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Abstract. We obtain quenched almost sure invariance principles (with convergence rates)
for random Young towers if the average measure of the tail of return times to the base
of random towers decays sufficiently fast. We apply our results to some independent
and identically distributed perturbations of some non-uniformly expanding maps. These
imply that the random systems under study tend to a Brownian motion under various
scalings.
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1. Introduction
A collection (�, P, σ , (�ω)ω∈�, (μω)ω∈�, (Fω)ω∈�) is called a random dynamical system
(RDS) if the following statements hold.
(1) σ : � → � is a P-preserving transformation on a probability space (�, P).
(2) (�ω, μω) is a probability space, called a fiber, at ω ∈ �.
(3) Fω : �ω → �σω, is called a fiber map from �ω to �σω.
(4) (μω)ω∈� are equivariant probability measures, namely, for almost every ω ∈ �,

(Fω)∗μω = μσω. (1.1)

In this paper we only consider an invertible σ : � → �.
A decreasing series θn ↘ 0 is called an almost sure mixing rate for the RDS if for almost

every (a.e.) ω ∈ �, there is a constant Cω > 0 and a Banach space Bω ⊂ L1(�ω, μω) such
that for any n ∈ N, φω ∈ Bω, �σnω ∈ L∞(�σnω, μσnω), there is a constant Cφ,� > 0 and∣∣∣∣

∫
φω ·�σnω ◦ Fnω dμω −

∫
φω dμω

∫
�σnω dμσnω

∣∣∣∣ ≤ Cφ,�Cωθn → 0, (1.2)

where φ(ω, ·) := φω(·), �(ω, ·) := �ω(·) are functions on
⋃
ω∈�{ω} ×�ω. We say that

an RDS has a uniform almost sure mixing rate if ess supω∈� Cω < ∞, and a non-uniform
almost sure mixing rate if ess supω∈� Cω = ∞.

A random Young tower (RYT), a random extension of Young towers [You99], is a pow-
erful tool to study the almost sure mixing rate for the RDS with a weak hyperbolicity. The
original one was constructed by Baladi, Benedicks, and Maume-Deschamps [BBMD02]
to obtain an almost sure mixing rate for independent and identically distributed (i.i.d.)
translations of unimodal maps. In recent years, the RYT has been extended and used
intensively. Du [Du15] extended [BBMD02] to a more general RYT and applied it to
i.i.d. perturbations of a wider class of unimodal maps. Li and Vilarinho [LV18] applied
the RYT [BBMD02] to obtain almost sure mixing rates for i.i.d. translations of some
non-uniformly expanding maps. Bahsoun, Bose, and Ruziboev [BBR19] extended the
RYT [BBMD02, Du15] under additional assumptions (see (P6) and (P7) in [BBR19]) and
obtained an almost sure mixing rate for i.i.d. perturbations of Liverani–Saussol–Vaienti
(LSV) maps.

For an RDS with a uniform almost sure mixing rate, quenched limit laws have been
studied by numerous authors; see [ALS09, DFGTV18a, DFGTV18b, HL20, HS20,
Su19a, Su19b]. However, it is quite natural and more likely to have a RDS (e.g. the
RYT) that has a non-uniform almost sure mixing rate. To the best of our knowledge,
three papers [AA16, ANV15, Kif98] do make progress for such RDSs: Abdelkader,
Aimino, Nicol and Vaienti [AA16, ANV15] study an RDS with expanding average. Their
approach was inspired by the paper [ALS09], fixing a reference measure rather than finding
equivariant probability measures. However, their applications are limited; see [ANV15,
§7]. A different approach (assuming equivariant probability measures) is given by Kifer
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[Kif98]. He proved quenched central limit theorems (QCLTs) under various technical
assumptions. However, he remarks in Proposition 2.2 and Remark 6.5 of [Kif98] that
this method has to work on specific cases with explicit representations, even under the
assumption that (�, σ) is Bernoulli (that is, i.i.d. perturbations).

In this paper, we will give a different method to prove a quenched limit law, called
a quenched almost sure invariance principle (QASIP; see Definition 2.1), for the RYT
provided that the average measure of the tail of return times to the base of the RYT decays
sufficiently fast (see the precise statement in Definition 2.2 and Theorem 2.3). QASIP
convergence rates (see (2.1)) are also obtained. The QASIP implies various quenched limit
laws including the QCLT.

Finally, we mention the papers [CDKM20, Kor18] which obtained a sharp QASIP
convergence rate for deterministic Young towers (that is, � is a singleton).

The structure of the paper is as follows. In §2 we introduce conventions, which are
used throughout the paper, give the necessary definitions and formulate the main results.
In §3 we revisit the RYT and improve some inequalities in [Du15]. In §4 we give several
technical lemmas. In §5 we present a proof for the QASIP for the RYT. In §6 we obtain
the QASIP for the RDS which can be modeled by the RYT. In §7 we apply our results to
some i.i.d. perturbations of some non-uniformly expanding maps. We end our paper with
a technical lemma in Appendix A.

2. Conventions, definitions and main theorems
Convention 2.1. We start with some conventions.
(1) Ca means a constant depending on a.
(2) Eμω means the expectation with respect to (w.r.t.) μω; E means the expectation of P.
(3) We do not specify the σ -algebra of a measure space if it is clear from context.
(4) an = Oa(bn) and an �a bn mean that an ≤ Cabn for a constant Ca > 0 and all

n ∈ N.
(5) an = C±1

a bn means that C−1
a bn ≤ an ≤ Cabn for a constant Ca ≥ 1 and all n ∈ N.

(6) We define φω(·) := φ(ω, ·) for any function φ :
⋃
ω∈�{ω} ×�ω → R.

Definition 2.1. (QASIP and coboundary) Consider an RDS (�, P, σ , (�ω)ω∈�, (μω)ω∈�,
(Fω)ω∈�) and let � := ⋃

ω∈�{ω} ×�ω. We say that a fiberwise mean zero function φ :
� → R (that is,

∫
φω dμω = 0) has a QASIP if there is a constant e ∈ (0, 1/2) such that

for a.e. ω ∈ �, there is a Brownian motionBω defined on some extension of the probability
space (�ω, μω), say���ω, such that∑

k≤n
φσkω ◦ Fkω − Bω

σ 2
n (ω)

= O(ne) almost surely (a.s.) on���ω, (2.1)

where σ 2
n (ω) := ∫

(
∑
k≤n φσkω ◦ Fkω)2 dμω < ∞ for all n ≥ 1 and the constant in O(·)

depends on ω ∈ � and x ∈���ω. e is called a convergence rate.
We say that φ is a coboundary if there is a function g : � → R such that for a.e. ω ∈ �,

φσω ◦ Fω = gσω ◦ Fω − gω μω-a.s. (2.2)
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Definition 2.2. (Random Young towers; see [Du15]) A random Young tower (�, F) is
constructed by the following 11 steps.
(1) Fix a probability space (	, B, m) and a Bernoulli scheme (�, P, σ) := (SZ, νZ, σ)

where ν is a probability on a measurable space S, σ is an invertible left shift on SZ

and B is a σ -algebra of (	, m).
(2) Assume that for a.e. ω ∈ �, there is a countable partition Pω of a full measure

subset Dω of 	 and a function Rω : 	 → N such that Rω is constant on each
Uω ∈ Pω.

