
Proceedings of the Edinburgh Mathematical Society: page 1 of 34

doi:10.1017/S0013091525101259

TOTALLY POSITIVE ELEMENTS WITH m PARTITIONS EXIST
IN ALMOST ALL REAL QUADRATIC FIELDS
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Abstract In this paper, we study partitions of totally positive integral elements α in a real quadratic
field K. We prove that for a fixed integer m ≥ 1, an element with m partition exists in almost all K. We
also obtain an upper bound for the norm of α that can be represented as a sum of indecomposables in
at most m ways, completely characterize the α’s represented in exactly 2 ways, and subsequently apply
this result to complete the search for fields containing an element with m partitions for 1 ≤ m ≤ 7.
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1. Introduction

Additive number theory studies properties of subsets of the positive rational integers Z≥1

with respect to addition. Many of its problems can be translated to other commutative
semigroups but the results are scarce. One flourishing area at the intersection of additive
number theory and combinatorics is the theory of partitions. A partition is a way of
representing n ∈ Z≥1 as a sum of positive integers, while two partitions that differ
only by the order of their parts are considered to be the same. There are many results
about the partition function p(n), defined as the number of partitions of n. Hardy and
Ramanujan [10] proved an asymptotic formula for p(n), which was further improved
by Rademacher [26]. Ramanujan [28, 29] also discovered his famous congruences for p(n)
modulo powers of 5, 7, and 11. The effort to find congruences for other moduli culminated
in the paper [25] by Ono, who proved among other things that for every prime m ≥ 5,
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2 M. Zindulka

there exist infinitely many n ∈ Z≥1 such that p(n) ≡ 0 (mod m). There are countless
partition identities, for example Euler’s identity, the first and second Rogers–Ramanujan
identities, and the two Gölnitz–Gordon identities. For an introduction to the theory of
partitions, we refer the reader to the elementary [2] or the more advanced classic [1].
Partitions can be made sense of in the setting of number fields. Let K be a totally real

number field, OK its ring of integers, and O+
K the set of totally positive integers in K. A

partition of α ∈ O+
K is a way of representing α as a sum of totally positive integers, i.e.,

α = λ1 + λ2 + · · ·+ λ`,

where λi ∈ O+
K for 1 ≤ i ≤ `. Again, two partitions are considered to be the same if they

differ only by the order of their parts. We define pK(α) to be the number of partitions
of α and call pK the partition function associated with the number field K. We also set
pK(0) := 1.
Compared with the integer partition function p(n), the function pK(n) is poorly under-

stood. The problem to determine the asymptotic behaviour of pK(α) as the norm of α
grows to infinity was proposed by Rademacher [27] and solved by Meinardus, first for a
real quadratic field [22] and then in general [23]. If K is a totally real field of degree d
and discriminant ∆, then [23, Satz 3, p. 346] shows that

log pK(α) = (d+ 1)

(
ζ(d+ 1)√

∆
N(α)

) 1
d+1

(1 + o(1)) ,

as N(α) → ∞. Here ζ denotes the Riemann zeta function. This result was further
generalized to a number field which is not required to be totally real by Mitsui [24].
Some basic properties of pK were established in a paper of Stern and the author [31].

In particular, pK(α) satisfies a recurrence formula similar to a well known recurrence
for p(n) [31, Theorem 1], which can be used to compute particular values of pK(α).
It can also be applied to prove a result about the parity of pK(n), where n ∈ Z≥1

[31, Theorem 2]. In two recent papers, Jang, Kim, and Kim developed a framework
for extending partition identities from Z to OK and used it to prove a version of the
Euler–Glaisher Theorem [14, Theorem 4.1], Sylvester’s Theorem [15, Theorem 3.2], and
the Rogers–Ramanujan identities over a totally real field [15, Theorem 3.8, Corollary
3.13]. The Frobenius problem for totally positive integers was studied by Fukshansky
and Shi [9].
A natural generalization of integer partitions is vector partitions; see [1, Chapter 12]

for an introduction to this topic. Vector partitions of v ∈ Zd are of the form v =
v1 + v2 + · · ·+ v`, where vi ∈ Zd

≥0 is non-zero for 1 ≤ i ≤ `. If K is of degree d, we can

fix an integral basis (α1, α2, . . . , αd) and view α ∈ OK as a vector in Zd. Thus, the two
types of partitions are closely related, even though the positivity condition is different:
we require the parts to lie in the “totally positive cone” defined by{

(x1, x2, . . . , xd) ∈ Zd |α := x1α1 + x2α2 + · · ·+ xdαd � 0
}
.

The proofs of some of the most fascinating results in the theory of integer partitions such
as the ones in the previously mentioned paper [25] use modular forms. A major obstacle
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Totally positive elements with m partitions 3

to extending these results to either vector partitions or partitions in number fields is that
the corresponding generating functions are not known to satisfy any interesting modular
properties.
Let us mention that there is also another type of partitions in number fields. Namely,

for a fixed β ∈ C, one can consider partitions of α ∈ C, where the parts are powers of β,
i.e., partitions of the form

α = ajβ
j + aj−1β

j−1 + · · ·+ a1β + a0, ai ∈ Z≥0.

If β = m ∈ Z≥2, then these are the so-called m-ary partitions. Kala and the author [19,
Theorem 1] characterized the quadratic irrationals β such that the number of partitions
of α is finite for every α ∈ C. The theorem was extended to an algebraic number β of
arbitrary degree by Dubickas [8, Theorem 1.3].
Stern and the author [31] studied the following problem: For a fixed m ∈ Z≥1, deter-

mine all the real quadratic fields K such that pK(α) = m for some α ∈ O+
K . We

let

D(m) :=
{
D ∈ Z≥2 squarefree | m /∈ pK(O+

K)
}
,

i.e., D(m) is the set ofD’s such thatm does not belong to the range of pK inK = Q(
√
D).

If m is one of the values of the integer partition function p(n), then D(m) is finite
(this is a consequence of [31, Theorem 7]). In particular, D(m) was determined for m ∈
{1, 2, 3, 5, 7, 11} in [31, Theorem 3] and additionally for m = 4 in [31, Theorem 11]:

D(1) = ∅, D(2) = ∅, D(3) = {5}, D(4) = ∅, D(5) = {2, 3, 5},
D(7) = {2, 5}, D(11) = {2, 3, 5, 6, 7, 13, 21}.

The main result of the present paper is that an element with m partitions exists in
almost all real quadratic fields in the sense that real quadratic fields K having an element
α with pK(α) = m are of density 1. This is surprising in view of the fact that by the
asymptotic formula of Meinardus, pK(α) grows exponentially with the cube root of the
norm of α in a fixed K. In particular, the result of Meinardus implies that there is no
totally real K such that for all m ∈ Z≥1, there exits an α ∈ O+

K with pK(α) = m.

Theorem 1.1 Let m ∈ Z, m ≥ 4, and

E(m,X) :=
{
2 ≤ D ≤ X |D squarefree, {1, 2, . . . ,m} 6⊂ pK(O+

K) for K = Q(
√
D)
}
.

For every X ≥ 2 satisfying X ≥ (2m− 5)12(logX)4, we have

#E(m,X) < 100(2m− 5)3/2(logX)3/2X7/8.

Proof. This will be proved as a part of Theorem 4.3. �

A consequence of Theorem 1.1 is that D(m) has density zero for every m ∈ Z≥1. This
is stated explicitly in Corollary 4.4.
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4 M. Zindulka

The above list of the sets D(m) does not include the case m = 6. We completely
characterize the elements α ∈ O+

K such that pK(α) = 6, and then determine D(6) in
Theorem 7.9.
A distinguished role in the study of partitions in O+

K is played by the so-called indecom-
posable elements. An element α ∈ O+

K is indecomposable if there do not exist β, γ ∈ O+
K

such that α = β + γ. Thus, these are the elements α ∈ O+
K satisfying pK(α) = 1.

They were used by Siegel [30] in 1945 to show that if K is a number field, K 6= Q and
K 6= Q(

√
5), then there exists an α ∈ O+

K which cannot be represented as a sum of
squares, and they found many other applications in the theory of universal quadratic
forms since then [3, 4, 20].
Let K = Q(

√
D), where D ∈ Z≥2 is squarefree. Dress and Scharlau [7, Theorem 2]

characterized the indecomposables in O+
K in terms of the continued fraction of

√
D. As

a corollary, they proved the following: the norm of an indecomposable α ∈ O+
K satisfies

N(α) ≤ cD :=

D if D ≡ 2, 3 (mod 4),

D−1
4 if D ≡ 1 (mod 4).

If the fundamental unit ε in OK has norm −1, then the bound is optimal. In the case
when the norm of ε equals 1, it was refined in [13] and [32].
In general, no satisfactory description of indecomposables is known in fields of degree

higher than 2. It is not difficult to show that there exists a constant cK > 0 such that if
α ∈ O+

K is indecomposable, then N(α) ≤ cK (for the argument, see [7, p. 292]). Brunotte
[5] obtained a bound for the norm in terms of the group of units of K. Kala and Yatsyna
[18, Theorem 5] found a simple argument showing that in a totally real number field K of
arbitrary degree d and discriminant ∆, every indecomposable element α ∈ O+

K satisfies
N(α) ≤ ∆. This bound is usually much better than Brunotte’s. In [18, Theorem 6] it is
used to construct a universal diagonal quadratic form over OK of rank ≤ C ·∆(log∆)d−1,
where the constant C > 0 depends only on d.
Kala and Tinková [16, Theorem 1.2] characterized indecomposables in the family of

the simplest cubic fields. Čech, Lachman, Svoboda, Tinková and Zemková [6] studied
biquadratic fields and found sufficient conditions for an element to be indecomposable.
Recently Man [21] completely characterized the indecomposables in certain families of
biquadratic fields, see for example [21, Theorem 1.6].
Let us introduce one more piece of notation. We define pK(α|I) as the number of

partitions of α with indecomposable parts, i.e., partitions (λ1, λ2, . . . , λ`) such that λi is
indecomposable for 1 ≤ i ≤ `. Hejda and Kala [11] called an element α ∈ O+

K uniquely
decomposable if pK(α|I) = 1. By [11, Theorem 10], the norm of these elements can
bounded as

N(α) <
√
∆
(
2
√
∆+ 1

)(
3
√
∆+ 2

)
.

A natural question is how to estimate the norm of a non-uniquely decomposable element.
Our next result is an extension of the theorem of Hejda and Kala.
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Theorem 1.2 Let K = Q(
√
D), where D ∈ Z≥2 is squarefree and let m ∈ Z≥1. If

α ∈ O+
K can be represented as a sum of indecomposables in at most m ways, then

N(α) < m2(2m+ 1)(2m+ 3) ·
√
∆
(√

∆+ 2
)2

,

where ∆ is the discriminant of K.

