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INJECTIVE MODULES OVER TWISTED POLYNOMIAL RINGS

BARBARA L. OSOFSKY

Differential polynomial rings over a universal field and localized
twisted polynomial rings over a separably closed field of non-zero char-
acteristic twisted by the Frobenius endomorphism were the first domains
not divisions rings that were shown to have every simple module injec-
tive (see [C] and [C-J]). By modifying the separably closed condition for
the polynomial rings twisted by the Frobenius, the conditions of every
simple being injective and only a single isomorphism class of simple
modules were shown to be independent (see [0]). In this paper we con-
tinue the investigation of injective cyclic modules over twisted polynomial
rings with coefficients in a commutative field.

Let A: be a field and a an endomorphism of K. We can then form the
twisted polynomial ring R = κ[X; σ] with

R = ί Σ on*'\neZ,ateκ)

under usual polynomial addition and multiplication given by the relation

Xa = σ(a)X.

We are interested in non-zero cyclic injective left modules over this ring

R.
It is well known (see [J]) that R is a left Euclidean domain using

the degree function, and so a left principal ideal domain. Thus a left
i?-module is injective if and only if it is divisible (see [R, page 70]).

The field K is an i?-module under the action

(±PιX*)-a=±Piσ\a).

Using this action, we get

THEOREM 1. Let K be a field and R = κ[X; σ]. Then the following

are equivalent:
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(1) For every q eR with constant term Φ 0, RjRq is injective.

(2) There exists a non-zero a e K with R\R(X — a) injective.

(3) For every tetc and every non-zero p = J^l^PiX* e R, there is an

aeic such that p a = t, that is, the "σ-polynomial" equation Σ?=oP«^(^) —

t = 0 has a root in K.

(4) The right-left analog of any of the above conditions.

Proof. Clearly (1) φ (2).

We now examine injectivity of cyclic modules by looking at divisi-

bility properties of quotients of R in order to complete the proof.

It is easy to see that the twisting endomorphism must be an automor-

phism if a twisted polynomial ring has a non-zero cyclic injective module.

In particular, let q(X) = Σ?=o QiX* be a monic polynomial of degree

k > 0. Then Xk ~ — Σί=o QiX1 modulo Rq, and Xp has constant term

in σ[fc]q0 modulo RqQ for any polynomial p, so any a not in σ[fc]q0 cannot

be divisible by X modulo q. Hence we will assume that a is onto.

We observe that

Thus there is left-right symmetry and everything we say about left mod-

ules also holds on the right.

Now let p = Xli-oPi-^* and q = Σ5«o (Jj-X7 be two elements of R. The

statement that RjRq is divisible by p means that for every r e R there is

an s e R such that r — pse Rq, that is, R = pR + Rq. By the left Eu-

clidean algorithm we can take s of degree less than q. By the left and

right Euclidean algorithms, to test this divisibility we need only show

that every r of degree less than min {deg (p), deg (q)} lies in pi? + Rq.

Let deg (p) = / and deg (q) = k. We then have R = pR + Rq if and only

if for all Σ ϊ ΐ ? ^ - 1 * , * ' ,

( I \ /k-1 \ β-\ \ / * \ min(*,l)-l

Σ P i * Ί ( Σ « ^ ' ) + (ΣβiXΊiΣQtXΊ = Σ r,z ' .
For convenience, we also set τ< = 0 for ί > min (£, ί) — 1.

We thus get the systems (linear over tc[X; σ]) of k + I equations in

k + I variables

( Σ PiAotj)) + ( Σ βtJiQj)) = τn ΐorO<n<k+l-l.
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We abbreviate this system

109

( * ) A Tfc-1

Γfc

where A is the (A + /) X (A + /) matrix

A 0 0 qQ 0

Pi^f A 0 ς

p 2 ^ 2 A ^ Po q

Po 0 ^

Po Qk-i

: P i ^ g fc

0 ϊ

σ(Qi)

0 PιXι 0

pictured here as though k = Z. Modifications for fe ^ ί are very minor.

The significant properties of A are that the first k columns corre-

spond to p and the last I columns correspond to q. The left (k + I) X k

submatrix has the constant p0 on its diagonal, zeros above the diagonal,

and multiples of X below the diagonal. The right (k + /) X I submatrix

also has zeros above its diagonal and its bottom I rows form an upper

triangular submatrix with diagonal entries σ*(qk). These entries a\qk) are

also on the diagonal of A.

Let Ax denote the upper left k X k submatrix of A.

Since q has degree k, σ*(qk) φ 0 for 0 < ί < I — 1. Also,

XR+ Rq = R <£=> RX+ Rq = R φ=φ q0 φ 0

so we may take pQ Φ 0 and q0 Φ 0 in testing to see if R/Rq is injective.
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We now proceed using Gaussian elimination in a manner similar to that

used in [0],

By pivoting successively on σι~\qk), aι~\qk), , qk we can make every

non-diagonal entry in the last I columns 0 (and the diagonal entries 1).