(3) Assume that Rω(x) is a stopping time: if Rω(x) = n and ωi = ω′
i for all 0 ≤ i < n,

then Rω′(x) = n.
(4) For a.e. ω ∈ �, l ∈ N, define �ω,0 := 	× {0} and the lth level by

�ω,l := {(x, l) : x ∈ 	, Rσ−lω(x) > l}.
Define a tower at ω by

�ω :=
⋃
l≥0

�ω,l .

�ω is endowed with a measure mω, a σ -algebra Bω and a partition Zω naturally
from the probability space (	, B, m) and the partitions (Pσ−lω)l≥0.

(5) For a.e. ω ∈ �, a dynamics Fω : �ω → �σω is defined in the following way: if
Rσ−lω(x) > l + 1, then Fω(x, l) = (x, l + 1); if Rσ−lω(x) = l + 1, x ∈ Uσ−lω ∈
Pσ−lω and (x, l) ∈ Uσ−lω × {l} ⊆ �ω, then Fω maps Uσ−lω × {l} bijectively onto
�σω,0.

(6) Define Fnω := Fσn−1ω ◦ Fσn−2ω ◦ · · · ◦ Fσω ◦ Fω, assume that the partition Zω is
generating for Fω in the sense that

∨∞
j=0(F

j
ω)

−1Zσjω is a trivial partition into
points.

(7) Assume that for a.e. ω ∈ �, mω(�ω) < ∞.
(8) Assume that there is an integer M ∈ N, {εi > 0, i = 1, . . . , M} and {ti ∈ N, i =

1, . . . , M} with gcd(ti) = 1 such that for a.e. ω ∈ �, all 1 ≤ i ≤ M ,

m(x ∈ 	 : Rω(x) = ti ) > εi .

(9) Extend Rω from �ω,0 to �ω (still denoted by Rω). For any (x, l) ∈ �ω,

Rω(x, l) := Rσ−lω(x)− l,

define an nth return time to �ω inductively: for any x ∈ �ω,

R0
ω(x) := 0, R1

ω(x) := Rω(x), . . .

Rnω(x) := Rn−1
ω (x)+ R

σR
n−1
ω (x)ω

(F
Rn−1
ω

ω (x)),

and define a separation time sω : �ω ×�ω → N ∪ {∞} by

sω(x, y) = inf{n : FR
n
ω(x)

ω (x), FR
n
ω(y)

ω (y) lie in different elements ofZ
σR

n
ω(x)ω

}.
Assume that there are constants CF > 0 and β ∈ (0, 1) such that for a.e. ω ∈ �

and each element Jω ∈ Zω, the map FRωω |Jω and its inverse are non-singular w.r.t.
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m, and for each x, y ∈ Jω,∣∣∣∣JFRωω (x)

JF
Rω
ω (y)

− 1
∣∣∣∣ ≤ CFβ

s
σRω(x)ω

(F
Rω
ω (x),FRωω (y)). (2.3)

(10) Assume that there is a constant C > 0 such that∫
m(x ∈ 	 : Rω(x) > n) dP ≤ Cρn,

where ρn := e−anb or n−D for some constants a > 0, b ∈ (0, 1], D > 4.
(11) Define a random Young tower (�, F):

� :=
⋃
ω∈�

{ω} ×�ω, F(ω, x) := (σω, Fωx).

Remark 2.2. For a visualization of the dynamics of the RYT, see Figure 1 in [BBR19].

Definition 2.3. (Dynamical Lipschitz cones)

F+
β :=

{
φ : � → [0, ∞)| there is a constant Cφ > 0, such that for any Jω ∈ Zω,

either φω|Jω = 0 or φω|Jω > 0,
∣∣∣∣ log

φω(x)

φω(y)

∣∣∣∣ ≤ Cφβ
sω(x,y) for any x, y ∈ Jω

}
,

where Cφ is called a Lipschitz constant for φ.

Definition 2.4. (Bounded random Lipschitz functions) For any p ∈ (1, ∞], define

FKβ,p :={φ : � → R| there are constants Cφ > 0, Kω ≥ 1 such that for a.e. ω ∈ �,

K ∈ Lp(�), |φω(x)| ≤ Cφ and |φω(x)− φω(y)| ≤ CφKωβsω(x,y)},
where Cφ is also called a Lipschitz constant for φ.

THEOREM 2.3. (Quenched limit laws for the RYT) The following results hold for
(�, P, σ , (�ω)ω∈�, (Fω)ω∈�) in Definition 2.2.
(1) Equivariant probability measures (1.1) (μω)ω∈� exist. Define a probability μ on �

by

μ(A) :=
∫
μω(Aω) dP (2.4)

for any measurable subset A ⊆ � and Aω := {x ∈ �ω : (ω, x) ∈ A}. Moreover, for
any fiberwise mean zero function φ ∈ F Kβ,p, suppose that ρn (see Definition 2.2) is

e−anb or n−D for some constants a > 0, b ∈ (0, 1] andD > 2 + (4p/(p − 1)). Then
the following statements hold.

(2) There is a constant �2 ≥ 0 such that limn→∞(σ 2
n (ω)/n) = �2 for a.e. ω ∈ �.

(3) If �2 > 0, then φ has a QASIP (see Definition 2.1). The convergence rate is
e = ε0 + 1/4, where ε0 ∈ (0, 1/4) satisfies the following: if ρn = e−anb , then ε0 > 0
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can be arbitrarily small; if ρn = n−D , then ε0 can be any number in (εD , 1/4), where

εD = max
{

1
4

+ 3ε1 − 2ε3
1 − ε2

1
4

, ε1,
1 + ε1

4

}
− 1

4
and ε1 = 2p

(p − 1)(D − 2)
.