Proof. This will be proved as Theorem 5.5. �

The norm of a convergent is bounded by 2D1/2, the norm of an indecomposable by D,
and the norm of a uniquely decomposable element by a constant times D3/2. The theorem
states that for a fixed m, the norm of an element α ∈ O+

K such that pK(α|I) ≤ m is also
bounded by a constant times D3/2. Let us compare this with a bound for the norm of
an α such that pK(α) = m. We will prove in Theorem 5.6 that if m ≥ 2, then N(α) is
bounded by a constant (depending only on m) times

√
D. This is not true for m = 1,

when α is indecomposable.
In Theorem 6.1, we characterize all the elements α ∈ O+

K which can be represented as
a sum of indecomposables in exactly 2 ways, i.e., pK(α|I) = 2. We obtain an improved
bound for the norm of these elements in Theorem 6.10.
Let us say something about the importance of the problems considered in this paper.

Proving that pK has certain property for a fixed K is usually hard. For example, the
problem whether there exist infinitely many distinct values pK(α) such that pK(α) ≡ 0
(mod m), where m ∈ Z≥2, is wide open. Thus, it was of interest to find some weaker
property of the range that we could prove. This naturally led to the question of deciding
whether a given m belongs to the range of pK . An analogous question for the integer
partition function reduces to a finite computation but in the setting where K varies, it
becomes non-trivial. Our approach was to first study partitions into indecomposables
because the other partitions can be built from them by combining the indecomposable
parts together. Since the only indecomposable element in Z≥1 is 1, studying integer
partitions with indecomposable parts would not be very interesting. The new results in
this paper, e.g., Theorem 4.1 and Theorem 7.9, show how certain properties of pK for
K = Q(

√
D) depend on the continued fraction of ωD (defined in § 2).

The rest of the paper is organized as follows. In § 2, we collect the preliminaries about
continued fractions and indecomposables. In § 3, we find all possible representations of
elements in a certain specific form as a sum of indecomposables. These results are applied
to prove Theorem 1.1 in § 4 and Theorem 1.2 in § 5. Elements α such that pK(α|I) = 2
are characterized in § 6 and D(6) is determined in § 7.

2. Preliminaries

We always work in a real quadratic field K = Q(
√
D), where D ∈ Z≥2 is squarefree. The

Galois conjugate of α ∈ K is denoted by α′, and we let N(α) = αα′ and Tr(α) = α+ α′

be the norm and trace of α. The element α is totally positive if α > 0 and α′ > 0, and
we denote this fact by α � 0. We also write α � β if α − β � 0 and α � β if α � β or
α = β. The relation � is a partial order on K.
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The pair (1, ωD), where

ωD :=


√
D if D ≡ 2, 3 (mod 4),

1+
√
D

2 if D ≡ 1 (mod 4),

is a Z-basis of OK . We also set

ξD := −ω′
D =


√
D if D ≡ 2, 3 (mod 4),

√
D−1
2 if D ≡ 1 (mod 4),

and σD := bξDc+ωD. Next, we describe how to characterize the indecomposable elements
of K in terms of the continued fraction of σD, following the exposition in [11, p. 3]. The
continued fraction expansion σD = [u0, u1, . . . , us−1] is purely periodic. We have bωDc =
du0

2 e = u0+Tr(ωD)
2 , hence ωD has a continued fraction expansion ωD = [du0/2e, u1, . . . , us],

where us = u0. Let
pi

qi
be the convergents to ωD defined by pi

qi
:= [du0/2e, u1, . . . , ui] for

i ≥ 0. We have the recurrence relations

pi+2 = ui+2pi+1 + pi,

qi+2 = ui+2qi+1 + qi,

for i ≥ −1 with the initial conditions (p−1, q−1) = (1, 0) and (p0, q0) = (du0/2e, 1).
We let αi := pi + qiξD for i ≥ −1 and αi,r := αi + rαi+1 for r ∈ Z≥0. By an abuse of
terminology, the αi’s are also called convergents and the αi,r’s are called semiconvergents.
The sequence (αi) satisfies

αi+2 = ui+2αi+1 + αi,

for i ≥ −1 with the initial conditions α−1 = 1 and α0 = du0/2e + ξD = bωDc + ξD. It
follows that αi,ui+2

= αi+2,0. We have αi � 0 if and only if i is odd. Dress and Scharlau
[7] proved that all the indecomposable elements of K are αi,r, where i ≥ −1 is odd and
0 ≤ r ≤ ui+2 − 1 together with their conjugates α′

i,r.
Let ε > 1 denote the fundamental unit in OK and ε+ > 1 the smallest totally positive

unit in OK . We have ε = αs−1 and

ε+ =

ε = αs−1 if s is even,

ε2 = α2s−1 if s is odd.

It is not difficult to show that εαi = αs+i, hence ε+αi = αs+i if s is even and ε+αi =
α2s+i if s is odd. Consequently, there are only finitely many indecomposables up to
multiplication by totally positive units.
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If we let

A := {αi,r | i ≥ −1 odd, 0 ≤ r ≤ ui+2 − 1} \ {1},

and A′ := {α′ |α ∈ A}, then the set of indecomposables equals I := A′ ∪ {1} ∪ A. The
indecomposables αi,r get larger when (i, r) increases with respect to the lexicographical
order, while α′

i,r get smaller. We order the elements of I into a two-sided sequence

. . . < β−2 < β−1 < β0 = 1 < β1 < β2 < . . . ,

so that β−j = β′
j for j ∈ Z.

Lemma 2.1. ([11, Lemma 1]) For each j ∈ Z we have that

vjβj = βj−1 + βj+1,

where

vj :=

2 if β|j| = αi,r with odd i ≥ −1 and 1 ≤ r ≤ ui+2 − 1,

ui+1 + 2 if β|j| = αi,0 with odd i ≥ −1.

Much of our paper is motivated by the following result of Hejda and Kala [11]. It was
proved independently by Se Wook Jang in his unpublished manuscript [12].

Theorem 2.2 ([11, Theorem 3]) If α ∈ O+
K , then there exist unique j0, e, f ∈ Z

with e ≥ 1 and f ≥ 0 such that α = eβj0 + fβj0+1.
Every relation of the form

∑
hjβj = 0 (with hj ∈ Z and only finitely many non-zero)

is a Z-linear combination of the relations βj−1 − vjβj + βj+1 = 0, where j ∈ Z.

The uniquely decomposable elements are characterized as follows.

Theorem 2.3 ([11, Theorem 4]) Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such

that α = eβj + fβj+1. We have pK(α|I) = 1 if and only if

1 ≤ e ≤ vj − 1, 0 ≤ f ≤ vj+1 − 1 and (e, f) 6= (vj − 1, vj+1 − 1).

Proof. This is an equivalent statement of [11, Theorem 4], see also [11, (8)]. �

Finally, we collect some elementary properties of partitions and the partition function
in K. A partition λ1 +λ2 + · · ·+λ` will also be denoted by (λ1, λ2, . . . , λ`). Let us stress
that this will always be viewed as an unordered tuple. The partition function satisfies
pK(α′) = pK(α) and if η is a totally positive unit, then pK(ηα) = pK(α). The same is
true for pK(·|I). We also have pK(α) < pK(β) and pK(α|I) ≤ pK(β|I) if α ≺ β.
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3. Partitions with indecomposable parts

From Theorem 2.2, we know that every α ∈ O+
K can be expressed in the form α =

eβj + fβj+1 for a (unique) j ∈ Z. In this section, we determine pK(α|I) for particular
choices of (e, f). This is an intermediate step in proving some of our theorems. Throughout
the paper, vj ∈ Z≥2 for j ∈ Z are the numbers from Lemma 2.1.

Lemma 3.1. Let t ∈ Z≥0. If there exists k0 ∈ Z≥0 such that vk = 2 for k ∈ {j −
k0, . . . , j + k0 + t}, then

βj + βj+t = βj−1 + βj+1+t = · · · = βj−k0−1 + βj+k0+1+t.

Proof. By Lemma 2.1, we have 2βk = βk−1 + βk+1 for k ∈ {j − k0, . . . , j + k0 + t}.
Let k1 ∈ {0, . . . , k0}. If (k1, t) 6= (0, 0), then summing over k ∈ {j − k1, . . . , j + k1 + t},
we get

j+k1+t∑
k=j−k1

2βk =

j+k1+t∑
k=j−k1

(βk−1 + βk+1) = βj−k1−1 + βj−k1
+

j+k1−1+t∑
k=j−k1+1

2βk


+βj+k1+t + βj+k1+1+t,

hence

βj−k1
+ βj+k1+t = βj−k1−1 + βj+k1+1+t.

But the last equality holds also for (k1, t) = (0, 0). �

Lemma 3.2. Let α = βj1 + βj2 , where j1, j2 ∈ Z and j1 ≤ j2. If βj3 � α for some
j3 ∈ Z such that j3 > j2 or j3 < j1, then vk = 2 for k ∈ {j1, . . . , j2}.

Proof. We may assume that βj3 � α for some j3 > j2 by considering α′ and β′
j3
. We

have βj2+1 ≤ βj3 ≤ α. From Lemma 2.1, we get

vj2βj2 = βj2−1 + βj2+1 ≤ βj2−1 + βj1 + βj2 ,

hence

(vj2 − 1)βj2 ≤ βj1 + βj2−1.

If vj2 > 2, then

(vj2 − 1)βj2 ≥ 2βj2 > βj1 + βj2−1,

a contradiction. Thus, vj2 = 2 and βj2 ≤ βj1 + βj2−1.
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We claim that

vk = 2 and βk ≤ βj1 + βk−1, k ∈ {j1, . . . , j2}. (1)

We showed this for k = j2. Assume that (1) holds for k ∈ {j1 + 1, . . . , j2}. From
Lemma 2.1, we get

vk−1βk−1 = βk−2 + βk ≤ βk−2 + βj1 + βk−1,

hence

(vk−1 − 1)βk−1 ≤ βj1 + βk−2.

If vk−1 > 2, then

(vk−1 − 1)βk−1 ≥ 2βk−1 > βj1 + βk−2,

where we used k−1 ≥ j1. This is a contradiction, hence vk−1 = 2 and βk−1 ≤ βj1 +βk−2,
which proves (1) with k − 1 in place of k. �

Lemma 3.3. Let t ∈ {0, 1} and α = βj+βj+t. If vj > 2 or vj+t > 2, then pK(α|I) = 1.
On the other hand, if there exists k0 ∈ Z≥0 such that vk = 2 for k ∈ {j−k0, . . . , j+k0+t}
but vj−k0−1 > 2 or vj+k0+1+t > 2, then pK(α|I) = k0 + 2. Moreover, all the partitions
of α with indecomposable parts are (βj−k, βj+k+t), where k ∈ {0, 1, . . . , k0 + 1}.

