= (20 = 1)Bj + (vj41 — 2)Bj41 = Bj—1 + (v; = 1)B; + (vjt1 — 1)Bj1 = 2851 + B2
If (vj—1,€e) = (2,2v; — 1), then

a=(20; = 1B+ fBij1=Bj—1 + (v; = 1)B; + (f + 1)Bj+1 = Bj—2 + (f + 2)Bj+1.
If (vj_1,e, f) =(2,2v; — 2,vj41 — 2), then
a = (2vj = 2)B; + (Vj+1 — 2)Bj+1 = Bj—1 + (vj; — 2)B; + (Vj+1 — 1)Bj+1 = Bj—2 + Bjte.
Thus, pr(a|Z) > 3 in all of these cases. Analogously, one can show that if (e, f) =
(vj —2,20541 — 1) or (f,vj42) = (2041 —1,2) or (e, f,vj42) = (v; —2,2vj41 —2,2), then
px(alZ) = 3.

Finally, we show that if e = v; — 1, f = vj41 —1, and (vj_1, v, vj41,Vj42) = (2,2,2,2),
then pg (a|Z) > 3. We have a = 5 + (41, and by Lemma 3.1 with ¢t =1 and ko =1,

Bj + Bit1 = Bj—1 + Bjr2 = Bj—2 + Bjys,
hence px (a|Z) > 3. O

Lemma 6.3. Let a € (’)E and j €Z, e € Z>1, [ € ZLxq such that o = efj + fBj+1.
If (1) in Theorem 6.1 holds, i.e., v; <e<2v; —1,0< f<wv;1; —2, and

(e, f) # 2uj = Livjpa —2),  (vj—1,€) # (2,20; — 1),
(vjflv €, f) 7é (27 2Uj - 27Uj+1 - 2))
then pi (o|Z) = 2.
Proof. Assume that the condition holds. We have
a=eBj+ fBit1 = Bj—1+ (e —v;)B; + (f + 1)Bj+1,

hence pg(a|Z) > 2. It remains to show that there are no other partitions of « with
indecomposable parts.

First, suppose for contradiction that there exists k € Z, k > j + 2 such that S, < a.
We have 312 < B < a.

Case e < 2v; —2 and f <vj41 — 3: we have

28; + 3641+ Bj+2 < (e +2)8; + (f +3)Bjx1 < 20585 +vj+1854+1
=281+ 2841 + Bj + Bjt2,

hence
Bi + Bjx1 <2851,

a contradiction.
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Case e =2v; — 1, f <wjpq1 — 3, and vj_1 # 2: we have

B +3Bj11+ Bjr2 < (e+1)B; + (f +3)Bj4+1 < 20,85 + vj+1841
=281+ 28541 + B + Bjro,

hence fj41 < 28;_1. Since vj_1 # 2, we have v;_; > 3, and so
2B < viBi = Bj—1 + Bij+1 < 3Bj—1 S vi—1Bj—1 = Bj—2 + B,

hence f; < Bj—2, a contradiction.
Case e < 2v; — 3 and f = v;41 — 2: we have

385 + 26511 + Bijr2 < (e +3)65 + (f +2)Bj41 < 20385 + vj418i+1
=281+ 2841+ Bj + Bjte,

hence 28; < 28;_1, a contradiction.
Case e = 2v; — 2, f =vj41 — 2, and vj_1 # 2: we have

2B; + 28541 + Bj+2 < (e +2)B; + (f +2)Bj+1 = 2v; 85 + 418541
=2Bj-1+ 2841+ Bj + Bj+2,

hence ; < 28;_1. Since v;_1 # 2, we have v;_; > 3, and so
Bj—1+ B; <3Bj—1 <vj_1Bj—1 = Bj—2 + B,
hence 3;_1 < fj_2, a contradiction.
Secondly, suppose for contradiction that there exists k € Z, k < j—2, such that 8; < a.

We have ﬂ;fQ <@ <.
Case e < 2v; — 2 and f < vj41 — 3: we have

Bi o+ 2B +3651 < (e+2)8; + (f +3)B)41 < 20585 + vj41854
=201 + 2811 + B + Bl

hence
Bi—a+ B+ Biy1 <2651 + Bjya
It follows that
2851 + Bjp1 S vjm1Biy + Biyr = Bj_a + B + B < 2851 + B,

hence 37, ; < B}, a contradiction.
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Case e =2v; — 1, f <wj4q1 — 3, and vj_1 # 2: we have