(2.5)

(4) If �2 = 0, then φ is a coboundary (see Definition 2.1), and the function g in (2.2)
satisfies the following: if ρn = n−D , then g ∈ L(D−2−δ)(p−1)/(1+δ)p(�, μ) for any
sufficiently small δ > 0 such that (D − 2 − δ)(p − 1)/(1 + δ)p > 4. In particular,
if ρn = e−anb (which implies ρn ≤ n−D for n, D � 1), then g ∈ Lk(�, μ) for all
k ≥ 1.

Remark 2.4. In §7, p is chosen to be ∞.

Remark 2.5. For any n ≥ 1, define Sωn := ∑
k≤n φσkω ◦ Fkω , and Sn,ω on [0, 1]:

S
n,ω
t := Sωi−1√

n
+ n

(
t − i − 1

n

)
Sωi − Sωi−1√

n
for any t ∈

[
i − 1
n

,
i

n

]
and 1 ≤ i ≤ n.

Then the QASIP implies the following limit laws for the RYT: for a.e. ω ∈ �, we have
the convergence (w.r.t. the probability μω)

Sωn√
n

→d N(0, �2), Sn,ω →d �B, lim sup
n→∞

Sωn√
n log log n

= � a.s.

where B is a standard one-dimensional Brownian motion.

Remark 2.6. For the RYT with ρn = n−D , Du [Du15] obtained a mixing rate (1.2)
θn = n−(D−3−ε) for any small ε ∈ (0, 1) when D > 4 (see [Du15, Theorem 1.2.6]), while
Bahsoun, Bose and Ruziboev [BBR19] obtained a better θn = n−(D−1−ε) for any small
ε ∈ (0, D − 1) when D > 1, under two more restrictive assumptions (P6) and (P7) in
[BBR19]. In this paper, we only consider the general RYT in [Du15] for the following
reasons: first, the restrictive RYT in [BBR19] is a special case of the general RYT in
[Du15] when D > 4; second, the assumptions (P6) and (P7) for the restrictive RYT in
[BBR19] are not satisfied by all RDSs in our applications. We believe that the conditions
D > 4 in [Du15] and D > 2 + (4p/(p − 1)) in our Theorem 2.3 are technical only, and
the QASIP for the restrictive RYT in [BBR19] should hold for a smaller D.

3. Random Young towers revisited
LEMMA 3.1. (See [Du15]) We have the following results for the RYT in Definition 2.2.
(1) There is a function h ∈ F +

β and a family of absolutely continuous equivariant
probability measures dμω := hωdmω on �ω such that for a.e. ω ∈ �,

(Fω)∗μω = μσω, ess sup
ω∈�,x∈�ω

hω(x) < ∞, hω > 0, (3.1)

(�, F , μ) is exact, mixing and ergodic,

where μ is the probability defined in (2.4) and hω > 0 for a.e. ω ∈ � (that is,
mω{hω = 0} = 0 for a.e. ω ∈ �).
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(2) There is an integer l0 > 0 such that for any l ≥ l0, there is a constant εl ∈ (0, 1) such
that for a.e. ω ∈ �, mω(�ω,0 ∩ F−l

ω �σ lω,0) > εl .
(3) Define return times on

⋃
ω∈�{ω} ×�ω ×�ω alternatively and recursively:

τ̄ ω0 (x, x′) := 0, τ̄ ω1 (x, x′) := Rl0ω (x),

τ̄ ω2 (x, x′) := τ̄ ω1 (x, x′)+ R
l0

σ
τ̄ω1 (x,x′)

ω
(F

τ̄ω1 (x,x′)
ω x′),

τ̄ ω3 (x, x′) := τ̄ ω2 (x, x′)+ R
l0

σ
τ̄ω2 (x,x′)

ω
(F

τ̄ω2 (x,x′)
ω x),

τ̄ ω4 (x, x′) := τ̄ ω3 (x, x′)+ R
l0

σ
τ̄ω3 (x,x′)

ω
(F

τ̄ω3 (x,x′)
ω x′), . . .

T ω(x, x′) := min{τ̄ ωi (x, x′), i ≥ 1 :

(Fω × Fω)
τ̄ωi (x,x′)(x, x′) ∈ �

σ
τ̄ω
i
(x,x′)

ω,0
×�

σ
τ̄ω
i
(x,x′)

ω,0
},

T ω0 := 0, T ω1 := T ω, . . .

T ωn (x, x′) := T ωn−1(x, x′)+ T σ
Tω
n−1(x,x′)

ω((Fω × Fω)
T ω
n−1(x,x′)(x, x′)),

where Rl0ω (x) is the l0th return time of x ∈ �ω to the 0th level.
Let λω, λ′

ω be absolutely continuous probability measures on �ω whose den-
sity functions are dλ/dm, dλ′/dm ∈ F +

β where dλ/dm(ω, ·) := dλω/dmω(·), dλ′/
dm(ω, ·) := dλω/dmω(·).

Then we have the following matching: there are constants C = Cβ,F ,h > 0, r ∈
(0, 1) (independent of λ, λ′) such that for a.e. ω ∈ �,

|(F nω)∗λω − (F nω)∗λ′
ω| : =

∫ ∣∣∣∣d(Fnω)∗λωdmσnω
− d(Fnω)∗λ′

ω

dmσnω

∣∣∣∣dmσnω
≤ C

∑
i≥0

ri(λω ⊗ λ′
ω)(T

ω
i ≤ n < T ωi+1). (3.2)

(4) If ρn = e−anb or n−D where a > 0, b ∈ (0, 1], D > 4, then for any small δ ∈ (0, 1),
there is a constant C = Cβ,F ,δ > 0 and a small α = αδ > 0 such that∫

(mω ⊗mω)(T
ω�nα� > n) dP ≤ Cn−(D−2−δ). (3.3)

Proof. See Theorem 2.2.1 and Propositions 2.3.1, 2.3.3 and 2.3.4 of [Du15] for the proof
of (3.1). See Theorem 3.1.1 of [Du15] for the proof of (3.2). The proof of Proposition
2.3.4 of [Du15] showed that hω > 0 for a.e. ω ∈ � only. It does not imply a uniform lower
bound infω∈�,x∈�ω hω(x) > 0. Actually, our proofs do not require such a lower bound.

Since ρn ≤ e−anb implies ρn ≤ n−D for D, n � 1, we consider ρn ≤ n−D only and
refer to Corollary 7.1.2 of [Du15] for the proof of (3.3).