Proof. If t = 0 and vj > 2, then α = 2βj is uniquely decomposable by Theorem 2.3.
Similarly, if t = 1 and vj > 2 or vj+1 > 2, then α = βj + βj+1 is uniquely decomposable.
In both cases, pK(α|I) = 1.
Assume that there exists k0 ∈ Z≥0 with the required properties. Lemma 3.1 shows that

(βj−k, βj+k+t) for k ∈ {0, 1, . . . , k0 + 1} are partitions of α, hence pK(α, I) ≥ k0 + 2. It
remains to show that α cannot be expressed as a sum of indecomposables in any other
way.
Let j1 := j − k0 − 1 and j2 = j + k0 + 1 + t. Assume for contradiction that βj3 � α

for some j3 ∈ Z such that j3 > j2 or j3 < j1. Since α = βj1 + βj2 , Lemma 3.2 implies
vk = 2 for k ∈ {j1, . . . , j2}. In particular vj−k0−1 = 2 and vj+k0+1+t = 2, contradicting
the assumptions.
Finally, suppose that βj4 with j1 ≤ j4 ≤ j2 appears in some partition of α. If j4 ≤ j,

then we let j4 = j − k and if j4 > j, then we let j4 = j + k + t for k ∈ {0, 1, . . . , k0 + 1}
(here we use the assumption t ∈ {0, 1}). Since βj−k and βj+k+t are indecompos-
able, the only partition of α containing these elements is (βj−k, βj+k+t). This proves
pK(α|I) = i0 + 2. �

Proposition 3.4. Let i ≥ −1 be odd, 0 ≤ r ≤ ui+2 − 1, and βj = αi,r. We have

pK(2βj |I) = min{r + 1, ui+2 − r + 1},
pK(βj + βj+1|I) = min{r + 1, ui+2 − r},
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10 M. Zindulka

and

pK(2βj) = min{r + 2, ui+2 − r + 2},
pK(βj + βj+1) = min{r + 2, ui+2 − r + 1}.

Proof. First, consider the case r = 0. We have βj = αi,0, hence vj = ui+2+2 > 2. By
Lemma 3.3, pK(2βj |I) = 1 and pK(βj + βj+1|I) = 1.
Secondly, consider the case 1 ≤ r ≤ ui+2 − 2. We have βj = αi,r and βj+1 = αi,r+1.

Moreover, βj−r = αi,0 and βj+(ui+2−r) = αi,ui+2
= αi+2,0. From Lemma 2.1, we obtain

vj−r = ui+1+2 > 2, vk = 2 for j−(r−1) ≤ k ≤ j+(ui+2−r−1) and vj+(ui+2−r) = ui+3+
2 > 2. Thus, if t = 0, then the number k0 in Lemma 3.3 is k0 = min{r− 1, ui+2 − r− 1}
and pK(2βj |I) = k0 + 2. Similarly, if t = 1, then the number k0 in Lemma 3.3 is
k0 = min{r − 1, ui+2 − r − 2} and pK(βj + βj+1|I) = k0 + 2.
Next, consider the case r = ui+2−1. If ui+2 = 1, then r = 0, which was treated above.

Hence, we can assume ui+2 ≥ 2. We have βj = αi,r and βj+1 = αi,ui+2
= αi+2,0. From

Lemma 2.1, we obtain vj = 2 and vj+1 = ui+3 + 2 > 2. Thus, if t = 0, then the number
k0 in Lemma 3.3 equals 0 and pK(2βj |I) = 2, while if t = 1, then Lemma 3.3 implies
pK(βj + βj+1|I) = 1.
The only partitions of 2βj with indecomposable parts are of the form (βj−k, βj+k),

where k ∈ Z≥0. Hence, the only other partition of 2βj is the trivial partition (2βj), and
pK(2βj) = pK(2βj |I) + 1. Analogously, pK(βj + βj+1) = pK(βj + βj+1|I) + 1. �

4. Subsets of the range of the partition function

Our next theorem gives information about the range pK
(
O+

K

)
of the partition function

pK . We show that if there exists a large coefficient ui for some odd i ≥ 1, then the range
contains a large set of consecutive integers. As a corollary, we obtain that {1, 2, . . . ,m}
is a subset of the range for “almost all” real quadratic fields K.

Theorem 4.1 Let ωD = [du0/2e;u1, . . . , us] be the continued fraction expansion of
ωD. If B := max{ui | i ≥ 1 odd}, then

S1 :=

{
1, 2, . . . ,

⌊
B

2

⌋
+ 2

}
⊂ pK

(
O+

K

)
,

and

S2 :=

{
1, 2, . . . ,

⌊
B

2

⌋
+ 1

}
⊂ pK

(
O+

K |I
)
.

In other words, there exists an element α ∈ O+
K with m partitions for every m in S1, and

an element with m representations as a sum of indecomposables for every m in S2.

Proof. Let i ≥ −1 be odd and such that ui+2 = B. We note that 1 ∈ pK
(
O+

K

)
because pK(β) = pK(β|I) = 1 for every indecomposable β ∈ O+

K . If 2 ≤ m ≤
⌊
B
2

⌋
+ 2,
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then we set r = m − 2, so that 0 ≤ r ≤ B
2 . By Proposition 3.4, the element βj = αi,r

satisfies

pK(2βj) = min{r + 2, B − r + 2} = r + 2 = m.

This shows S1 ⊂ pK(O+
K).

Next, we prove the second inclusion in the theorem. If 1 ≤ m ≤
⌊
B
2

⌋
+ 1, then we set

r = m− 1, so that 0 ≤ r ≤ B
2 . By Proposition 3.4, the element βj = αi,r satisfies

pK(2βj |I) = min{r + 1, B − r + 1} = r + 1 = m.

This shows S2 ⊂ pK(O+
K). �

Kala, Yatsyna, and Żmija [17] showed that if B > 0 is a fixed bound, then the set of
D’s such that ui ≤ B for every odd i ≥ 1 has density zero.

Lemma 4.2. ([17, Corollary 2.12]) For every X,B ≥ 2 satisfying X ≥
B12(logX)4, we have

# {1 ≤ D ≤ X |ωD = [du0/2e, u1, u2, . . . ] , u2n−1 ≤ B for all n}
< 100B3/2(logX)3/2X7/8.

As a straightforward application of Theorem 4.1 and Lemma 4.2, we show the following
result, which includes our main Theorem 1.1.

Theorem 4.3 Let m ∈ Z, m ≥ 4, and

E1(m,X) :=
{
2 ≤ D ≤ X |D squarefree, {1, 2, . . . ,m} 6⊂ pK(O+

K) for K = Q(
√
D)
}
,

For every X ≥ 2 satisfying X ≥ (2m− 5)12(logX)4, we have

#E1(m,X) < 100(2m− 5)3/2(logX)3/2X7/8.

Secondly, let m ∈ Z, m ≥ 3, and

E2(m,X) :=
{
2 ≤ D ≤ X |D squarefree, {1, 2, . . . ,m} 6⊂ pK(O+

K |I) for K = Q(
√
D)
}
.

For every X ≥ 2 satisfying X ≥ (2m− 3)12(logX)4, we have

#E2(m,X) < 100(2m− 3)3/2(logX)3/2X7/8.

Proof. As above, we let ωD = [du0/2e, u1, . . . , us] be the continued fraction expansion
of ωD.
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12 M. Zindulka

First, let B1 := 2m−4, so that bB1/2c+2 = m. Theorem 4.1 shows that if there exists
an odd i ≥ 1 such that ui ≥ B1, then {1, 2, . . . ,m} ⊂ pK(O+

K) for K = Q(
√
D). Thus,

E1(m,X) ⊂ {2 ≤ D ≤ X |ωD = [du0/2e, u1, u2, . . . ] , u2n−1 ≤ B1 − 1 for all n} .

Since m ≥ 4, we have B1−1 = 2m−5 ≥ 2. For X ≥ 2 satisfying X ≥ (B1−1)12(logX)4,
the size of this set is < 100(B1 − 1)3/2(logX)3/2X7/8 by Lemma 4.2.
Secondly, let B2 := 2m− 2, so that bB2/2c+ 1 = m. Theorem 4.1 shows that if there

exists an odd i ≥ 1 such that ui ≥ B2, then {1, 2, . . . ,m} ⊂ pK(O+
K |I) for K = Q(

√
D).

Thus,

E2(m,X) ⊂ {2 ≤ D ≤ X |ωD = [du0/2e, u1, u2, . . . ] , u2n−1 ≤ B2 − 1 for all n} .

Since m ≥ 3, we have B2−1 = 2m−3 ≥ 2. For X ≥ 2 satisfying X ≥ (B2−1)12(logX)4,
the size of this set is < 100(B2 − 1)3/2(logX)3/2X7/8 by Lemma 4.2. �

Theorem 4.3 shows in particular that for a fixed m ∈ Z, m ≥ 4, we have

lim
X→+∞

#E1(m,X)

#{2 ≤ D ≤ X |D squarefree}
= 0.

We recall from the Introduction that

D(m) :=
{
D ∈ Z≥2 squarefree | m /∈ pK(O+

K)
}
,

and that D(1) = ∅, D(2) = ∅, and D(3) = {5}. Hence, {1, 2} ⊂ pK(O+
K) for every K and

{1, 2, 3} ⊂ pK(O+
K) for every K 6= Q(

√
5). This leads to the following corollary.

Corollary 4.4. Let m ∈ Z, m ≥ 1. The set D(m) has density zero, i.e.,

lim
X→+∞

#{2 ≤ D ≤ X, |D squarefree, D ∈ D(m)}
#{2 ≤ D ≤ X |D squarefree}

= 0·

5. Norm bounds

The aim of this section is to prove Theorem 1.2. First, we introduce some useful notation
and results from [11].
We recall that ωD = [du0/2e, u1, . . . , us] is the continued fraction expansion of ωD. Let

γ0 = ωD and γi = [ui, ui+1, ui+2, . . . ] for i ≥ 1. We have ui < γi = ui +
1

γi+1
< ui + 1 for

i ≥ 1. Moreover, u0 = 2bωDc − Tr(ωD) <
√
∆, hence ui ≤ u0 <

√
∆ for every i ≥ 0.

If i ≥ −1, then we let (as in [11, p. 4])

Ni = |N(αi)| = (−1)i+1 N(αi) =

|p2i −Dq2i | if D ≡ 2, 3 (mod 4),

|p2i − piqi − q2i
D−1
4 | if D ≡ 1 (mod 4).
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Lemma 5.1. ([11, Lemma 7]) For all i ≥ −1, we have

Ni+1 =

√
∆

γi+2
− Ni

γ2
i+2

.

We note that N−1 = 1 because α−1 = 1, and by the preceding lemma, we have

Ni+1 <
√
∆

γi+2
<

√
∆

ui+2
for i ≥ −1. Thus, Ni <

√
∆

ui+1
for every i ≥ −1.

Lemma 5.2. ([11, Lemma 8]) If a, b ∈ Z and i ≥ −1 odd, then

N(aαi + bαi+1) =

(
a− b

γi+2

)(
b
√
∆+ aNi − b

Ni

γi+2

)
.