B;‘—Z + 5; + 3»3;'-1-1 < (e + 1)5; + (f + 3)5;‘-5-1 < 2”]'/8;' + Uj+1ﬂ;'+1
= 25;‘71 + 25}+1 + B} + ﬁ;‘+2a

hence
Bi—a + Bjs1 < 2851 + By
Since vj_1 > 3, it follows that
36)_1 + Bj1 S vj—1Bj_1 + Bjy = Bi—a + Bj + Bjy1 < 26j1 + B} + Bi1a
and so
28, < ;B = By + By < B+ Braas

hence 3% < B}, a contradiction.
Case e < 2v; — 3 and f = v;41 — 2: we have

Bi_o+3B;+265 1 < (e+3)8; + (f+2)8}1 < 20;8; + vj118541
=261 + 2851 + 85 + Bjtas

hence
B+ 285 <281 + B 1o
It follows that
2851+ B S vj—1Bi_y + B = Bi_o + 285 < 2851 + By,

hence 37 < f},,, a contradiction.
Case e = 2v; — 2, f =vj41 — 2, and vj_1 # 2: we have

5;'—2 + 2B§ + 2@4—1 <(e+ 2)ﬂ; +(f+ 2)/8;'4-1 = 2“1'6;‘ + Uj+16;+1
=2B;_1 + 2541 + Bj + B2

hence
Bi—o+ B <267 1 + B

Since vj_1 > 3, it follows that

35;'71 < Uj—15;'71 = 55'72 + 5; < 25;'71 + 5542;

hence 3 _; < B}, ,, a contradiction.
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We showed that every partition of o with indecomposable parts is of the form
a=aj_1Pj-1+a;B + ajr18541,
where aj—1,05,0541 € Zzo. Using ﬂj_l = ’Ujﬁj — ﬁj+1, we get
eBj + fBj+1 = (aj-1v; +a;) Bj + (aj41 — aj-1) Bj1-
The elements 3; and ;41 are linearly independent over Q, hence e = a;_1v; + a; and
f = aj41 —aj_1. Since v; < e < 2v; — 1, the only possibilities for a;_; are 0 or 1,
which gives us (a;j_1,4aj,a;41) = (0,e, f) or (aj—1,aj,a41) = (1,e — v;, f + 1). Thus,
pi(a|T) = 2. O

Lemma 6.4. Let a € O and j € Z, e € Z>1, f € Zxo such that o = eB; + fBj+1.
If (2) in Theorem 6.1 holds, i.e., 1 <e<v; —2, vj41 < f <2041 — 1, and

(e, f) # (v —2,2v541 — 1), (f,vj42) # (2vj41 — 1,2),
(67 f7 Uj+2) 7é (Uj - 27 2Uj+1 - 27 2)7
then px (a|Z) = 2.

Proof. If welet j' = —(j+1), ¢ = f, and f' = e, then

of =ef;+ B = fB_(jr1) +ef—j =€ Bj + f Bt

Since vji_1 = vj42, v = vjy1, and vy = vj, it follows that o' satisfies condition (1)
in Theorem 6.1 (with 7/, €/, and f’ in place of j, e, and f). By Lemma 6.3, px(a|Z) =
pr(d|T) = 2. O

Lemma 6.5. Let a € O}} and j € Z, e € Z>1, [ € Z>o such that o = ef; + fBj41-
If (3) in Theorem 6.1 holds, i.e., e =v; — 1, f =vj11 — 1, and (vj_1,v,Vj41, Vjy2) #
(2,2,2,2), then px(a|Z) = 2.

Proof. Assume that the condition holds. We have
a=(v; = 1)Bj + (vjy1 — 1)Bjt1 = Bj—1 + Bjta,

hence px (a|Z) > 2. It remains to show that px («|Z) < 2.

Suppose for contradiction that 3;, < o for some j3 € Z such that jz > j 4+ 2 or
js <j—1. By Lemma 3.2, vy =2 for k € {j — 1,5,5 + 1,7 + 2}, a contradiction.

Since the elements ;1 and Bjy2 are indecomposable, the only partition of o
containing ;1 or fj12 is Bj—1 + Bj42. This concludes the proof thatpx (a|Z) =2. O

In Theorem 6.9 below, we provide an explicit characterization of the elements o € O}Q
such that px («|Z) = 2 expressed in terms of the u;’s instead of vi’s. Then we use it to
improve the bound on N(«) from Theorem 1.2 with m = 2.
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Suppose that o = eo» + fov;r41, where ¢ > —1is odd and 0 < r < w40 — 1. Let
J € Z>¢ be such that 8; = o, hence o = ef; + fB;1+1. By Lemma 2.1, we have

’U,H_1+2 ifT:O, 2 ifOS’I‘SUH_Q—Q,
Vj41 =
2 ifIST‘S’UJH_Q*l, U1'+3+2 if’l":u“_gfl.