LEMMA 3.2. Consider the RYT in Definition 2.2. Suppose that φ ∈ F Kβ,p and ρn = e−anb

or n−D where a > 0, b ∈ (0, 1], D > 4. Define a probability

dλω := φω +KωCφ + 2Cφ∫
(φω +KωCφ + 2Cφ) dμω

dμω,
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where Cφ is a Lipschitz constant for φ. Then for any small δ ∈ (0, 1), there is a constant
C = Ch,F ,β,δ such that∫

|(F nω)∗λω − (F nω)∗μω| dP ≤ Cn−(D−2−δ). (3.4)

Proof. By (3.1) and Kω ≥ 1,

dλω

dmω
≤ Cφ(3 +Kω)
Cφ(1 +Kω) ess sup

ω∈�
hω ≤ 3 +Kω

1 +Kω Ch ≤ 2Ch, (3.5)

where Ch is a Lipschitz constant of h. For any x, y ∈ �ω, using the inequality log z ≤
z− 1 when z ≥ 1, we have∣∣∣∣ log

dλω/dmω(x)

dλω/dmω(y)

∣∣∣∣ ≤
∣∣∣∣ log

hω(x)

hω(y)

∣∣∣∣ +
∣∣∣∣ log

φω(x)+KωCφ + 2Cφ
φω(y)+KωCφ + 2Cφ

∣∣∣∣
≤ Chβ

sω(x,y) + |φω(x)− φω(y)|
|φω(y)+KωCφ + 2 Cφ |

≤ Chβ
sω(x,y) + CφKωβsω(x,y)

|φω(y)+KωCφ + 2Cφ | ≤ (Ch + 1)βsω(x,y).

Therefore, dλ/dm ∈ F +
β with a Lipschitz constant 2Ch + 1 where dλ/dm(ω, ·) :=

dλω/dmω(·). By (3.2) and (3.3), there are constants C′ = Cβ,F ,δ > 0, C̄ = Cβ,F ,h > 0,
α = αδ such that

∫
|(F nω)∗λω − (F nω)∗μω| dP ≤ C̄

∫ ∞∑
i=0

ri(λω ⊗ μω)(T
ω
i ≤ n < T ωi+1) dP

= C̄

∫ ∞∑
i=�nα�

ri(λω ⊗ μω)(T
ω
i ≤ n < T ωi+1) dP

+ C̄

∫ �nα�−1∑
i=0

ri(λω ⊗ μω)(T
ω
i ≤ n < T ωi+1) dP.

By (3.5) and r ∈ (0, 1), we can continue the estimate above as

≤ C̄r�nα�

1 − r
+ 2C2

hC̄

∫
(mω ⊗mω)(T

ω�nα� > n) dP ≤ C̄r�nα�

1 − r
+ 2C2

hC̄C
′

nD−2−δ ≤ Cn−(D−2−δ)

where the constant C depends on αδ , δ, β, F , h.

Definition 3.1. (Random transfer operators) Pω : L1(�ω, μω) → L1(�σω, μσω) is called
a random transfer operator for Fω : �ω → �σω if for any �ω ∈ L1(�ω, μω), ϒσω ∈
L∞(�σω, μσω), ∫

�ωϒσω ◦ Fω dμω =
∫
Pω(�ω)ϒσω dμσω.
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LEMMA 3.3. (Properties of random transfer operators) Consider the RYT in Definition 2.2.
The random transfer operator Pω for Fω has the following expression: for a.e. ω ∈ �,

(Pω�ω)(x) = h−1
σω(x)

∑
Fω(y)=x

�ω(y)hω(y)

JFω(y)
in L1(μσω), (3.6)

where JFω is the Jacobian of Fω w.r.t. m, �ω ∈ L1(�ω, μω). Moreover, for any i, k ≥ 0,
any measurable functions �, ϒ on �, the following results hold for a.e. ω ∈ �.

If � ∈ L∞(�, μ), then

‖Pω�ω‖L∞(μσω) ≤ ‖�ω‖L∞(μω). (3.7)

If � ∈ L1(�, μ), then

Eμω [�σiω ◦ F iω|(F i+1
ω )−1Bσ i+1ω] = [Pσiω(�σiω)] ◦ F i+1

ω in L1(μω), (3.8)

(F iω)∗(�ω dμω)
dμσiω

= P iω(�ω) in L1(μσ iω). (3.9)

If �, ϒ ∈ L2(�, μ), then

P i+kω (�σiω ◦ F iω ·ϒω) = P k
σ iω
(�σiω · P iω(ϒω)) in L1(μσ i+kω) (3.10)

where P iω := Pσi−1ω ◦ · · · ◦ Pσω ◦ Pω.

Proof. By (3.1), hω > 0 for a.e. ω ∈ �. Similarly to Ruelle–Perron–Frobenius operators,
it is straightforward to verify (3.7)–(3.10) from Definition 3.1. To verify (3.6), let �ω ∈
L1(�ω, μω), ϒσω ∈ L∞(�σω, μσω). By Definition 3.1,∫

Pω(�ω) · ϒσω dμσω =
∫
�ω ·ϒσω ◦ Fω dμω =

∑
Ik∈Zω

∫
Ik

�ω · ϒσω ◦ Fω dμω

=
∑
Ik∈Zω

∫
Ik

�ωhω ·ϒσω ◦ Fω|Ik dmω.

Since Fω is injective on Ik ∈ Zω, we can continue the calculation above as

=
∑
Ik∈Zω

∫
Fω(Ik)

(�ωhω) ◦ Fω|−1
Ik

·ϒσω
dmω ◦ Fω|−1

Ik

dmσω
dmσω.

Since hσω > 0 for a.e. ω ∈ �, we can continue the calculation above as

=
∑
Ik∈Zω

∫
Fω(Ik)

(�ωhω) ◦ Fω|−1
Ik

· ϒσω
dmω ◦ Fω|−1

Ik

dmσω
h−1
σω dμσω

=
∫ ∑

Ik∈Zω
1Fω(Ik) · (�ωhω)

JFω
◦ Fω|−1

Ik
· h−1
σωϒσω dμσω.
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Therefore
∑
Ik∈Zω 1Fω(Ik)(�ωhω)/JFω ◦ Fω|−1

Ik
h−1
σω is in L1(μσω), finite almost every-

where on �σω and equal to Pω(�ω) in L1(μσω). Observe that

h−1
σω(x)

∑
Fω(y)=x

�ω(y)hω(y)

JFω(y)
=

∑
Ik∈Zω

1Fω(Ik)(x)
(�ωhω)

JFω
◦ Fω|−1

Ik
(x)h−1

σω(x).