Lemma 5.3. ([11, Proposition 9]) If α = eαi,r + fαi,r+1, where i ≥ −1 is odd,
0 ≤ r ≤ ui+2 − 1, e ≥ 1, and f ≥ 0, then

N(α) <
√
∆((r + 1)e+ (r + 2)f) (e+ f) and N(α) < (e+ f)2

∆

4Ni+1
.

The next lemma extends Lemma 5.3 and its proof follows along the same lines.

Lemma 5.4. If α = eαi,r + fαi,r+1, where i ≥ −1 is odd, 0 ≤ r ≤ ui+2 − 1, e ≥ 1,
and f ≥ 0, then

N(α) <
√
∆((ui+2 − r + 2)e+ (ui+2 − r + 1)f) ((ui+2 − r + 1)e+ (ui+2 − r)f) .

Proof. We have α = aαi+bαi+1, where a = e+f and b = re+(r+1)f . By Lemma 5.2,
N(α) = N(aαi + bαi+1) = AB, where

A := a− b

γi+2
, B := b

√
∆+ aNi − b

Ni

γi+2
.

Setting s := ui+2 − r, we get

A = e

(
1− r

γi+2

)
+ f

(
1− r + 1

γi+2

)
= e

(
1− ui+2 − s

γi+2

)
+ f

(
1− ui+2 − s+ 1

γi+2

)
.

From ui+2 < γi+2 < ui+2 + 1 it follows that

A < e
s+ 1

γi+2
+ f

s

γi+2
<

(s+ 1)e+ sf

ui+2
.

Since b = re+ (r + 1)f < (r + 1)(e+ f), we have

B <
√
∆(r + 1)(e+ f) +ANi <

√
∆(ui+2 − s+ 1)(e+ f) +

√
∆
(s+ 1)e+ sf

ui+2
.
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Thus,

N(α) = AB <
√
∆((s+ 1)e+ sf)(e+ f) +

√
∆
((s+ 1)e+ sf)2

u2
i+2

.

Since ui+2 ≥ 1, we get

N(α) <
√
∆((s+ 2)e+ (s+ 1)f) ((s+ 1)e+ sf) .

�

We are ready to prove Theorem 1.2, restated here for convenience.

Theorem 5.5 Let K = Q(
√
D), where D ∈ Z≥2 is squarefree and let m ∈ Z≥1. If

α ∈ O+
K can be represented as a sum of indecomposables in at most m ways, then

N(α) < m2(2m+ 1)(2m+ 3) ·
√
∆
(√

∆+ 2
)2

,

where ∆ is the discriminant of K.

Proof. By Theorem 2.2, there exist j, e, f ∈ Z with e ≥ 1 and f ≥ 0 such that
α = eβj + fβj+1. By passing to the conjugate if necessary, we can assume that βj = αi,r

for some i ≥ −1 odd and 0 ≤ r ≤ ui+2 − 1.
If e ≥ mvj , then vjβj = βj−1 + βj+1 can be used to rewrite α at least m times. More

precisely,

α = kβj−1 + (e− kvj)βj + (k + f)βj+1,

for k ∈ {0, 1, . . . ,m}, hence pK(α|I) ≥ m+ 1, a contradiction. Thus,

e < mvj ≤ m(ui+1 + 2) < m
(√

∆+ 2
)
,

where we used that vj ≤ ui+1 + 2 by Lemma 2.1.
Similarly, if f ≥ mvj+1, then vj+1βj+1 = βj + βj+2 can be used to rewrite α at least

m times, a contradiction. Thus,

f < mvj+1 ≤ m(ui+3 + 2) < m
(√

∆+ 2
)
.

First, we consider the case f = 0. If e = 1, then α is indecomposable and

N(α) = N(αi,r) <
∆

4Ni+1

by Lemma 5.3. If e ≥ 2, then by Proposition 3.4, we have

m ≥ pK(α|I) ≥ pK(2βj |I) = min{r + 1, ui+2 − r + 1}.
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Thus, r ≤ m− 1 or ui+2 − r ≤ m− 1. In the first case, we use Lemma 5.3 to get

N(α) <
√
∆(r + 1)e2 < m3 ·

√
∆
(√

∆+ 2
)2

.

In the second case, we use Lemma 5.4 to get

N(α) <
√
∆(ui+2 − r + 2)(ui+2 − r + 1)e2 <

√
∆(m+ 1)me2

< (m+ 1)m3 ·
√
∆
(√

∆+ 2
)2

.

Secondly, we consider the case f ≥ 1. By Proposition 3.4,

m ≥ pK(α|I) ≥ pK(βj + βj+1|I) = min{r + 1, ui+2 − r}.

Thus, r ≤ m− 1 or ui+2 − r ≤ m. In the first case, we use Lemma 5.3 to get

N(α) <
√
∆(me+ (m+ 1)f)(e+ f) < (2m2 +m)2m ·

√
∆
(√

∆+ 2
)2

.

In the second case, we use Lemma 5.4 to get

N(α) <
√
∆((m+ 2)e+ (m+ 1)f) ((m+ 1)e+mf)

< (2m2 + 3m)(2m2 +m) ·
√
∆
(√

∆+ 2
)2

.

This proves the estimate in each case. �

Our main goal is to show that there exists a bound of the form ≤ C(m)∆3/2 rather
than find the best possible value for C(m), and Theorem 5.5 is in fact not optimal. For
m = 1, we have

N(α) <
√
∆
(
2
√
∆+ 1

)(
3
√
∆+ 2

)
,

by [11, Theorem 10] mentioned above. For m = 2, we will get an improvement in
Theorem 6.10.
Next, we use the same technique to prove a bound for the norm of α ∈ O+

K such that
pK(α) = m when m ≥ 2.

Theorem 5.6 Let K = Q(
√
D), where D ∈ Z≥2 is squarefree, let m ≥ 2, and let

n0(m) be the largest n ∈ Z≥2 such that p(n) ≤ m. If α ∈ O+
K satisfies pK(α) = m, then

N(α) ≤ m(m+ 1)n0(m)2 ·
√
∆,

where ∆ is the discriminant of K.

https://doi.org/10.1017/S0013091525101259 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525101259


16 M. Zindulka

Proof. As in the proof of Theorem 5.5, we may assume that α is of the form α =
eβj + fβj+1, where j ≥ 0, e ≥ 1, f ≥ 0, and βj = αi,r for some i ≥ −1 odd and
0 ≤ r ≤ ui+2 − 1.
We claim that p(e+ f) ≤ pK(α). Let ϕ be a mapping which sends an integer partition

λ = (λ1, . . . , λ`) of e+ f to

ϕ(λ) :=

(
λ1βj , . . . , λs1−1βj ,

(
e−

s1−1∑
s=1

λs

)
βj +

(
s1∑
s=1

λs − e

)
βj+1,

λs1+1βj+1, . . . , λ`βj+1

)
,

where 1 ≤ s1 ≤ ` is the largest index such that
∑s1−1

s=1 λs ≤ e. The mapping ϕ is injective,
which proves the claim. From the claim, we obtain e+ f ≤ n0(m).
First, suppose that f = 0. Since m ≥ 2, we have e ≥ 2, and then by Proposition 3.4,

m = pK(α) ≥ pK(2βj) = min{r + 2, ui+2 − r + 2}.

Thus, r ≤ m− 2 or ui+2 − r ≤ m− 2. In the first case, Lemma 5.3 implies

N(α) <
√
∆(r + 1)e2 ≤ (m− 1)n0(m)2 ·

√
∆.

In the second case, Lemma 5.4 implies

N(α) <
√
∆(ui+2 − r + 2)(ui+2 − r + 1)e2 ≤ m(m− 1)n0(m)2 ·

√
∆.

Secondly, suppose that f ≥ 1. By Proposition 3.4,

m = pK(α) ≥ pK(βj + βj+1) = min{r + 2, ui+2 − r + 1}.

Thus, r ≤ m− 2 or ui+2 − r ≤ m− 1. In the first case, Lemma 5.3 implies

N(α) <
√
∆((m− 1)e+mf)(e+ f) < mn0(m)2 ·

√
∆.

In the second case, Lemma 5.4 implies

N(α) <
√
∆((m+ 1)e+mf)(me+ (m− 1)f) < (m+ 1)mn0(m)2 ·

√
∆.

�

6. Elements represented as a sum of indecomposables in two different ways

Next, we prove a characterization of the elements α ∈ O+
K which can be expressed as a

sum of indecomposables in exactly two ways.

Theorem 6.1 Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

We have pK(α|I) = 2 if and only if one of the following conditions is satisfied:
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(1) vj ≤ e ≤ 2vj − 1, 0 ≤ f ≤ vj+1 − 2, and

(e, f) 6= (2vj − 1, vj+1 − 2), (vj−1, e) 6= (2, 2vj − 1),

(vj−1, e, f) 6= (2, 2vj − 2, vj+1 − 2),

(2) 1 ≤ e ≤ vj − 2, vj+1 ≤ f ≤ 2vj+1 − 1, and

(e, f) 6= (vj − 2, 2vj+1 − 1), (f, vj+2) 6= (2vj+1 − 1, 2),

(e, f, vj+2) 6= (vj − 2, 2vj+1 − 2, 2),

(3) e = vj − 1, f = vj+1 − 1, and (vj−1, vj , vj+1, vj+2) 6= (2, 2, 2, 2).

Proof. The theorem follows from Lemma 6.2 and Lemmas 6.3 to 6.5 below. �

Lemma 6.2. Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

If pK(α|I) = 2, then one of the conditions (1), (2), (3) in Theorem 6.1 is satisfied.

Proof. First, we show that if α can be expressed as a sum of indecomposables in
exactly 2 ways, then either vj ≤ e ≤ 2vj − 1 and 0 ≤ f ≤ vj+1 − 2, or 1 ≤ e ≤ vj − 2 and
vj+1 ≤ f ≤ 2vj+1−1, or e = vj −1 and f = vj+1−1. If 1 ≤ e ≤ vj −1, 0 ≤ f ≤ vj+1−1,
and (e, f) 6= (vj − 1, vj+1 − 1), then pK(α|I) = 1 by Theorem 2.3. On the other hand, if
e ≥ 2vj , then

α = eβj + fβj+1 = βj−1 + (e− vj)βj + (f + 1)βj+1

= 2βj−1 + (e− 2vj)βj + (f + 2)βj+1,

and if f ≥ 2vj+1, then

α = eβj + fβj+1 = (e+ 1)βj + (f − vj+1)βj+1 + βj+2

= (e+ 2)βj + (f − 2vj+1)βj+1 + 2βj+2,

hence pK(α|I) ≥ 3 in both of these cases. If vj ≤ e ≤ 2vj − 1 and vj+1 − 1 ≤ f , then

α = eβj + fβj+1 = βj−1 + (e− vj)βj + (f + 1)βj+1

= βj−1 + (e− vj + 1)βj + (f + 1− vj+1)βj+1 + βj+2,

hence pK(α|I) ≥ 3. Similarly, if vj − 1 ≤ e and vj+1 ≤ f ≤ 2vj+1 − 1, then

α = eβj + fβj+1 = (e+ 1)βj + (f − vj+1)βj+1 + βj+2

= βj−1 + (e+ 1− vj)βj + (f − vj+1 + 1)βj+1 + βj+2,

hence pK(α, I) ≥ 3.
Secondly, we show that if (e, f) = (2vj − 1, vj+1 − 2) or (vj−1, e) = (2, 2vj − 1) or

(vj−1, e, f) = (2, 2vj − 2, 2vj+1 − 2), then pK(α|I) ≥ 3. If (e, f) = (2vj − 1, vj+1 − 2),
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then

α = (2vj − 1)βj + (vj+1 − 2)βj+1 = βj−1 + (vj − 1)βj + (vj+1 − 1)βj+1 = 2βj−1 + βj+2.