Uj:

If > 1, then Bj_1 = o p—1, and if r = 0 and ¢ > 1, then 8;_1 = &;—2,4,—1. On the other
hand, if r = 0 and ¢ = —1, then j = 0 and v;_; = v_; = v;. Thus,

2 if r =0 and up; > 2,
ujj—1 +2 ifr=0and uy =1,
uir1 +2  ifr=1,

2 if2<r<wujqpo—1.

Vj—1 =

Ifr < ujpo—3, then Bj1o0 = @ pq2, and if r = u; 10 —2, then 840 = jyo0. fr = uj10—1
and w; 44 > 2, then B;10 = o421, and if r = u;49 — 1 and u;44 = 1, then B2 = ajta0.
Thus,

2 ifOSTSUiJrQ_?),
Uirs +2 ifr=wu;40—2,
Uj+2 =
2 if r= Ui+2 — 1 and Ui44 Z 2,

Ui+5 +2 ifr= Uit2 — 1 and Ujtq4 = 1.

Lemma 6.6. Let o = e, + fayrq1, wherei > —14s odd and 0 < r < w0 —1. The
element « satisfies condition (1) in Theorem 6.1 if and only if one of the following holds:

(a) 7=0, uip1 +2<e<2uy1+1, f=0, and uy2 > 2,

(b)) r=0,e=2u;1+2, f=0,uy =1, and uj2 > 2,

c) r=0,u41+2<e<2uy1+1, 0 <wuigs, uy = 2, ana w49 = 1,
0, tig1 +2< e < 2uip1 +1, 0< f < uips, wy > 2, and uipp = 1

(d) r=0,e=2uj1+2,0< f<wuigs—1, up > 2, and uiyo =1,

(e) 7=0,uiy1 +2<e <21 +2,0< f<uys, uy =1, and ujqo = 1,

(f) r=0,e=2uj1+3, 0 f<wips— 1, up =1, and ujo =1,

(g) r=1,e=2, f =0, and w42 > 3,

(h) r=1,e=2,0< f <uits, and uj42 = 2,

(i)T:17e:3;0§f§ui+3_1,and'l,bi+2:27

(G) r=tip2—1,e=2,0< f <uiys — 1, and u;y2 > 3,

Proof. Let j € Z>¢ be such that 8; = o ., hence a = ef8; + fB;41. Assume that o
satisfies condition (1) in Theorem 6.1, i.e., v; <e<2v; —1,0< f <wj41 — 2, and

<€7f) 75 (2’Uj — 1,’Uj+1 — 2)7 (Uj,1,€> 75 (2,27)j - 1),
(vj-1,€, f) # (2,205 — 2,041 — 2).
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Case r = 0: we have v; = w1 + 2. If w0 > 2, then vjy1 = 2. If uy > 2, then
vj—1 = 2. Condition (1) becomes u;+1 +2 < e < 2u;41 +3, f =0, and e # 2u;41 + 3,
e # 2uip1 + 2, hence w1 +2 < e < 2ujpq + 1. If upy = 1, then vy = up_y +2 > 2.
Condition (1) becomes u;11 +2 < e < 2u;41+3, f =0, and e # 2u;4+1 + 3, hence we get
the additional possibility e = 2u; 1 + 2. This gives us (a) and (b).

If Ui+2 = 1, then Vj+1 = Ui43 + 2. We get Ui41 + 2 S € S 2Ui+1 + 37 0 S f S Ui43- If
uj;) > 2, then v;_y = 2 and e # 2u;y1 + 3, (e, f) # (2ui41 + 2,u;43). This gives us (c)
and (d). If uj; = 1, then vj_y = wj;_1; +2 > 2, hence (e, f) # (2usy1 + 3,ui43). This
gives us (e) and (f).

Case r = 1: we must have u;y2 > 2 and v; = 2. Moreover, v;_1 = uj4+1 +2 > 2. If
Uit > 3, then vj41 =2, hence 2 < e <3, f =0, and (e, f) # (3,0). This gives us (g).

Ifujyo =2, thenvji1 = u;13+2,hence2 < e < 3,0 < f < w;yg, and (e, f) # (3, uir3).
This gives us (h) and (i).

Case 2 < r < uiqpg — 2: we have vj_1 = 2, v; = 2, and vj11 = 2, hence 2 < e < 3,
f=0,and e # 3, (e, f) # (2,0). We see that these conditions are never satisfied.