In this process, all polynomials which are added to the entries in the

upper left k X k submatrix Ax are multiples of X. Let α* denote the ίth

row of Aj, and assume ΣLo riaι == 0. If some rt ψ 0, there must be a jf

with r3 of smallest order (the smallest power of X which occurs with

non-zero coefficient). Then the jth. entry of Σ* = o rtat contains a term of

smallest order from aό which cannot be cancelled by any other term in

Σ*-o riUn a contradiction. By a series of elementary row operations

using the Euclidean algorithm to decrease degree, we can bring Aj into

lower echelon form, and the preceding discussion shows that we can

never get a zero polynomial on the diagonal, as that would give us a

zero row.

Doing the same row operations on the column of constants in (*)

as were done in the matrix A gives us a new system

L

where L is a lower triangular matrix with non-zero polynomials on the

diagonal and the £* are obtained from the r t by multiplication by an

invertible matrix. In summary, this system has a solution for any

{ti\0 <£ i < k + I - 1} &pR + Rq = R.

We note that the i?-module tz is isomorphic to R/R(X — 1). Statement

(3) is precisely the statement that K is a divisible jR-module. We can now

complete the proof of the theorem.

Given (3), the equations (**) can be solved by forward substitution,

so (3)^(1) .

For (2) => (3), we take k = 1 and q = X - a with a Φ 0. Then
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PxX

a

1

0

σ(a)

1

111

PιXl

σι~\a)

1

and L has (1, 1) entry Σ U ( - 1)% Πί-o oj{a)Xl. If a φ 0 and R/R(X - a)

is divisible by all non-zero polynomials p, then the coefficients of the

(1, 1) entry of L are arbitrary, so every "<τ-polynomial" equation must

have a solution, and (2) =φ> (3).

Since K is commutative, (3) is left-right symmetric, so one gets (4) by

this symmetry. •

A module over a ring or object in an j ^ J δ category is called CS

(or extending, or having property Cl, or •) provided every submodule

is essential in some direct summand. In [O-S], the condition that every

cyclic i?-module is CS is studied as an example to illustrate the main

result. That paper contains a sketch of a proof that every cyclic i?-module

is CS implies that, for any simple i?-module M with injective hull E(M),

if the annihilators of non-zero elements of M are not two-sided, then

E(M)/M is semi-simple. Theorem 1 enables us to complete the discussion

of when every cyclic i?-module is CS begun in [O-S], filling in details

just sketched there.

LEMMA A. Let a etc. Then R/R(X — a) is isomorphίc to R/R(X — 1)

φ a = σ(β)/β for some β Φ 0 in tc.

Proof. R/R(X - 1) ^ R/R(X -a)&lβe κ\0 with (X - ΐ)β e R(X - a)

&3βe κ\0 with σ(β)X - β e R(X - a) & 3β 6 *\0 with a = β/σ(β). D

LEMMA B. Let U and S be modules over some arbitrary ring 0t with

1. Assume S = 0ίs is simple, and U is a uniserial module with a unique

composition series C/Z) Ux 3 U2 13 0, with S = UJU2. Then M = U® S is

not CS.

Proof. Let u + U2 map to s in the isomorphism from UJU2 to S,

where ueUx. Since U is uniserial, 0ίu must have composition length 2,

and the same is true for Θί{u + s) = N c M. We observe that socle (N)

= U2 and N 0 S is the only submodule of M of length 3 containing N.

Thus iV has no proper essential extensions in M. However, N cannot be
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a direct summand of M since MjN is a direct sum of two simple modules

whereas the socle of M is U2® S and U2 C N. D

LEMMA C. Let M be a principal left ideal domain, and let p and q

generate maximal left ideals of £%. If M is a simple ^-module not divisible

by p and 0t\0ίp is not divisible by q, then 0t has a unίserίal module

@u 3 Ux 3 U2 3 0 of composition length 3 with UJU2 ^ 9t\0tp.

Proof, Let E = E(M) denote an injective hull of M. Let m e M\pM.

Then there is an x e E with px = m. Since & is hereditary, E/M is in-

jective. Then 0tx\{0ix Π M) has an injective hull Eι in E/M, In E there

is an element u£&x with u + MeE' and ?̂gw + M = ^x + M. Then

?̂w 3 0tx 3 M 3 0, and one can easily check that Mu has the required

properties. •

THEOREM 2. Let K be a field and R = tc[X; σ]. Then the following are

equivalent:

(1) For every q e R, R/Rq is CS.

(2) Either a is the identity or for every q e R with constant term Φ 0,

R/Rq is injective.