If (vj−1, e) = (2, 2vj − 1), then

α = (2vj − 1)βj + fβj+1 = βj−1 + (vj − 1)βj + (f + 1)βj+1 = βj−2 + (f + 2)βj+1.

If (vj−1, e, f) = (2, 2vj − 2, vj+1 − 2), then

α = (2vj − 2)βj + (vj+1 − 2)βj+1 = βj−1 + (vj − 2)βj + (vj+1 − 1)βj+1 = βj−2 + βj+2.

Thus, pK(α|I) ≥ 3 in all of these cases. Analogously, one can show that if (e, f) =
(vj −2, 2vj+1−1) or (f, vj+2) = (2vj+1−1, 2) or (e, f, vj+2) = (vj −2, 2vj+1−2, 2), then
pK(α|I) ≥ 3.
Finally, we show that if e = vj−1, f = vj+1−1, and (vj−1, vj , vj+1, vj+2) = (2, 2, 2, 2),

then pK(α|I) ≥ 3. We have α = βj + βj+1, and by Lemma 3.1 with t = 1 and k0 = 1,

βj + βj+1 = βj−1 + βj+2 = βj−2 + βj+3,

hence pK(α|I) ≥ 3. �

Lemma 6.3. Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

If (1) in Theorem 6.1 holds, i.e., vj ≤ e ≤ 2vj − 1, 0 ≤ f ≤ vj+1 − 2, and

(e, f) 6= (2vj − 1, vj+1 − 2), (vj−1, e) 6= (2, 2vj − 1),

(vj−1, e, f) 6= (2, 2vj − 2, vj+1 − 2),

then pK(α|I) = 2.

Proof. Assume that the condition holds. We have

α = eβj + fβj+1 = βj−1 + (e− vj)βj + (f + 1)βj+1,

hence pK(α|I) ≥ 2. It remains to show that there are no other partitions of α with
indecomposable parts.
First, suppose for contradiction that there exists k ∈ Z, k ≥ j + 2 such that βk � α.

We have βj+2 ≤ βk ≤ α.
Case e ≤ 2vj − 2 and f ≤ vj+1 − 3: we have

2βj + 3βj+1 + βj+2 ≤ (e+ 2)βj + (f + 3)βj+1 ≤ 2vjβj + vj+1βj+1

= 2βj−1 + 2βj+1 + βj + βj+2,

hence

βj + βj+1 ≤ 2βj−1,

a contradiction.
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Case e = 2vj − 1, f ≤ vj+1 − 3, and vj−1 6= 2: we have

βj + 3βj+1 + βj+2 ≤ (e+ 1)βj + (f + 3)βj+1 ≤ 2vjβj + vj+1βj+1

= 2βj−1 + 2βj+1 + βj + βj+2,

hence βj+1 ≤ 2βj−1. Since vj−1 6= 2, we have vj−1 ≥ 3, and so

2βj ≤ vjβj = βj−1 + βj+1 ≤ 3βj−1 ≤ vj−1βj−1 = βj−2 + βj ,

hence βj ≤ βj−2, a contradiction.
Case e ≤ 2vj − 3 and f = vj+1 − 2: we have

3βj + 2βj+1 + βj+2 ≤ (e+ 3)βj + (f + 2)βj+1 ≤ 2vjβj + vj+1βj+1

= 2βj−1 + 2βj+1 + βj + βj+2,

hence 2βj ≤ 2βj−1, a contradiction.
Case e = 2vj − 2, f = vj+1 − 2, and vj−1 6= 2: we have

2βj + 2βj+1 + βj+2 ≤ (e+ 2)βj + (f + 2)βj+1 = 2vjβj + vj+1βj+1

= 2βj−1 + 2βj+1 + βj + βj+2,

hence βj ≤ 2βj−1. Since vj−1 6= 2, we have vj−1 ≥ 3, and so

βj−1 + βj ≤ 3βj−1 ≤ vj−1βj−1 = βj−2 + βj ,

hence βj−1 ≤ βj−2, a contradiction.
Secondly, suppose for contradiction that there exists k ∈ Z, k ≤ j−2, such that βk � α.

We have β′
j−2 ≤ β′

k ≤ α′.
Case e ≤ 2vj − 2 and f ≤ vj+1 − 3: we have

β′
j−2 + 2β′

j + 3β′
j+1 ≤ (e+ 2)β′

j + (f + 3)β′
j+1 ≤ 2vjβ

′
j + vj+1β

′
j+1

= 2β′
j−1 + 2β′

j+1 + β′
j + β′

j+2,

hence

β′
j−2 + β′

j + β′
j+1 ≤ 2β′

j−1 + β′
j+2.

It follows that

2β′
j−1 + β′

j+1 ≤ vj−1β
′
j−1 + β′

j+1 = β′
j−2 + β′

j + β′
j+1 ≤ 2β′

j−1 + β′
j+2,

hence β′
j+1 ≤ β′

j+2, a contradiction.
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Case e = 2vj − 1, f ≤ vj+1 − 3, and vj−1 6= 2: we have

β′
j−2 + β′

j + 3β′
j+1 ≤ (e+ 1)β′

j + (f + 3)β′
j+1 ≤ 2vjβ

′
j + vj+1β

′
j+1

= 2β′
j−1 + 2β′

j+1 + β′
j + β′

j+2,

hence

β′
j−2 + β′

j+1 ≤ 2β′
j−1 + β′

j+2.

Since vj−1 ≥ 3, it follows that

3β′
j−1 + β′

j+1 ≤ vj−1β
′
j−1 + β′

j+1 = β′
j−2 + β′

j + β′
j+1 ≤ 2β′

j−1 + β′
j + β′

j+2,

and so

2β′
j ≤ vjβ

′
j = β′

j−1 + β′
j+1 ≤ β′

j + β′
j+2,

hence β′
j ≤ β′

j+2, a contradiction.
Case e ≤ 2vj − 3 and f = vj+1 − 2: we have

β′
j−2 + 3β′

j + 2β′
j+1 ≤ (e+ 3)β′

j + (f + 2)β′
j+1 ≤ 2vjβ

′
j + vj+1β

′
j+1

= 2β′
j−1 + 2β′

j+1 + β′
j + β′

j+2,

hence

β′
j−2 + 2β′

j ≤ 2β′
j−1 + β′

j+2.

It follows that

2β′
j−1 + β′

j ≤ vj−1β
′
j−1 + β′

j = β′
j−2 + 2β′

j ≤ 2β′
j−1 + β′

j+2,

hence β′
j ≤ β′

j+2, a contradiction.
Case e = 2vj − 2, f = vj+1 − 2, and vj−1 6= 2: we have

β′
j−2 + 2β′

j + 2β′
j+1 ≤ (e+ 2)β′

j + (f + 2)β′
j+1 = 2vjβ

′
j + vj+1β

′
j+1

= 2β′
j−1 + 2β′

j+1 + β′
j + β′

j+2,

hence

β′
j−2 + β′

j ≤ 2β′
j−1 + β′

j+2.

Since vj−1 ≥ 3, it follows that

3β′
j−1 ≤ vj−1β

′
j−1 = β′

j−2 + β′
j ≤ 2β′

j−1 + β′
j+2,

hence β′
j−1 ≤ β′

j+2, a contradiction.
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We showed that every partition of α with indecomposable parts is of the form

α = aj−1βj−1 + ajβj + aj+1βj+1,

where aj−1, aj , aj+1 ∈ Z≥0. Using βj−1 = vjβj − βj+1, we get

eβj + fβj+1 = (aj−1vj + aj)βj + (aj+1 − aj−1)βj+1.

The elements βj and βj+1 are linearly independent over Q, hence e = aj−1vj + aj and
f = aj+1 − aj−1. Since vj ≤ e ≤ 2vj − 1, the only possibilities for aj−1 are 0 or 1,
which gives us (aj−1, aj , aj+1) = (0, e, f) or (aj−1, aj , aj+1) = (1, e − vj , f + 1). Thus,
pK(α|I) = 2. �

Lemma 6.4. Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

If (2) in Theorem 6.1 holds, i.e., 1 ≤ e ≤ vj − 2, vj+1 ≤ f ≤ 2vj+1 − 1, and

(e, f) 6= (vj − 2, 2vj+1 − 1), (f, vj+2) 6= (2vj+1 − 1, 2),

(e, f, vj+2) 6= (vj − 2, 2vj+1 − 2, 2),

then pK(α|I) = 2.

Proof. If we let j′ = −(j + 1), e′ = f , and f ′ = e, then

α′ = eβ′
j + fβ′

j+1 = fβ−(j+1) + eβ−j = e′βj′ + f ′βj′+1.

Since vj′−1 = vj+2, vj′ = vj+1, and vj′+1 = vj , it follows that α′ satisfies condition (1)
in Theorem 6.1 (with j′, e′, and f ′ in place of j, e, and f). By Lemma 6.3, pK(α|I) =
pK(α′|I) = 2. �

Lemma 6.5. Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

If (3) in Theorem 6.1 holds, i.e., e = vj − 1, f = vj+1 − 1, and (vj−1, vj , vj+1, vj+2) 6=
(2, 2, 2, 2), then pK(α|I) = 2.