Case r = u;y+o — 1: because we have already dealt with the cases r =0 and r = 1, we
may assume ;42 > 3. We have v; = 2, v11 = u;43+2,and v = 2. We get 2 < e < 3,
0 < f <uits, and e # 3, (e, f) # (2,u;+3). This gives us (j). d

Lemma 6.7. Let o = ea, + fayrq1, wherei > —14s odd and 0 < r < w0 —1. The
element « satisfies condition (2) in Theorem 6.1 if and only if one of the following holds:

(a) r=0,1<e<ujy1—1, f =2, uj41 > 2, and u;y2 > 3,

(b)) r=0,1<e<wu1—1,2<f<3, ujy1 > 2, and u;j42 = 2,

(c) =0, e=ujr1, f =2, and u;1o =2,

(d) r=0,1<e< U1 —1, uiyz3 +2 < < 20543 + 2, Uip1 2> 2, Uiy = 1, and
Ujpsq > 2,

(e) T=0, e =ujt1, uiys +2 < f < 2ujp3+ 1, uipa =1, and ujpq > 2,

(f) r=01<e< Uy —1, uigs +2 < f< 20543 + 3, Uir1 > 2, g2 = 1, and
Uipqg =1,

(9) T=0, e = ujr1, wiys +2 < f < 2uir3 + 2, uino =1, and ujpq = 1.

Proof. Let j € Z>( be such that §; = o, hence a = ef; + fB;41. Assume that o
satisfies condition (2) in Theorem 6.1, i.e., 1 <e <wv; —2, vj41 < f < 2vj41 — 1, and

(e, f) # (v; —2,2v541 — 1),  (f,vj42) # (2vj41 — 1,2),
(e, fvjt2) # (v; — 2,20541 — 2,2).

Case r = 0: we have v; = w41 + 2. If w49 > 2, then v;41 = 2, hence 1 < e < u;4; and
2 < f <3.If ujyo > 3, then vj49 =2, hence f # 3 and (e, f) # (uit1,2). This gives us
(a). If uj1o = 2, then vj 40 = u;y3+2 > 2, hence (e, f) # (ui41,3). This gives us (b) and
(c).

If uj4o =1, then vj41 = uj43+2, hence 1 < e < wu;qq and ujp3+2 < f < 2u;3+3. If
Uira > 2, then vj1o = 2. We get f # 2u;43 + 3 and (e, f) # (wi+1, 2ui+3 + 2). This gives
us (d) and (e). If u;4q =1, then vj1o = w5 +2 > 2. We get (e, f) # (wit1,2ui43 + 3).
This gives us (f) and (g).
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Case 1 <r < w0 — 1: we get v; = 2, hence 1 < e <0, a contradiction. O

Lemma 6.8. Let o = eaj, + farq1, wherei > —14s odd and 0 < r < w0 —1. The
element « satisfies condition (3) in Theorem 6.1 if and only if one of the following holds:

(a) r=0,e=wup1+1, f=1, and uj42 > 2,

(b)) r=0,e=uj1+1, f =uip3+1, and ujyo =1,
(c) r=1,e=1, f=1, and u;42 > 3,

(d) r=1,e=1, f=ujr3+1, and uj1o = 2,

(e) T=ujno—2,e=1, f =1, and ujyo > 4,

(f) r=wiqo2—1,e=1, f =uy3+ 1, and uj42 > 3.

Proof. Let j € Z be such that 8; = o, hence o = ef; + fBj4+1. Assume that o
satisfies condition (3) in Theorem 6.1, i.e.,

e = ’Uj — 1, f = ’Uj+1 — ].7 and (’Ujfl,'l}j,’l)jJrl,U‘H,g) 7é (2,2,2,2)

Case r = 0: we have v; = w2 + 2. If uj49 > 2, then vj41 = 2, which gives us (a). If
U2 = 1, then vj11 = u;43 + 2, which gives us (b).

Case r = 1: we must have u;42 > 2 and v; = 2. If u;40 > 3, then v; 1 = 2. Moreover,
vj_1 = uj41 + 2 > 2. This gives us (c). If uj42 = 2, then v;41 = u;43 + 2, and this gives
us (d).

Case 2 < r < wujpo — 3: we have v; = 2, vj11 = 2, vj_1 = 2, and vj41 = 2, a
contradiction.

Case 1 = u;49 — 2: since we have already treated the cases r = 0 and r = 1, we may
assume ;2 > 4. We have v; = 2, vj41 = 2, and vj49 = u;+3 + 2, giving us (e).