Thus our lemma holds.

LEMMA 3.4. Consider the RYT in Definition 2.2. Suppose that ρn = e−anb or n−D where
a > 0, b ∈ (0, 1], D > 4 and φ ∈ F Kβ,p. Then for any small δ ∈ (0, 1), there is a constant
C := CφCh,F ,β,δ,p‖K‖p such that

E

∫ ∣∣∣∣Pnω
(
φω −

∫
φω dμω

)∣∣∣∣ dμσnω ≤ Cn−((D−2−δ)(p−1)/p).

Proof. Let dλω := (φω +KωCφ + 2Cφ)/
∫
(φω +KωCφ + 2Cφ) dμω dμω. By (3.9) and

the Hölder inequality,

E

∫ ∣∣∣∣Pnω
(
φω −

∫
φω dμω

)∣∣∣∣ dμσnω
=

∫ ∣∣∣∣
∫
(φω + 2Cφ + CφKω) dμω

∣∣∣∣ · |(F nω)∗λω − (F nω)∗μω| dP
≤ 3CφE|(F nω)∗λω − (F nω)∗μω| + CφEKω|(F nω)∗λω − (F nω)∗μω|
≤ 3CφE|(F nω)∗λω − (F nω)∗μω| + Cφ‖K‖p[E|(F nω)∗λω − (F nω)∗μω|p′

]1/p′
,

where 1/p′ = 1 − 1/p. Using |(F nω)∗λω − (F nω)∗μω| ≤ 2 and (3.4), we continue the
estimate

≤ 3CφCh,F ,β,δn
−(D−2−δ) + 2(p

′−1)/p′
Cφ‖K‖p[E|(F nω)∗λω − (F nω)∗μω|]1/p′

≤ 3CφCh,F ,β,δn
−(D−2−δ) + 2(p

′−1)/p′
Cφ‖K‖pC1/p′

h,F ,β,δn
−(D−2−δ)/p′

≤ CφCh,F ,β,δ,p‖K‖pn−((D−2−δ)(p−1)/p),

where the last inequality is due to 1/p′ = (p − 1)/p.

4. Several lemmas
LEMMA 4.1. Suppose that � ∈ Lq(�, μ), q ≥ 2. Then for any δ > 0, for a.e. ω ∈ �,∫

|�σnω ◦ Fnω |q dμω = Oω,q(n),
∫

|�σnω ◦ Fnω |2 dμω = Oω,q(n
2/q),

�σnω ◦ Fnω(x) = Oω,x,δ(n
(2+δ)/q) a.s. x ∈ �ω.

Proof. By Birkhoff’s ergodic theorem, limn→0(
∑
i≤n

∫ |�σiω ◦ F iω|q dμω/n) =
E

∫ |�ω|q dμω < ∞ for a.e. ω ∈ �. Thus
∫ |�σnω ◦ Fnω |q dμω = Oω,q(n) and∫

|�σnω ◦ Fnω |2 dμω ≤
( ∫

|�σnω ◦ Fnω |q dμω
)2/q

= Oω,q(n
2/q).
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Since
∫ |�σnω ◦ Fnω/n(2+δ)/q |q dμω = Oω,q(n/n

2+δ) = Oω,q(n
−(1+δ)), by the

Borel–Cantelli lemma we have �σnω ◦ Fnω(x) = Oω,x,δ(n
(2+δ)/q) a.s. x ∈ �ω.

LEMMA 4.2. (Martingale convergence rates) Suppose that � ∈ Lq(�, μ), q ≥ 2, and
(�σnω ◦ Fnω)n≥0 is a sequence of reverse martingale differences for a.e. ω ∈ �. Then for
any δ > 0, for a.e. ω ∈ �,∥∥∥∥ ∑

i≤n
�σiω ◦ F iω

∥∥∥∥
Lq(μω)

= Oω(
√
n),

∑
i≤n

�σiω ◦ F iω(x)

= Ox,ω,q,δ(n
(1/2)+(1+δ/q)) a.s. x ∈ �ω.

Proof. By the Burkholder–Davis–Gundy inequality and Minkowski inequality, there is a
constant Cq such that for a.e. ω ∈ �,∥∥∥∥ ∑

i≤n
�σiω ◦ F iω

∥∥∥∥
Lq(μω)

≤ Cq

∥∥∥∥
( ∑
i≤n

�2
σ iω

◦ F iω
)1/2∥∥∥∥

Lq(μω)

≤ Cq

( ∑
i≤n

‖�2
σ iω

◦ F iω‖Lq/2(μω)
)1/2

= Cq

( ∑
i≤n

‖�2
σ iω

‖Lq/2(μ
σiω

)

)1/2

= Oω,q(n
1/2),

where the last equality is due to E‖�2
ω‖Lq/2(μω) ≤ (E

∫ |�ω|qdμω)2/q < ∞ and
Birkhoff’s ergodic theorem. Then for any δ > 0,∫ ∣∣∣∣

∑
i≤n �σiω ◦ F iω
n(1/2)+((1+δ)/q)

∣∣∣∣q dμω = Oω,q

(
nq/2

nq/2+1+δ

)
= Oω,q(n

−(1+δ)),

�⇒
∑
i≤n

�σiω ◦ F iω(x) = Ox,ω,q,δ(n
(1/2)+(1+δ/q)) a.s. x ∈ �ω,

where the last equality is due to the Borel–Cantelli lemma.

LEMMA 4.3. Suppose that ψ ∈ Lq(�, μ), q ≥ 2, satisfies

‖Pnωψω‖Lq(�,μ) = Oq,ψ(n
−d) with d > 1.

Then for any δ > 0, for a.e. ω ∈ �,∥∥∥∥ ∑
i≤n

ψσiω ◦ F iω
∥∥∥∥
Lq(μω)

= Oω,ψ ,q(n
1/2),

∑
i≤n

ψσiω ◦ F iω(x) = Ox,ω,q,δ,ψ(n
(1/2)+(1+δ/q)) a.s. x ∈ �ω.

Proof. Define gω := ∑
i≥0 P

i
σ−iω(ψσ−iω). This is well defined because∥∥∥∥ ∑

i≥0

P i
σ−iω(ψσ−iω)

∥∥∥∥
Lq(�,μ)

≤
∑
i≥0

‖P i
σ−iω(ψσ−iω)‖Lq(�,μ) = Oq,ψ

( ∑
i≥1

i−d
)
< ∞.
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By Lemma 4.1, ‖gσnω ◦ Fnω‖Lq(μω) = Oω,q(n
1/q). Let �ω := ψσω ◦ Fω − gσω ◦ Fω +

gω. By (3.10) we have for a.e. ω ∈ �,

Pω�ω = Pω(ψσω ◦ Fω)− Pω(gσω ◦ Fω)+ Pωgω = ψσω − gσω + Pωgω

= ψσω −
∑
i≥0

P i
σ−iσω(ψσ−iσω)+

∑
i≥0

P i+1
σ−iω(ψσ−iω) = 0.