Proof. Assume that the condition holds. We have

α = (vj − 1)βj + (vj+1 − 1)βj+1 = βj−1 + βj+2,

hence pK(α|I) ≥ 2. It remains to show that pK(α|I) ≤ 2.
Suppose for contradiction that βj3 � α for some j3 ∈ Z such that j3 > j + 2 or

j3 < j − 1. By Lemma 3.2, vk = 2 for k ∈ {j − 1, j, j + 1, j + 2}, a contradiction.
Since the elements βj−1 and βj+2 are indecomposable, the only partition of α

containing βj−1 or βj+2 is βj−1 + βj+2. This concludes the proof thatpK(α|I) = 2. �

In Theorem 6.9 below, we provide an explicit characterization of the elements α ∈ O+
K

such that pK(α|I) = 2 expressed in terms of the ui’s instead of vk’s. Then we use it to
improve the bound on N(α) from Theorem 1.2 with m = 2.
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Suppose that α = eαi,r + fαi,r+1, where i ≥ −1 is odd and 0 ≤ r ≤ ui+2 − 1. Let
j ∈ Z≥0 be such that βj = αi,r, hence α = eβj + fβj+1. By Lemma 2.1, we have

vj =

ui+1 + 2 if r = 0,

2 if 1 ≤ r ≤ ui+2 − 1,
vj+1 =

2 if 0 ≤ r ≤ ui+2 − 2,

ui+3 + 2 if r = ui+2 − 1.

If r ≥ 1, then βj−1 = αi,r−1, and if r = 0 and i ≥ 1, then βj−1 = αi−2,ui−1. On the other
hand, if r = 0 and i = −1, then j = 0 and vj−1 = v−1 = v1. Thus,

vj−1 =


2 if r = 0 and u|i| ≥ 2,

u|i−1| + 2 if r = 0 and u|i| = 1,

ui+1 + 2 if r = 1,

2 if 2 ≤ r ≤ ui+2 − 1.

If r ≤ ui+2−3, then βj+2 = αi,r+2, and if r = ui+2−2, then βj+2 = αi+2,0. If r = ui+2−1
and ui+4 ≥ 2, then βj+2 = αi+2,1, and if r = ui+2 − 1 and ui+4 = 1, then βj+2 = αi+4,0.
Thus,

vj+2 =


2 if 0 ≤ r ≤ ui+2 − 3,

ui+3 + 2 if r = ui+2 − 2,

2 if r = ui+2 − 1 and ui+4 ≥ 2,

ui+5 + 2 if r = ui+2 − 1 and ui+4 = 1.

Lemma 6.6. Let α = eαi,r + fαi,r+1, where i ≥ −1 is odd and 0 ≤ r ≤ ui+2 − 1. The
element α satisfies condition (1) in Theorem 6.1 if and only if one of the following holds:

(a) r = 0, ui+1 + 2 ≤ e ≤ 2ui+1 + 1, f = 0, and ui+2 ≥ 2,
(b) r = 0, e = 2ui+1 + 2, f = 0, u|i| = 1, and ui+2 ≥ 2,
(c) r = 0, ui+1 + 2 ≤ e ≤ 2ui+1 + 1, 0 ≤ f ≤ ui+3, u|i| ≥ 2, and ui+2 = 1,
(d) r = 0, e = 2ui+1 + 2, 0 ≤ f ≤ ui+3 − 1, u|i| ≥ 2, and ui+2 = 1,
(e) r = 0, ui+1 + 2 ≤ e ≤ 2ui+1 + 2, 0 ≤ f ≤ ui+3, u|i| = 1, and ui+2 = 1,
(f) r = 0, e = 2ui+1 + 3, 0 ≤ f ≤ ui+3 − 1, u|i| = 1, and ui+2 = 1,
(g) r = 1, e = 2, f = 0, and ui+2 ≥ 3,
(h) r = 1, e = 2, 0 ≤ f ≤ ui+3, and ui+2 = 2,
(i) r = 1, e = 3, 0 ≤ f ≤ ui+3 − 1, and ui+2 = 2,
(j) r = ui+2 − 1, e = 2, 0 ≤ f ≤ ui+3 − 1, and ui+2 ≥ 3,

Proof. Let j ∈ Z≥0 be such that βj = αi,r, hence α = eβj + fβj+1. Assume that α
satisfies condition (1) in Theorem 6.1, i.e., vj ≤ e ≤ 2vj − 1, 0 ≤ f ≤ vj+1 − 2, and

(e, f) 6= (2vj − 1, vj+1 − 2), (vj−1, e) 6= (2, 2vj − 1),

(vj−1, e, f) 6= (2, 2vj − 2, vj+1 − 2).
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Case r = 0: we have vj = ui+1 + 2. If ui+2 ≥ 2, then vj+1 = 2. If u|i| ≥ 2, then
vj−1 = 2. Condition (1) becomes ui+1 + 2 ≤ e ≤ 2ui+1 + 3, f = 0, and e 6= 2ui+1 + 3,
e 6= 2ui+1 + 2, hence ui+1 + 2 ≤ e ≤ 2ui+1 + 1. If u|i| = 1, then vj−1 = u|i−1| + 2 > 2.
Condition (1) becomes ui+1 +2 ≤ e ≤ 2ui+1 +3, f = 0, and e 6= 2ui+1 +3, hence we get
the additional possibility e = 2ui+1 + 2. This gives us (a) and (b).
If ui+2 = 1, then vj+1 = ui+3 + 2. We get ui+1 + 2 ≤ e ≤ 2ui+1 + 3, 0 ≤ f ≤ ui+3. If

u|i| ≥ 2, then vj−1 = 2 and e 6= 2ui+1 + 3, (e, f) 6= (2ui+1 + 2, ui+3). This gives us (c)
and (d). If u|i| = 1, then vj−1 = u|i−1| + 2 > 2, hence (e, f) 6= (2ui+1 + 3, ui+3). This
gives us (e) and (f).
Case r = 1: we must have ui+2 ≥ 2 and vj = 2. Moreover, vj−1 = ui+1 + 2 > 2. If

ui+2 ≥ 3, then vj+1 = 2, hence 2 ≤ e ≤ 3, f = 0, and (e, f) 6= (3, 0). This gives us (g).
If ui+2 = 2, then vj+1 = ui+3+2, hence 2 ≤ e ≤ 3, 0 ≤ f ≤ ui+3, and (e, f) 6= (3, ui+3).

This gives us (h) and (i).
Case 2 ≤ r ≤ ui+2 − 2: we have vj−1 = 2, vj = 2, and vj+1 = 2, hence 2 ≤ e ≤ 3,

f = 0, and e 6= 3, (e, f) 6= (2, 0). We see that these conditions are never satisfied.
Case r = ui+2 − 1: because we have already dealt with the cases r = 0 and r = 1, we

may assume ui+2 ≥ 3. We have vj = 2, vj+1 = ui+3+2, and vj−1 = 2. We get 2 ≤ e ≤ 3,
0 ≤ f ≤ ui+3, and e 6= 3, (e, f) 6= (2, ui+3). This gives us (j). �

Lemma 6.7. Let α = eαi,r + fαi,r+1, where i ≥ −1 is odd and 0 ≤ r ≤ ui+2 − 1. The
element α satisfies condition (2) in Theorem 6.1 if and only if one of the following holds:

(a) r = 0, 1 ≤ e ≤ ui+1 − 1, f = 2, ui+1 ≥ 2, and ui+2 ≥ 3,
(b) r = 0, 1 ≤ e ≤ ui+1 − 1, 2 ≤ f ≤ 3, ui+1 ≥ 2, and ui+2 = 2,
(c) r = 0, e = ui+1, f = 2, and ui+2 = 2,
(d) r = 0, 1 ≤ e ≤ ui+1 − 1, ui+3 + 2 ≤ f ≤ 2ui+3 + 2, ui+1 ≥ 2, ui+2 = 1, and

ui+4 ≥ 2,
(e) r = 0, e = ui+1, ui+3 + 2 ≤ f ≤ 2ui+3 + 1, ui+2 = 1, and ui+4 ≥ 2,
(f) r = 0, 1 ≤ e ≤ ui+1 − 1, ui+3 + 2 ≤ f ≤ 2ui+3 + 3, ui+1 ≥ 2, ui+2 = 1, and

ui+4 = 1,
(g) r = 0, e = ui+1, ui+3 + 2 ≤ f ≤ 2ui+3 + 2, ui+2 = 1, and ui+4 = 1.

Proof. Let j ∈ Z≥0 be such that βj = αi,r, hence α = eβj + fβj+1. Assume that α
satisfies condition (2) in Theorem 6.1, i.e., 1 ≤ e ≤ vj − 2, vj+1 ≤ f ≤ 2vj+1 − 1, and

(e, f) 6= (vj − 2, 2vj+1 − 1), (f, vj+2) 6= (2vj+1 − 1, 2),

(e, f, vj+2) 6= (vj − 2, 2vj+1 − 2, 2).

Case r = 0: we have vj = ui+1 + 2. If ui+2 ≥ 2, then vj+1 = 2, hence 1 ≤ e ≤ ui+1 and
2 ≤ f ≤ 3. If ui+2 ≥ 3, then vj+2 = 2, hence f 6= 3 and (e, f) 6= (ui+1, 2). This gives us
(a). If ui+2 = 2, then vj+2 = ui+3 +2 > 2, hence (e, f) 6= (ui+1, 3). This gives us (b) and
(c).
If ui+2 = 1, then vj+1 = ui+3+2, hence 1 ≤ e ≤ ui+1 and ui+3+2 ≤ f ≤ 2ui+3+3. If

ui+4 ≥ 2, then vj+2 = 2. We get f 6= 2ui+3 + 3 and (e, f) 6= (ui+1, 2ui+3 + 2). This gives
us (d) and (e). If ui+4 = 1, then vj+2 = ui+5 + 2 > 2. We get (e, f) 6= (ui+1, 2ui+3 + 3).
This gives us (f) and (g).
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Case 1 ≤ r ≤ ui+2 − 1: we get vj = 2, hence 1 ≤ e ≤ 0, a contradiction. �

Lemma 6.8. Let α = eαi,r + fαi,r+1, where i ≥ −1 is odd and 0 ≤ r ≤ ui+2 − 1. The
element α satisfies condition (3) in Theorem 6.1 if and only if one of the following holds:

(a) r = 0, e = ui+1 + 1, f = 1, and ui+2 ≥ 2,
(b) r = 0, e = ui+1 + 1, f = ui+3 + 1, and ui+2 = 1,
(c) r = 1, e = 1, f = 1, and ui+2 ≥ 3,
(d) r = 1, e = 1, f = ui+3 + 1, and ui+2 = 2,
(e) r = ui+2 − 2, e = 1, f = 1, and ui+2 ≥ 4,
(f) r = ui+2 − 1, e = 1, f = ui+3 + 1, and ui+2 ≥ 3.

Proof. Let j ∈ Z be such that βj = αi,r, hence α = eβj + fβj+1. Assume that α
satisfies condition (3) in Theorem 6.1, i.e.,

e = vj − 1, f = vj+1 − 1, and (vj−1, vj , vj+1, vj+2) 6= (2, 2, 2, 2).