Case r = u;42 — 1: we may assume ;42 > 3. Now v; = 2 and vj41 = u;43 + 2, which
gives us (f). O

Theorem 6.9 All the elements o € OF such that px(a|Z) = 2 are the following
(where i > —1 is odd):

o av=c;0+ fa; with

(a) uiz1 +2<e<2uy1+1and f=0if ujp >2,

(b) e =2u;1+2 and f =0 ifuy =1 and uipn > 2,

(c) wizo +2<e<2uj1+1and 0 < f <wyz ifuy > 2 and upo = 1,

(d) e =2uiyo+2 and 0 < f <wuiyz — 1 if up > 2 and uyo = 1,

(e) uit1 +2<e<2ujp1+2and 0 < f <wpz ifuy =1 and upo =1,

(f) e=2uir1+3 and 0 < f <wiys — 1 ifuy =1 and uje =1,

(9) 1<e<wujy1—1and f =2 if ujy1 > 2 and u;12 > 3,

(h) 1<e<wujt1—1and2< f <3 ifuip1 > 2 and uips =2,

(i) e=uit1 and f =2 if ujyo =2,

G) 1<e<ujyr —1 and uiys +2 < f < 2ui590+ 2 if ujp1 > 2, uino = 1, and
Ui+422,

(k) e=ujp1 and ujps +2 < f <2uq3+ 1 if ujpo =1 and ujpq > 2,
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(l) 1 S e S Ui+1 — 1 and Ui4-3 +2 S f S 2ui+3 +3 Z'qu_l Z 2, Uj4+2 = 1} and
ui+4:]-;
(m) e=wuiy1 and uip3+2 < f <2ujp3+2 if ujpo =1 and ujpq =1,
(n) e=uip1+1 and f=1 if uj12 > 2,
(o) e=wuip1+1 and f =uip3+ 1 if ujpo = 1.

o v =ea; 1+ foy o with
(p) e=2and f =0 if uj1o > 3,
(¢9) e=2and0< f <wuiqz if ujpo =2,
(r) e=3and0< f <wujys—1 if ujpo =2,

(s) e=1and f=1 if uj42 > 3,
(t) e=1and f=uir3+1 if ujro =2,

o =cQiy 2+ fQu,,—1 withe=1and f =1 if uj12 >4,
o o= eqy; ,—1 T fai+2’0 with

(u) e=2and 0 < f <wujrg— 1 if ujeo >3,
(v) e=1and f =uiy3+1 if uj o >3,

e conjugates of all of the above.

Proof. This follows from Theorem 6.1 by putting together the conditions in
Lemmas 6.6 to 6.8. g

Theorem 6.10 If o € (’); can be expressed as a sum of indecomposables in 2 ways,
i.e., p(a|Z) = 2, then

N(a) < 5VA (VA +1) (3VA+2),

where A is the discriminant of K.

Proof. We need to estimate the norms of the elements o« = eq;, + fa; 41 in
Theorem 6.9.
First, suppose that » = 0. By Lemma 5.3, we have

N(a) < VA(e +2f)(e + f).

Now we substitute the bounds for e and f from cases (a)—(0) in Theorem 6.9. For example,
in (a) we have e < 2u;; 1 +1 < 2v/A 41 and f =0, hence

2
N(a) < VA (2VA+1) .
The worst case is (1), where e < w41 —1 < VA —1and f < 2uiy3+3 < 2v/A+3, hence

N(a) < VA (5VA+5) (3VA+2).
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Secondly, suppose that » = 1. By Lemma 5.3, we have
N(a) < VA(2e + 3f) (e + f).

We analyze the cases (p)—(t) in Theorem 6.9. The worst case is (t), where e = 1 and
f=uiys+1 < VA +1, hence

N(a) < VA (3VA+5) (VA +2).

Next, suppose that r = u; 1o — 2. By Lemma 5.4, we have

N(a) < VA(4e + 3f)(3e + 2f).

From Theorem 6.9, we get e = 1 and f = 1, hence N(a) < 35V/A.
Finally, suppose that r = u;492 — 1. By Lemma 5.4, we have

N(a) < VA(3e +2f)(2e + f).

We look at the cases (u) and (v) in Theorem 6.9. In (u), we have e = 2 and f < wu;y3—1 <
VA — 1, hence

N(a)<\/Z(2\/Z+4) (Va+3).
In (v), we have e = 1 and f = u;43 + 1 < v/A + 1, hence
N(a) < VA (2VA+5) (VA +3).

This proves the bound for N(«) in each case. O

7. Elements with a small number of partitions

In this section, we use our results about partitions with indecomposable parts to describe
all the elements with 6 partitions and determine D(6). A sufficient condition for the
existence of a € O} with 6 partitions was found in [31], where it was also remarked that
this condition is not necessary.