Then by (3.8), Eμω [�σiω ◦ F iω|(F i+1
ω )−1Bσ i+1ω] = [Pσiω(�σiω)] ◦ F i+1

ω = 0, that is,
(�σiω ◦ F iω)i≥0 is a sequence of reverse martingale differences w.r.t. ((F iω)

−1Bσ iω)i≥0.
Then by Lemma 4.2, we have ‖ ∑

i≤n �σiω ◦ F iω‖Lq(μω) = Oω(n
1/2). Therefore,

∥∥∥∥ ∑
1≤i≤n

ψσiω ◦ F iω
∥∥∥∥
Lq(μω)

=
∥∥∥∥ ∑

1≤i≤n
�σi−1ω ◦ F i−1

ω + gσnω ◦ Fnω − gω

∥∥∥∥
Lq(μω)

≤
∥∥∥∥ ∑

1≤i≤n
�σi−1ω ◦ F i−1

ω

∥∥∥∥
Lq(μω)

+ ‖gσnω ◦ Fnω‖Lq(μω)

+ ‖gω‖Lq(μω)
= Oω(n

1/2)+Oω(n
1/q)+Oω(1) = Oω(n

1/2).

Then for any δ > 0,

∫ ∣∣∣∣
∑
i≤n ψσiω ◦ F iω

n(1/2)+((1+δ)/q)

∣∣∣∣q dμω = Oω,q

(
nq/2

nq/2+1+δ

)
= Oω,q(n

−(1+δ)),

�⇒
∑
i≤n

ψσiω ◦ F iω(x) = Ox,ω,q,δ,ψ(n
(1/2)+(1+δ/q)) a.s. x ∈ �ω.

where the last equality is due to the Borel–Cantelli lemma.

LEMMA 4.4. (Regularities) Suppose that φ ∈ F Kβ,p with a Lipschitz constant Cφ . Define
�n(ω, ·) = (P nωφω)(·) for any n ∈ N and Ch,F := Ch + eChCF + eCh+CF Ch. Then for
any n ∈ N,

�n ∈ FK◦σ−n+Ch,F
β,p with a Lipschitz constant Cφ .

Proof. By Lemma 3.3, ‖Pnωφω‖L∞(μσnω) < ∞. Suppose that x, y ∈ �σnω,l for some l ∈
N and sσnω(x, y) > 0. Then by (3.6), we have

Pnωφω(x) = h−1
σnω(x)

∑
Fnω(zx)=x

φω(zx)hω(zx)/JF
n
ω(zx),

Pnωφω(y) = h−1
σnω(y)

∑
Fnω(zy)=y

φω(zy)hω(zy)/JF
n
ω(zy),
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where zx , zy are in the same element of
∨n
j=0(F

j
ω)

−1Zσjω. Therefore,

|Pnωφω(x)− Pnωφω(y)| =
∣∣∣∣ 1
hσnω(x)

∑
Fnω(zx)=x

φω(zx)hω(zx)

JFnω(zx)

− 1
hσnω(y)

∑
Fnω(zy)=y

φω(zy)hω(zy)

JFnω(zy)

∣∣∣∣
=

∣∣∣∣ 1
hσnω(x)

∑
Fnω(zx)=x

(φω(zx)− φω(zy))hω(zx)

JFnω(zx)

+
∑

Fnω(zy)=y
φω(zy)

(
hω(zx)

JFnω(zx)hσnω(x)
− hω(zy)

JFnω(zy)hσnω(y)

)∣∣∣∣
≤ CφKωβsσnω(x,y) + Cφ

∑
Fnω(zy)=y

hω(zy)

JFnω(zy)hσnω(y)

×
∣∣∣∣1 − hω(zx)

JFnω(zx)hσnω(x)

(
hω(zy)

JFnω(zy)hσnω(y)

)−1∣∣∣∣
≤ Cφ(K ◦ σ−n + Ch,F )σnωβ

sσnω(x,y)

where the last inequality is due to |1 − z1z2z3| ≤ |1 − z1| + |z1‖1 − z2| + |z1‖z2‖1 −
z3| = |1 − z1| + eln |z1||1 − z2| + eln |z1|+ln |z2||1 − z3|, h ∈ F +

β and (2.3).

5. Proof of Theorem 2.3
The equivariant probability measures (μω)ω∈� have been obtained in Lemma 3.1. Thus it
remains to prove the coboundary or the QASIP and its convergence rate. In Theorem 2.3
we suppose that φ ∈ F Kβ,p,

∫
φω dμω = 0, ρn = n−D for some D > 2 + 4p/(p − 1).

In particular, ρn = e−anb is a special case of ρn = n−D when a > 0, b ∈ (0, 1] and
D, n � 1.

5.1. Martingale decompositions.
LEMMA 5.1. (Decompositions) Let δ > 0 be small such that (D − 2 − δ)(p − 1)/
(δ + 1)p > 4, and

gω :=
∑
i≥0

P i
σ−iω(φσ−iω), g(ω, ·) := gω(·),

ψω := φσω ◦ Fω − gσω ◦ Fω + gω, ψ(ω, ·) := ψω(·).

Then ψ , g ∈ L(D−2−δ)(p−1)/(δ+1)p(�, μ) ⊆ L4(�, μ) and for a.e. ω ∈ �,

ψω ∈ ker Pω,
∑

1≤i≤n
φσ iω ◦ F iω =

∑
1≤i≤n

ψσi−1ω ◦ F i−1
ω + gσnω ◦ Fnω − gω, (5.1)
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namely, this is a martingale decomposition where (ψσ iω ◦ F iω)i≥0 are reverse martingale
differences w.r.t. ((F iω)

−1Bσ iω)i≥0 for a.e. ω ∈ �. Moreover,∫
|gσnω ◦ Fnω |2 dμω = Oω,δ(n

2(1+δ)p/(D−2−δ)(p−1)) a.e. ω ∈ �,

gσnω ◦ Fnω(x) = Oω,x,δ(n
(2+δ)(1+δ)p/(D−2−δ)(p−1)) a.s. x ∈ �ω.