Case r = 0: we have vj = ui+2 + 2. If ui+2 ≥ 2, then vj+1 = 2, which gives us (a). If
ui+2 = 1, then vj+1 = ui+3 + 2, which gives us (b).
Case r = 1: we must have ui+2 ≥ 2 and vj = 2. If ui+2 ≥ 3, then vj+1 = 2. Moreover,

vj−1 = ui+1 + 2 > 2. This gives us (c). If ui+2 = 2, then vj+1 = ui+3 + 2, and this gives
us (d).
Case 2 ≤ r ≤ ui+2 − 3: we have vj = 2, vj+1 = 2, vj−1 = 2, and vj+1 = 2, a

contradiction.
Case r = ui+2 − 2: since we have already treated the cases r = 0 and r = 1, we may

assume ui+2 ≥ 4. We have vj = 2, vj+1 = 2, and vj+2 = ui+3 + 2, giving us (e).
Case r = ui+2 − 1: we may assume ui+2 ≥ 3. Now vj = 2 and vj+1 = ui+3 + 2, which

gives us (f). �

Theorem 6.9 All the elements α ∈ O+
K such that pK(α|I) = 2 are the following

(where i ≥ −1 is odd):

• α = eαi,0 + fαi,1 with

(a) ui+1 + 2 ≤ e ≤ 2ui+1 + 1 and f = 0 if ui+2 ≥ 2,
(b) e = 2ui+1 + 2 and f = 0 if u|i| = 1 and ui+2 ≥ 2,
(c) ui+2 + 2 ≤ e ≤ 2ui+1 + 1 and 0 ≤ f ≤ ui+3 if u|i| ≥ 2 and ui+2 = 1,
(d) e = 2ui+2 + 2 and 0 ≤ f ≤ ui+3 − 1 if u|i| ≥ 2 and ui+2 = 1,
(e) ui+1 + 2 ≤ e ≤ 2ui+1 + 2 and 0 ≤ f ≤ ui+3 if u|i| = 1 and ui+2 = 1,
(f) e = 2ui+1 + 3 and 0 ≤ f ≤ ui+3 − 1 if u|i| = 1 and ui+2 = 1,
(g) 1 ≤ e ≤ ui+1 − 1 and f = 2 if ui+1 ≥ 2 and ui+2 ≥ 3,
(h) 1 ≤ e ≤ ui+1 − 1 and 2 ≤ f ≤ 3 if ui+1 ≥ 2 and ui+2 = 2,
(i) e = ui+1 and f = 2 if ui+2 = 2,
(j) 1 ≤ e ≤ ui+1 − 1 and ui+3 + 2 ≤ f ≤ 2ui+2 + 2 if ui+1 ≥ 2, ui+2 = 1, and

ui+4 ≥ 2,
(k) e = ui+1 and ui+3 + 2 ≤ f ≤ 2ui+3 + 1 if ui+2 = 1 and ui+4 ≥ 2,
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(l) 1 ≤ e ≤ ui+1 − 1 and ui+3 + 2 ≤ f ≤ 2ui+3 + 3 if ui+1 ≥ 2, ui+2 = 1, and
ui+4 = 1,

(m) e = ui+1 and ui+3 + 2 ≤ f ≤ 2ui+3 + 2 if ui+2 = 1 and ui+4 = 1,
(n) e = ui+1 + 1 and f = 1 if ui+2 ≥ 2,
(o) e = ui+1 + 1 and f = ui+3 + 1 if ui+2 = 1.

• α = eαi,1 + fαi,2 with

(p) e = 2 and f = 0 if ui+2 ≥ 3,
(q) e = 2 and 0 ≤ f ≤ ui+3 if ui+2 = 2,
(r) e = 3 and 0 ≤ f ≤ ui+3 − 1 if ui+2 = 2,
(s) e = 1 and f = 1 if ui+2 ≥ 3,
(t) e = 1 and f = ui+3 + 1 if ui+2 = 2,

• α = eαi,ui+2−2 + fαi,ui+2−1 with e = 1 and f = 1 if ui+2 ≥ 4,
• α = eαi,ui+2−1 + fαi+2,0 with

(u) e = 2 and 0 ≤ f ≤ ui+3 − 1 if ui+2 ≥ 3,
(v) e = 1 and f = ui+3 + 1 if ui+2 ≥ 3,

• conjugates of all of the above.

Proof. This follows from Theorem 6.1 by putting together the conditions in
Lemmas 6.6 to 6.8. �

Theorem 6.10 If α ∈ O+
K can be expressed as a sum of indecomposables in 2 ways,

i.e., pK(α|I) = 2, then

N(α) < 5
√
∆
(√

∆+ 1
)(

3
√
∆+ 2

)
,

where ∆ is the discriminant of K.

Proof. We need to estimate the norms of the elements α = eαi,r + fαi,r+1 in
Theorem 6.9.
First, suppose that r = 0. By Lemma 5.3, we have

N(α) <
√
∆(e+ 2f)(e+ f).

Now we substitute the bounds for e and f from cases (a)–(o) in Theorem 6.9. For example,
in (a) we have e ≤ 2ui+1 + 1 < 2

√
∆+ 1 and f = 0, hence

N(α) <
√
∆
(
2
√
∆+ 1

)2
.

The worst case is (l), where e ≤ ui+1− 1 <
√
∆− 1 and f ≤ 2ui+3+3 < 2

√
∆+3, hence

N(α) <
√
∆
(
5
√
∆+ 5

)(
3
√
∆+ 2

)
.
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Secondly, suppose that r = 1. By Lemma 5.3, we have

N(α) <
√
∆(2e+ 3f)(e+ f).

We analyze the cases (p)–(t) in Theorem 6.9. The worst case is (t), where e = 1 and
f = ui+3 + 1 <

√
∆+ 1, hence

N(α) <
√
∆
(
3
√
∆+ 5

)(√
∆+ 2

)
.

Next, suppose that r = ui+2 − 2. By Lemma 5.4, we have

N(α) <
√
∆(4e+ 3f)(3e+ 2f).

From Theorem 6.9, we get e = 1 and f = 1, hence N(α) < 35
√
∆.

Finally, suppose that r = ui+2 − 1. By Lemma 5.4, we have

N(α) <
√
∆(3e+ 2f)(2e+ f).

We look at the cases (u) and (v) in Theorem 6.9. In (u), we have e = 2 and f ≤ ui+3−1 <√
∆− 1, hence

N(α) <
√
∆
(
2
√
∆+ 4

)(√
∆+ 3

)
.

In (v), we have e = 1 and f = ui+3 + 1 <
√
∆+ 1, hence

N(α) <
√
∆
(
2
√
∆+ 5

)(√
∆+ 3

)
.

This proves the bound for N(α) in each case. �

7. Elements with a small number of partitions

In this section, we use our results about partitions with indecomposable parts to describe
all the elements with 6 partitions and determine D(6). A sufficient condition for the
existence of α ∈ O+

K with 6 partitions was found in [31], where it was also remarked that
this condition is not necessary.

Theorem 7.1 ([31, Theorem 12]) Let K = Q(
√
D), where D ∈ Z≥2 is squarefree,

D 6= 5, and let α = (d2ξDe+ 2) + 2ωD.

• If dξDe − ξD > 1
2 , then pK(α) = 6,

• If dξDe − ξD < 1
2 , then pK(α) = 9.
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Since ξD = ωD if D ≡ 2, 3 (mod 4) and ξD = ωD − 1 if D ≡ 1 (mod 4), we have that
dξDe − ξD > 1

2 is equivalent to ωD − bωDc < 1
2 . From the continued fraction expansion

ωD − bωDc = 1

u1 +
1

u2+···
,

we see that this is equivalent to u1 ≥ 2. We also note that D 6= 5 is equivalent to
u0 = 2bωDc − Tr(ωD) ≥ 2. Thus, if u0 ≥ 2 and u1 ≥ 2, then the element α from
Theorem 7.1 satisfies pK(α) = 6.
The set D(6) will be completely determined in terms of the continued fraction of ωD

in Theorem 7.9.

Lemma 7.2. Let α ∈ O+
K and j ∈ Z, e ∈ Z≥1, f ∈ Z≥0 such that α = eβj + fβj+1.

If pK(α) ≤ 6, then (e, f) ∈ {(1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (2, 1), (1, 2)}.

Proof. We show that if α � 5βj or α � 3βj+βj+1 or α � βj+3βj+1 or α � 2βj+2βj+1,
then pK(α) ≥ 7.
The element 5βj has at least 7 partitions corresponding to the 7 partitions of 5, namely

(5βj), (4βj , βj), (3βj , 2βj), (3βj , βj , βj), (2βj , 2βj , βj),

(2βj , βj , βj , βj), and (βj , βj , βj , βj , βj).

The element 3βj + βj+1 has at least the following 7 partitions:

(3βj + βj+1), (3βj , βj+1), (2βj , βj + βj+1), (βj , 2βj + βj+1), (2βj , βj , βj+1),

(βj , βj , βj + βj+1), and (βj , βj , βj , βj+1).

Similarly, βj +3βj+1 has at least 7 partitions obtained from the partitions of 3βj + βj+1

by exchanging the roles of βj and βj+1.
The element 2βj + 2βj+1 also has at least 7 partitions:

(2βj + 2βj+1), (2βj + βj+1, βj+1), (2βj , 2βj+1), (βj , βj + 2βj+1), (2βj , βj+1, βj+1),

(βj , βj , 2βj+1) and (βj , βj , βj+1, βj+1).

�

Lemma 7.3. Let i ≥ −1 be odd and 0 ≤ r ≤ ui+2 − 1. For α = 2αi,r, we have
pK(α) = m if and only if either r = m − 2 and ui+2 ≥ 2m − 4, or r = ui+2 − (m − 2)
and ui+2 ≥ 2m− 3.
For α = αi,r + αi,r+1, we have pK(α) = m if and only if either r = m − 2 and

ui+2 ≥ 2m− 3, or r = ui+2 − (m− 1) and ui+2 ≥ 2m− 2.

Proof. By Proposition 3.4, we have

pK(2αi,r) = min{r + 2, ui+2 − r + 2},

hence pK(2αi,r) = m if and only if either r+ 2 = m and ui+2 − r+ 2 ≥ m, or r+ 2 > m
and ui+2 − r + 2 = m.
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Similarly,

pK(αi,r + αi,r+1) = min{r + 2, ui+2 − r + 1},

hence pK(αi,r + αi,r+1) = m if and only if either r + 2 = m and ui+2 − r + 1 ≥ m, or
r + 2 > m and ui+2 − r + 1 = m. �

Lemma 7.4. If α = 3βj, where j ∈ Z, then we have the following:

• if vj ≥ 4, then pK(α) = 3,
• if vj = 3, then pK(α) = 4,
• if vj = 2, vj−1 > 2, and vj+1 > 2, then pK(α) = 6,
• if vj = 2 and vj−1 = 2 or vj+1 = 2, then pK(α) ≥ 8.