Theorem 7.1 ([31, Theorem 12]) Let K = Q(v/D), where D € Z>5 is squarefree,
D #5, and let o = ([2p] +2) + 2wp.

[€p] — &p > %, then pi(a) =6,
9

o [f
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Since &p = wp it D =2,3 (mod 4) and {p =wp — 1 if D =1 (mod 4), we have that
[€p] —&p > % is equivalent to wp — |wp | < % From the continued fraction expansion
1

wp — lwp] = ————,
U1+ o

we see that this is equivalent to u; > 2. We also note that D # 5 is equivalent to
ug = 2|wp| — Tr(wp) > 2. Thus, if ug > 2 and u; > 2, then the element « from
Theorem 7.1 satisfies px () = 6.

The set D(6) will be completely determined in terms of the continued fraction of wp
in Theorem 7.9.

Lemma 7.2. Let o € (9;2 and j €EZ, e € Z>1, [ € ZLxq such that o = efj + fBj+1.

If prc(r) <6, then (e, f) € {(1,0),(2,0),(3,0),(4,0), (1,1),(2,1), (1,2)}.
Proof. We show that if o = 53; or a = 383;+8j41 or o = B;+3841 0or @ = 25;+28; 41,
then pg (o) > 7.
The element 53; has at least 7 partitions corresponding to the 7 partitions of 5, namely
(55j)7 (4ij Bj)v (gﬁjv 2ﬁj)7 (SB]') ij 5j)7 (2ﬁja 25]'7 ﬁj),
(285, Bj, Bj» Bj), and (B4, By, By, B, Bj)-

The element 35; 4 3,41 has at least the following 7 partitions:

(385 + Bj+1), (385, B5+41), (265,85 + Bjiv1), (85,265 + Biv1), (265,65, B+1),
(Bj:Bjs B + Bix1), and (B, B, B, Bj+1).

Similarly, 8; + 38,41 has at least 7 partitions obtained from the partitions of 38; + 8,41
by exchanging the roles of §; and 3;,1.
The element 25; 4 23,41 also has at least 7 partitions:
(2B; + 2Bj+1), (285 + Bj+1, Bj+1), (285,2B541), (By: B85 +2Bj+1), (285, Bjt1: Bj+1)s
(6]75]) 26]+1) and (Bj,6j76j+laﬁj+l)-

O

Lemma 7.3. Let ¢ > —1 be odd and 0 < r < w9 — 1. For o = 2a;,, we have
pi () = m if and only if either r = m — 2 and w42 > 2m — 4, or r = ujyo — (M — 2)
and u;49 > 2m — 3.

For o = oy, + @41, we have pg(a) = m if and only if either 1 = m — 2 and
Uip2 > 2m — 3, or r = uipo — (M — 1) and w42 > 2m — 2.

Proof. By Proposition 3.4, we have
Pr (20,r) = min{r + 2, u; 4o — r + 2},

hence px (2¢v,) = m if and only if either r +2 =m and w40 —r+2>m,orr+2>m
and ujyo —r+2=m.
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Similarly,
pr (i, + @ pq1) =min{r + 2, w40 — 7+ 1},

hence px (e + i ry1) = m if and only if either r +2 = m and w40 — 7+ 1 > m, or
r+2>mand ujys —7r+1=m. O

Lemma 7.4. If a = 33;, where j € Z, then we have the following:

if v; > 4, then pg(a) =3,

if v; =3, then px(a) =4,

ifv; =2, vj_1 > 2, and vj41 > 2, then px(a) =6
ifv; =2 and vj_1 =2 or vjy1 =2, then px(a) > 8.

Proof. If v; > 4, then px(a|Z) = 1 by Theorem 2.3. The only partition of a with
indecomposable parts is (3;, 85, ;), and all partitions of « are

(35j)a (2ﬁjaﬁj)7 and (ﬁjaﬁjvﬁj)7 (2)
hence pg(a) = 3.

If v; = 3, then « satisfies condition (1) in Theorem 6.1, hence px(a|Z) = 2. We
have 38; = B;_1 + B;+1, and all partitions of « are the ones listed in (2) together with

(Bj-1,Bj+1), hence p (o) = 4.