Proof. Let q := (D − 2 − δ)(p − 1)/(1 + δ)p > 4 for a small δ > 0. By Lemma 3.4,
(3.7) and φ ∈ L∞(�, μ),

‖g‖Lq(�,μ) ≤
∑
i≥0

‖P i
σ−iω(φσ−iω)‖Lq(�,μ)

≤ Cφ +
∑
i≥1

[
E

∫
|P i
σ−iω(φσ−iω)| dμω

]1/q

C
(q−1)/q
φ

≤ Cφ + C
(q−1)/q
φ (CφCh,F ,β,δ,p‖K‖Lp)1/q

∑
i≥1

i−(D−2−δ)(p−1)/(pq) < ∞.

Then by Lemma 4.1,∫
|gσnω ◦ Fnω |2 dμω = Oω,δ(n

2(1+δ)p/(D−2−δ)(p−1)) a.e. ω ∈ �,

gσnω ◦ Fnω(x) = Oω,x,δ(n
(2+δ)(1+δ)p/(D−2−δ)(p−1)) a.s. x ∈ �ω.

ψ ∈ Lq(�, μ) follows from g ∈ Lq(�, μ) and φ ∈ F Kβ,p. By (3.10),

Pωψω = Pω(φσω ◦ Fω)− Pω(gσω ◦ Fω)+ Pωgω = φσω − gσω + Pωgω

= φσω −
∑
i≥0

P i
σ−iσω(φσ−iσω)+

∑
i≥0

P i+1
σ−iω(φσ−iω) = 0

for a.e. ω ∈ �. By (3.8), Eμω(ψσiω ◦ F iω|(F i+1
ω )−1Bσ i+1ω) = [Pσiω(ψσiω)] ◦ F i+1

ω = 0,
that is, (ψσ iω ◦ F iω)i≥0 are reverse martingale differences w.r.t. ((F iω)

−1Bσ iω)i≥0.

5.2. A coboundary.

LEMMA 5.2. Let η2
n(ω) := ∫

(
∑
i≤n ψσiω ◦ F iω)2 dμω, �2 := E

∫
ψ2
ω dμω and consider

any small δ > 0 such that (D − 2 − δ)(p − 1)/(δ + 1)p > 4. Then for a.e. ω ∈ �,

σ 2
n (ω)− η2

n−1(ω) = Oω,δ(n
(1/2)+((1+δ)p/(D−2−δ)(p−1)),

lim
n→∞

σ 2
n (ω)

n
= lim
n→∞

η2
n(ω)

n
= �2.

(5.2)

If�2 > 0, then there is a constant C′
ω ∈ [1, ∞) such that η2

n(ω) = C′±1
ω n; if�2 = 0, then

φ is a coboundary (see (2.2)), and the function g in (2.2) is in L(D−2−δ)(p−1)/(1+δ)p(�, μ).
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Proof. Let q := (D − 2 − δ)(p − 1)/(1 + δ)p > 4 for a small δ > 0. By (5.1) and the
Hölder inequality,

σ 2
n (ω)− η2

n−1(ω) =
∫ ⎛

⎝∑
i≤n

φσ iω ◦ F iω
⎞
⎠2

dμω −
∫ ⎛

⎝∑
i≤n

ψσi−1ω ◦ F i−1
ω

⎞
⎠2

dμω

=
∫
(gσnω ◦ Fnω − gω)

⎛
⎝gσnω ◦ Fnω − gω + 2

∑
i≤n

ψσi−1ω ◦ F i−1
ω

⎞
⎠ dμω

=
∫
(gσnω ◦ Fnω − gω)

2 dμω + 2
∫
(gσnω ◦ Fnω − gω)

⎛
⎝∑
i≤n

ψσi−1ω ◦ F i−1
ω

⎞
⎠ dμω

≤
∫
(gσnω ◦ Fnω − gω)

2 dμω + 2‖gσnω ◦ Fnω − gω‖L2(μω)

∥∥∥∥ ∑
i≤n

ψσi−1ω ◦ F i−1
ω

∥∥∥∥
L2(μω)

.

Using Lemmas 5.1 and 4.2, we can continue the estimate: for a.e. ω ∈ �,

= Oω,δ(n
2/q)+Oω,δ(n

1/q)

∥∥∥∥ ∑
i≤n

ψσi−1ω ◦ F i−1
ω

∥∥∥∥
L2(μω)

= Oω,δ(n
2/q)+Oω,δ(n

1/q)Oω(n
1/2) = Oω,δ(n

1/q+1/2).

Using results above and applying Birkhoff’s ergodic theorem to η2
n(ω)/n, we have

lim
n→∞

σ 2
n (ω)

n
= lim
n→∞

η2
n(ω)

n
= E

∫
ψ2
ω dμω = �2 for a.e. ω ∈ �.

If �2 = E
∫
ψ2
ω dμω > 0, then there is a constant C′

ω ≥ 1 such that

η2
n(ω) = nC′±1

ω . (5.3)

If �2 = E
∫
ψ2
ω dμω = E

∫
(φσω ◦ Fω − gσω ◦ Fω + gω)

2 dμω = 0, then for a.e.
ω ∈ �,

φσω ◦ Fω − gσω ◦ Fω + gω = 0 μω-a.s.

which means that φ is a coboundary. By Lemma 5.1, g ∈ Lq(�, μ).

5.3. Approximations by Brownian motions. From now on, we assume (5.3), that is,
�2 = E

∫
ψ2
ω dμω > 0.

LEMMA 5.3. (Approximations for martingale differences) Let ε ∈ (0, 1/2), γ := 1/(4ε).
Define

Rn(ω) :=
∑
i≥n

ψσiω ◦ F iω
η

2γ
i (ω)

, δ2
n(ω) :=

∫
R2
n(ω) dμω,

η2
n(ω) :=

∫ ( ∑
i≤n

ψσiω ◦ F iω
)2

dμω.
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Then for a.e. ω ∈ �, there is a constant Cω,γ ≥ 1, a probability space (���ω, Qω) (which is
an extension of (�ω, μω)), a Brownian motion Bω and decreasing stopping times τωi ↘ 0
defined on���ω such that

δ2
n(ω) = C±1

ω,γ σ
2−4γ
n (ω) = C±1

ω,γ η
2−4γ
n (ω) → 0, (5.4)

Rn(ω) = Bωτωn
.