Proof. If vj ≥ 4, then pK(α|I) = 1 by Theorem 2.3. The only partition of α with
indecomposable parts is (βj , βj , βj), and all partitions of α are

(3βj), (2βj , βj), and (βj , βj , βj), (2)

hence pK(α) = 3.
If vj = 3, then α satisfies condition (1) in Theorem 6.1, hence pK(α|I) = 2. We

have 3βj = βj−1 + βj+1, and all partitions of α are the ones listed in (2) together with
(βj−1, βj+1), hence pK(α) = 4.
If vj = 2, vj−1 > 2, and vj+1 > 2, then α again satisfies condition (1) in Theorem 6.1,

hence pK(α|I) = 2. We have 3βj = βj−1 + βj + βj+1 and all the partitions of α are the
ones listed in (2) together with

(βj−1, βj + βj+1), (βj−1 + βj , βj+1), and (βj−1, βj , βj+1), (3)

hence pK(α) = 6.
If vj = 2 and vj−1 = 2, then

3βj = βj−1 + βj + βj+1 = βj−2 + 2βj+1.

The element α has the 6 partitions in (2) and (3), together with

(βj−2, 2βj+1) and (βj−2, βj+1, βj+1),

hence pK(α) ≥ 8.
If vj = 2 and vj+1 = 2, then

3βj = βj−1 + βj + βj+1 = 2βj−1 + βj+2,

and we again have pK(α) ≥ 8. �

Lemma 7.5. If α = 4βj, where j ∈ Z, then we have the following:

https://doi.org/10.1017/S0013091525101259 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525101259


Totally positive elements with m partitions 29

• if vj ≥ 5, then pK(α) = 5,
• if vj = 4, then pK(α) = 6,
• if vj = 3, then pK(α) ≥ 8,
• if vj = 2, then pK(α) ≥ 16.

Proof. If vj ≥ 5, then pK(α|I) = 1 by Theorem 2.3. It follows that α has 5 partitions
corresponding to the partitions of 4, namely

(4βj), (3βj , βj), (2βj , 2βj), (2βj , βj , βj), and (βj , βj , βj , βj). (4)

If vj = 4, then α satisfies condition (1) in Theorem 6.1, hence pK(α|I) = 2. We have

4βj = βj−1 + βj+1,

and α has the 5 partitions listed in (4) together with (βj−1, βj+1), hence pK(α) = 6.
If vj = 3, then

4βj = βj−1 + βj + βj+1,

and α has the 5 partitions in (4) together with

(βj−1, βj + βj+1), (βj−1 + βj , βj+1), and (βj−1, βj , βj+1),

hence pK(α) ≥ 8.
If vj = 2, then

4βj = βj−1 + 2βj + βj+1 = 2βj−1 + 2βj+1,

hence α has the 5 partitions in (4) together with the 7 partitions

(βj−1, 2βj + βj+1), (βj−1 + 2βj , βj+1), (βj−1 + βj , βj + βj+1), (βj−1, 2βj , βj+1),

(βj−1 + βj , βj , βj+1), (βj−1, βj , βj + βj+1), (βj−1, βj , βj , βj+1)

and the 4 partitions

(2βj−1, 2βj+1), (2βj−1, βj+1, βj+1), (βj−1, βj−1, 2βj+1), (βj−1, βj−1, βj+1, βj+1),

hence pK(α) ≥ 16. �

Lemma 7.6. If α = 2βj + βj+1, where j ∈ Z, then we have the following:

• if vj ≥ 3 and (vj , vj+1) 6= (3, 2), then pK(α) = 4,
• if (vj , vj+1) = (3, 2), then pK(α) = 5,
• if vj = 2 and vj+1 ≥ 4, then pK(α) = 6,
• if vj = 2, vj+1 = 3, and vj−1 > 2, then pK(α) = 6,
• if vj = 2, vj+1 = 3, and vj−1 = 2, then pK(α) = 7,
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• if vj = 2 and vj+1 = 2, then pK(α) ≥ 8.

Proof. If vj ≥ 3 and (vj , vj+1) 6= (3, 2), then pK(α, I) = 1 by Theorem 2.3, and all
partitions of α are

(2βj + βj+1), (βj , βj + βj+1), (2βj , βj+1), and (βj , βj , βj+1). (5)

If (vj , vj+1) = (3, 2), then α satisfies condition (3) in Theorem 6.1, hence pK(α, I) = 2.
We have

2βj + βj+1 = βj−1 + βj+2,

and all the partitions of α are the 4 partitions listed in (5) together with (βj−1, βj+2).
If vj = 2 and vj+1 ≥ 4, then α satisfies condition (1) in Theorem 6.1, hence pK(α, I) =

2. We have

2βj + βj+1 = βj−1 + 2βj+1,

and α has the 4 partitions in (5) together with

(βj−1, 2βj+1) and (βj−1, βj+1, βj+1), (6)

hence pK(α) = 6.
If vj = 2, vj+1 = 3, and vj−1 > 2, then α also satisfies condition (1) of Theorem 6.1,

and we have pK(α) = 6 as above.
If vj = 2, vj+1 = 3, and vj−1 = 2, then

2βj + βj+1 = βj−1 + 2βj+1 = βj−2 + βj+2.

By Lemma 3.2, if βj3 � βj−2 + βj+2 for some j3 ∈ Z, j3 > j + 2 or j3 < j − 2, then
vk = 2 for k ∈ {j − 2, . . . , j + 2}. But we have vj+1 = 3, so this does not occur. It
follows that pK(α|I) = 3 and the partitions of α are the ones in (5) and (6) together
with (βj−2, βj+2), hence pK(α) = 7.
If vj = 2 and vj+1 = 2, then

2βj + βj+1 = βj−1 + 2βj+1 = 2βj−1 + βj+2,

and α has the 6 partitions in (5) and (6) together with

(2βj−1, βj+2) and (βj−1, βj−1, βj+2),

hence pK(α) ≥ 8. �

Lemma 7.7. If α = βj + 2βj+1, where j ∈ Z, then we have the following:

• if (vj , vj+1) 6= (2, 3) and vj+1 ≥ 3, then pK(α) = 4,
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• if (vj , vj+1) = (2, 3), then pK(α) = 5,
• if vj ≥ 4 and vj+1 = 2, then pK(α) = 6,
• if vj = 3, vj+1 = 2, and vj+2 > 2, then pK(α) = 6,
• if vj = 3, vj+1 = 2, and vj+2 = 2, then pK(α) = 7,
• if vj = 2 and vj+1 = 2, then pK(α) ≥ 8.

Proof. Let j′ = −(j + 1) and consider

α′ = β′
j + 2β′

j+1 = β−j + 2β−(j+1) = 2βj′ + βj′+1.

We have vj′ = vj+1, vj′+1 = vj , and vj′−1 = vj+2. The lemma follows from Lemma 7.6
applied to α′. �

With the help of the preceding series of lemmas, it is possible to characterize the
elements α ∈ O+

K such that pK(α) = m for m ∈ {2, 3, 4, 5, 6}. We do this for m = 6
and then find a necessary and sufficient condition for K to contain an element with 6
partitions.

Proposition 7.8. All the elements α ∈ O+
K such that pK(α) = 6 are the following

(where i ≥ −1 is odd):

(a) α = 2αi,4 if ui+2 ≥ 8,
(b) α = 2αi,ui+2−4 if ui+2 ≥ 9,
(c) α = αi,4 + αi,5 if ui+2 ≥ 9,
(d) α = αi,ui+2−5 + αi,ui+2−4 if ui+2 ≥ 10,
(e) α = 3αi,1 if ui+2 = 2,
(f) α = 4αi,0 if ui+1 = 2,
(g) α = 2αi,ui+2−1 + αi+2,0 if ui+2 ≥ 2 and ui+3 ≥ 2, or ui+2 = 2 and ui+3 = 1,
(h) α = αi,0 + 2αi,1 if ui+1 ≥ 2 and ui+2 ≥ 2, or ui+1 = 1 and ui+2 = 2,
(i) conjugates of all of the above.

Proof. Let α = eαi,r + fαi,r+1, where i ≥ −1 is odd and 0 ≤ r ≤ ui+2 − 1. Let j ∈ Z
be such that βj = αi,r, so that α = eβj + fβj+1. Assume that pK(α) = 6, hence

(e, f) ∈ {(2, 0), (3, 0), (4, 0), (1, 1), (2, 1), (1, 2)},

by Lemma 7.2.
If (e, f) = (2, 0), then Lemma 7.3 shows that r = 4 and ui+2 ≥ 8, or r = ui+2 − 4 and

ui+2 ≥ 9.
If (e, f) = (1, 1), then Lemma 7.3 shows that r = 4 and ui+2 ≥ 9, or r = ui+2 − 5 and

ui+2 ≥ 10.
If (e, f) = (3, 0), then Lemma 7.4 shows that vj = 2, vj−1 > 2, and vj+1 > 2. Thus,

r = 1 and ui+2 = 2.
If (e, f) = (4, 0), then Lemma 7.5 shows that vj = 4, thus r = 0 and ui+1 = 2.
If (e, f) = (2, 1), then Lemma 7.6 shows that pK(α) = 6 if and only if one of the

following holds:
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• vj = 2 and vj+1 ≥ 4,
• vj = 2, vj+1 = 3, and vj−1 > 2.

These conditions translate to

• r = ui+2 − 1, ui+2 ≥ 2, and ui+3 ≥ 2,
• r = ui+2 − 1, ui+2 = 2, and ui+3 = 1.

If (e, f) = (1, 2), then the condition follows similarly from Lemma 7.7. �

Theorem 7.9 Let K = Q(
√
D), where D ∈ Z≥2 is squarefree. Let ωD have the

continued fraction expansion ωD = [du0/2e, u1, . . . , us], where u0 = us. There exists
α ∈ O+

K such that pK(α) = 6 if and only if at least one of the following conditions is
satisfied:

• ui ≥ 8 for some i ≥ 1 odd,
• ui = 2 for some i ≥ 0,
• ui ≥ 2 and ui+1 ≥ 2 for some i ≥ 0.

Proof. This immediately follows from Proposition 7.8. �

We know from Theorem 4.3 that 6 ∈ pK(O+
K) for “almost all” squarefree D ∈ Z≥2. By

Theorem 7.9, a squarefree D ∈ Z≥2 belongs to the set D(6) if and only if

• ui ≤ 7 for every i ≥ 1 odd,
• ui 6= 2 for every i ≥ 0,
• if ui ≥ 2, then ui+1 = 1 for every i ≥ 0.

Example 7.10. There exists an α ∈ O+
K such that pK(α) = 6 if and only if

D ∈ {2, 3, 6, 10, 11, 13, 14, 19, 22, 26, 29, 30, 31, 33, 38, 39, 41, 42, 46, . . . },

and there does not exist an α ∈ O+
K such that pK(α) = 6 if and only if

D ∈ {5, 7, 15, 17, 21, 23, 34, 35, 37, 43, 47, . . . }.

Theorem 7.9 completes the description of D(m) for 1 ≤ m ≤ 7. There does not seem to
be any fundamental reason why the same techniques could not be extended to determine
all the elements with m partitions, and hence D(m) for other values of m.
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