If v; =2, vj_1 > 2, and vj41 > 2, then a again satisfies condition (1) in Theorem 6.1,
hence px(a|Z) = 2. We have 35; = ;-1 + B; + B;j+1 and all the partitions of « are the
ones listed in (2) together with

(Bj—1,B5 + Bj+1), (Bj—1+ By, Bj+1), and (Bj—-1, B, Bj+1)s (3)

hence pg(a) = 6.
If v; =2 and vj_; = 2, then

36 = Bj—1+ Bj + Bj+1 = Bj—2 + 2Bj+1.
The element « has the 6 partitions in (2) and (3), together with
(Bj—2,2B;41) and (Bj—2, Bj+1, Bj+1),

hence pg (a) > 8.
If v; =2 and vj11 = 2, then

3B; = Bj—1+ Bj + Bjr1 = 2Bj-1 + Bjt2,
and we again have pg(«) > 8. O

Lemma 7.5. If o = 40;, where j € Z, then we have the following:
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o ifv; > 5, then px(a) =5,
o ifv; =4, then px(a) =6,
e if vj =3, then px(a) > 8,
e if v; =2, then px(a) > 16.

Proof. If v; > 5, then px(a|Z) = 1 by Theorem 2.3. It follows that « has 5 partitions
corresponding to the partitions of 4, namely

(48), (3B, 85), (285,28;5), (285,85, B;), and (B;, Bj, By, Bj)- (4)
If v; = 4, then « satisfies condition (1) in Theorem 6.1, hence px (a|Z) = 2. We have
4B = Bj—1 + Bjt1,

and « has the 5 partitions listed in (4) together with (5;_1, 8j4+1), hence px(a) = 6.
If v; = 3, then

48; = Bi—1 + B + Bj+1,

and « has the 5 partitions in (4) together with

(Bj—1, 85 + Bj+1), (Bi—1+ By, Bj+1), and (Bj—1, B, Bj+1)s

hence px (o) > 8.
If v; = 2, then

4B = Bij—1 + 2B + Bjt1 = 28;-1 + 28541,

hence « has the 5 partitions in (4) together with the 7 partitions

(Bj=1,2B5 + Bj+1), (Bj—1+ 2085, Bi41), (Bi—1+ 55,85 + Bji+1), (Bj—1,2B;,B5+1),
(Bi—1 + By, 85, Bi+1), (Bi—1, 085,85 + Bi+1), (Bi—1, 85,85, Bj+1)

and the 4 partitions

(2B5-1,2B5+1)s (2Bj-1,8j+1,Bj+1)s (Bi-1,B5-1,28541), (Bj—1,Bi—1,Bj+1,Bj+1)s
hence px (o) > 16. O

Lemma 7.6. If o = 208; + Bj4+1, where j € Z, then we have the following:

if v; >3 and (vj,vj41) # (3,2), then p(a) =4,
if (vj,vi41) = (3,2), then px () =5,

if v =2 and vj11 > 4, then px(a) = 6,

if v =2, vj41 =3, and vj_1 > 2, then px(a) =6,
ifv; =2, vj41 =3, and vj_1 =2, then pr(a) =7,
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o ifv; =2 and vj41 =2, then px(a) > 8.

Proof. If v; > 3 and (vj,v;41) # (3,2), then px(a,Z) = 1 by Theorem 2.3, and all
partitions of o are

(285 + Bjx1)s (B, B + Bjv1)s (285, Bj41),and (B;, By, Bjx1)- (5)

If (v;,v;41) = (3,2), then « satisfies condition (3) in Theorem 6.1, hence px (a, Z) = 2.
We have

26 + Bj+1 = Bj—1 + Bj+2,
and all the partitions of « are the 4 partitions listed in (5) together with (8;_1,8;+2).

If v; = 2 and vj41 > 4, then « satisfies condition (1) in Theorem 6.1, hence px (o, 7) =
2. We have

28 + Bjy1 = Bj—1 + 28,41,

and a has the 4 partitions in (5) together with

(Bj-1,2Bj+1) and (Bj—1,Bj+1, Bj+1), (6)
hence pg(a) = 6.
If v; =2, vj41 = 3, and v;_1 > 2, then « also satisfies condition (1) of Theorem 6.1,

and we have pg(a) = 6 as above.
If v; =2, vj41 =3, and vj_1 = 2, then

28; + Bj+1 = Bj—1+ 2Bj41 = Bj—2 + Bjta.
By Lemma 3.2, if 3, X Bj_2 + Bj42 for some js € Z, j3 > j + 2 or js < j — 2, then
vy =2 for k € {j —2,...,5 + 2}. But we have vj;; = 3, so this does not occur. It

follows that px(«|Z) = 3 and the partitions of « are the ones in (5) and (6) together
with (82, Bj+2), hence px(a) =T.