Proof. (2) =φ- (1) is reasonably elementary. The ring itself is a uni-

form module and so CS, and if σ is the identity, other cyclics are CS by

the basis theorem for finitely generated Abelian groups. If p e R\0, p =

qXj = Xjq'' for some j eω and q, q' e R with constant term Φ 0. Since

R is a pid, R = i?ZJ + j?g; and i?/J?p has a natural map onto RjRXj 0

R/Rq'. Computing /c-dimensions shows that this map is one to one. We

observe that R/RXj is quasi-injective and RjRqf is injective and there

are no non-zero homomorphisms between submodules of one and sub-

modules of the other. Thus R/Rq is quasi-injective and so CS.

To show that (1) => (2) we may assume that is σ not the identity. As-

sume R contains a qf with non-zero constant term such that M = RjRqf

is not divisible by X — 1. Then since M is a finite dimensional vector

space over K, it is an U-module of finite length, and so has a simple

composition factor which is not divisible by p = X — 1. Thus we may

assume that M is simple. By Theorem 1, R/R(X — 1) cannot be injective

or M would be, so R\R(X — 1) is not divisible by some non-zero irredu-

cible polynomial q. By Lemma C, there is an s e R with R/Rs ~ Ru

uniserial of length 3 with middle factor isomorphic to R/R(X — 1). Since
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R/Rs has only one maximal submodule, there is at most one a etc with

R(X — a) D Rs. We are assuming that σ is not the identity, so there is

a β 6 K with σ(β) Φ β. Then at least one ϊ e {1, /3/σ(/3)} satisfies 5 g i?(X — r).

By Lemma A, Λ/JΪ(Z - γ) g* 22/Λ(X - 1). Then Rs + i?(X - γ) = i?, so

JR/(/& Π Λ(X - r)) ^ i?/ί?s Θ Λ/i?(Z - r) is not CS by Lemma B.

We conclude that every cyclic CS implies that for all q with constant

term Φ 0 (and indeed for every non-zero q), RjRq is divisible by X — 1,

that is, (X — ΐ)R + Rq = i?. But that same equation may be interpreted

as saying that the right jR-module R/(X — Ϊ)R is divisible by every non-

zero q e i?, and so injective. By Theorem 1, for every q with constant

term Φ 0, RjRq is injective. •

Remark. If every cyclic jR-module is CS and a is not the identity,

then for every polynomial q with non-zero constant term, qR + Rq = -R.

In particular, R cannot have any two-sided ideals other than R, RXm,

and 0. It is well known that the two-sided ideals of R are generated by

powers of X and by polynomials in Xn with coefficients in the fixed field

of a, where σn is the identity. Thus every cyclic i?-module CS and σ of

finite order imply that a is of order 1, i.e. equal to the identity.

To get a feel for what "(/-polynomial" equations look like, it pays to

look at some examples. First, let us assume that K is a perfect field of

characteristic p > 0 and a is the Frobenius map a >-> ap. Then the

equation

( ) ' a = β becomes f] q,api - β

which is an ordinary polynomial equation in a. Note that polynomial

is considerably different than the original polynomial in R. Among other

things, it has ordinary derivative the constant g0 so it is separable if

qQ φ 0, and its degree is a power of p. As observed in [O], all such

ordinary polynomials may have roots in K without K being algebraically

closed. If K is finite, then σ is of finite order so by the above remark,

some cyclic i?-module, and hence the i?-module /c, is not injective. In

particular, the annihilator in K of X — 1 is of order p, so the set of ele-

ments divisible by X — 1 has order \κ\/p.

The above example may be somewhat misleading, since the operation

of an element of R on a gives a polynomial in a. So let us now look

at the case that K = C, the field of complex numbers, and σ(z) = 2, the
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complex conjugate of z. Then a is of order 2, and (X — 1) C = Bi. If

we wish to extend C to a field κx in which every equation of the form

(X — ί)-κι = β has a root, adjoin a transcendental τ to C and extend

complex conjugation to σ: (Σΰ-oQjτ') *-* (Σ"-o 9/r + 1)0- Clearly σ is an

automorphism of C[r] and so of ATJ. Then ^ is an i?-R bimodule, and

(X — 1) τ = 1 so (X — 1) #! Ξ5 R. Computations show that applying

(X — 1) to higher powers of τ and i times those powers alternately gives

real and imaginary parts of coefficients of every power of τ, so one gets

that κx is divisible by X — 1. It is not, however, divisible by X — τ. If

Q = Σl^oQίX* sR has qQqn ψ 0, and q a = β has no solution in κu we

may force it to have a solution in an extension of κγ by adjoining new

transcendentals {x0, •• ,arn_i} to κx and extending a to this new κ2 by

σ: Xi*->xi+i for 0 < i < n - 2 and σ: xn_x •-• (β - γ%zl QiXύlQn Iterating

this procedure carefully will enable us to get a 'V-algebraic closure" of

the original field for which the new field is injective over the new R. It

will look nothing like the algebraically closed field C.

We conclude with an obvious conjecture, namely, if some R/Rq is in-

jective with q having non-zero constant term, then so is R/R(X — 1). A

computational proof seems very difficult, as not all polynomials appear on

the diagonal of the lower triangular L in equation (**).
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