If v; =2 and vj11 = 2, then
285 + Bj+1 = Bj—1 + 28541 = 2Bj-1 + Bj+2,
and « has the 6 partitions in (5) and (6) together with
(28j-1, Bj+2) and (81, Bj-1, Bj+2),
hence pg (o) > 8. O

Lemma 7.7. If a = B + 2841, where j € Z, then we have the following:

o if (vj,v41) # (2,3) and vj41 > 3, then pr(a) =4,
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Zf (vj7vj+l) = (2,3), then pK(a) =9,

if v; >4 and vj11 = 2, then pr(a) =6,

if v =3, vj41 =2, and vj1o > 2, then px (o) =6
if v; =3, vj41 =2, and vj1o = 2, then px(a) =7
if v =2 and vj11 = 2, then pr(a) > 8.

)

’

Proof. Let 5/ = —(j + 1) and consider

o =B+ 28141 = By +26B_(11) =285 + By

We have vy = vjq1, vy41 = vj, and vj—1 = vj12. The lemma follows from Lemma 7.6
applied to o'. O

With the help of the preceding series of lemmas, it is possible to characterize the
elements o € OF such that px(a) = m for m € {2,3,4,5,6}. We do this for m = 6
and then find a necessary and sufficient condition for K to contain an element with 6
partitions.

Proposition 7.8. All the elements a € (9?} such that pr(a) = 6 are the following
(where i > —1 is odd):

(a) a =204 if uits > 8,

(b) o =200, 04 if Uiz =9,

(c) a=a;a+ a5 if uips > 9,

(d) o=y -5+ Qiusyo—a if uite > 10,

(e) o =31 if uiyo =2,

(f) a=4daig if uiy1 =2,

(9) o =200, 01+ Qiy20 if Uitz > 2 and uip3 > 2, or uirp =2 and g3 =1,
(h) a=a;o+2a;1 if uig1 > 2 and uip2 > 2, or uip1 = 1 and ujpo = 2,

(i) conjugates of all of the above.

Proof. Let o = eaj » + fot; r41, where i > —1isodd and 0 <7 < w0 —1. Let j € Z
be such that 8; = o, ,, so that o = ef; + fB;4+1. Assume that px (o) = 6, hence

(e, f) €{(2,0),(3,0),(4,0),(1,1),(2,1),(1,2)},

by Lemma 7.2.

If (e, f) = (2,0), then Lemma 7.3 shows that r = 4 and w; 42 > 8, or r = u;42 — 4 and
Uir2 > 9.

If (e, f) = (1,1), then Lemma 7.3 shows that r =4 and u;19 > 9, or r = u;42 — 5 and
Ui4-2 2 10.

If (e, f) = (3,0), then Lemma 7.4 shows that v; = 2, vj_1 > 2, and v;4; > 2. Thus,
r=1and u;42 = 2.

If (e, f) = (4,0), then Lemma 7.5 shows that v; = 4, thus r =0 and u;41 = 2.

If (e, f) = (2,1), then Lemma 7.6 shows that px(a) = 6 if and only if one of the
following holds:
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e v; =2and v >4,
e v; =2, v41 =3, and vj_1 > 2.

These conditions translate to

o r=1ujo— 1, uiro > 2, and u;43 > 2,
® = Ujt2 — ]., Uit = 2, and Ui+3 = 1.

If (e, f) = (1,2), then the condition follows similarly from Lemma 7.7. O

Theorem 7.9 Let K = Q(\/ﬁ), where D € Zsqo is squarefree. Let wp have the
continued fraction expansion wp = [[uo/2],T1, .-, us), where ug = us. There exists
a € (’)}; such that px(a) = 6 if and only if at least one of the following conditions is
satisfied:

o u; > 8 for somei > 1 odd,
o u; =2 for somei >0,
o u; > 2 and ujy1 > 2 for some i > 0.

Proof. This immediately follows from Proposition 7.8. O

We know from Theorem 4.3 that 6 € py (O}) for “almost all” squarefree D € Z>». By
Theorem 7.9, a squarefree D € Z>2 belongs to the set D(6) if and only if

e u; <7 for every i > 1 odd,
o u; #* 2 for every i > 0,
o if u; > 2, then w;41 = 1 for every ¢ > 0.

Example 7.10. There exists an o € OF such that px (o) = 6 if and only if
D € {2,3,6,10,11, 13, 14, 19, 22, 26, 29, 30, 31, 33, 38, 39, 41, 42, 46, . . . },
and there does not exist an o € O} such that px(«) = 6 if and only if
D € {5,7,15,17,21,23, 34,35, 37, 43,47, ... }.

Theorem 7.9 completes the description of D(m) for 1 < m < 7. There does not seem to
be any fundamental reason why the same techniques could not be extended to determine
all the elements with m partitions, and hence D(m) for other values of m.
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