Moreover, if

τωn − δ2
n(ω) = O(δ2+2ε

n (ω)) a.s. (5.5)

then we have ∣∣∣∣ ∑
i≤n

ψσiω ◦ F iω − Bω
η2
n(ω)

∣∣∣∣ = O(n(1/4)+(3ε−2ε3−ε2/4)) a.s. (5.6)

where the constants in O(·) of (5.5) and (5.6) depend on ω, ε and x ∈���ω.

Proof. Equation (5.3) implies that there is a constant Cω ≥ 1 such that for all n ≥ 1,

η2
n(ω) = C±1

ω n, η2
n+1(ω) = C±1

ω η2
n(ω). (5.7)

Since (ψσ iω ◦ F iω)i≥1 are reverse martingale differences, it follows that by (5.7),

δ2
n(ω) =

∑
i≥n

∫
ψ2
σ iω

◦ F iω dμω
η

4γ
i (ω)

=
∑
i≥n

η2
i (ω)− η2

i−1(ω)

η
4γ
i (ω)

≤
∫ ∞

η2
n−1(ω)

x−2γ dx = η
2−4γ
n−1 (ω)

1 − 2γ
,

δ2
n(ω) ≥ C−2γ

ω

∑
i≥n

η2
i (ω)− η2

i−1(ω)

η
4γ
i−1(ω)

≥ C−2γ
ω

∫ ∞

η2
n−1(ω)

x−2γ dx = C−2γ
ω

η
2−4γ
n−1 (ω)

1 − 2γ
,

which implies (5.4) using (5.2) and (5.3). Since (ψσ iω ◦ F iω)i≥1 is a sequence of reverse
martingale differences and Rn(ω) is (F nω)

−1Bσnω-measurable, we have that (Rn(ω))n≥0 is
a reverse martingale w.r.t. ((F nω)

−1Bσnω)n≥0. Therefore, by Theorem 2 of [SH83], there
is a probability space (���ω, Qω) (which is an extension of (�ω, μω)), a Brownian motion
Bω, a decreasing family of stopping times τωi ↘ 0 defined on ���ω, a decreasing family
of σ -algebras Gωn ⊇ σ {τωi , (F iω)

−1Bσ iω, i ≥ n} and a constant Cω ≥ 1 such that for any
q ≥ 1,

Rn(ω) = Bωτωn
, (5.8)

EQω
[τωn − τωn+1|Gωn+1] = Eμω

[
ψ2
n ◦ Fnω
η

4γ
n

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]
, (5.9)

Eμω

[
ψ

2q
n ◦ Fnω
η

4qγ
n

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]
= C±1

ω EQω
[(τωn − τωn+1)

q |Gωn+1]. (5.10)

Note that in Theorem 2 of [SH83], σ {τωi , i ≥ n} ⊆ Gωn only, but (5.9) and (5.10) still
hold after conditioning on σ {Gωi , τωi , (F iω)

−1Bσ iω, i ≥ n}. Therefore we assume without
loss of generality that Gωn ⊇ σ {τωi , (F iω)

−1Bσ iω, i ≥ n}.
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By (5.8), (Bω
τωi

− Bω
τω
i+1
)η

2γ
i (ω) = ψσiω ◦ F iω. Then

∣∣∣∣ ∑
i≤n

ψσiω ◦ F iω − Bω
η2
n(ω)

∣∣∣∣ =
∣∣∣∣ ∑
i≤n

ψσiω ◦ F iω −
∑
i≤n
(Bω
δ2
i

(ω)− Bω
δ2
i+1(ω)

)η
2γ
i (ω)

∣∣∣∣
=

∣∣∣∣ ∑
i≤n

[(Bωτωi − Bωτω
i+1
)− (Bω

δ2
i (ω)

− Bω
δ2
i+1(ω)

)]η2γ
i (ω)

∣∣∣∣
=

∣∣∣∣ ∑
i≤n
(Bωτωi

− Bω
δ2
i (ω)

)(η
2γ
i (ω)− η

2γ
i−1(ω))− (Bωτω

n+1
− Bω

δ2
n+1(ω)

)η
2γ
n (ω)

∣∣∣∣.
Since Brownian motions are locally Hölder continuous with exponent (1 − ε2)/2, we can
continue the estimate above: for a.s. x ∈���ω,

�ω,ε,x

[ ∑
i≤n

|τωi − δ2
i (ω)|(1−ε2)/2(η

2γ
i (ω)− η

2γ
i−1(ω))

+ |τωn+1 − δ2
n+1(ω)|(1−ε2)/2η

2γ
n (ω)

]
.

Using (5.5) and δ2
n(ω) �γ η

2−4γ
n−1 (ω), we can continue the estimate above: for a.s. x ∈���ω,

�ω,ε,x

[ ∑
i≤n

|δ2(1+ε)
i (ω)|(1−ε2)/2(η

2γ
i (ω)− η

2γ
i−1(ω))+ |δ2(1+ε)

n+1 (ω)|(1−ε2)/2η
2γ
n (ω)

]

�ω,ε,x

[ ∑
i≤n

η
(2−4γ )(1+ε)(1−ε2)/2
i−1 (ω)(η

2γ
i (ω)

− η
2γ
i−1(ω))+ η

(2−4γ )(1+ε)(1−ε2)/2
n (ω)η

2γ
n (ω)

]

�ω,ε,x

[ ∫ η
2γ
n (ω)

0
x((2−4γ )(1+ε)/2γ )(1−ε2/2) dx + η

2γ+(2−4γ )(1+ε)(1−ε2)/2
n (ω)

]

= Oω,ε,x(n
γ−(2γ−1)(1+ε)(1−ε2)/2) = Oω,ε,x(n

(1/4)+(3ε−2ε3−ε2)/4)

where the last two equalities are due to (5.7) and γ = 1/(4ε).

5.4. Proof of the QASIP for martingale differences. To prove the QASIP (5.6), we will
verify (5.5) in Lemma 5.3: for some ε ∈ (0, 1/2),

τωn − δ2
n(ω) = O(δ2(1+ε)

n (ω)) a.s. for a.e. ω ∈ �.

LEMMA 5.4. (Stopping times decompositions) The following decompositions hold:

τωn − δ2
n(ω) := R′

n(ω)+ R′′
n(ω)+ S′

n(ω), (5.11)
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where

S′
n(ω) :=

∑
i≥n

(
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

− Eμω

ψ2
σ iω

◦ F iω
η

4γ
i (ω)

)
,

R′
n(ω) :=

∑
i≥n

τωi − τωi+1 − EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]
,

R′′
n(ω) :=

∑
i≥n

EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]
− ψ2

σ iω
◦ F iω

η
4γ
i (ω)

.

R′(ω), R′′(ω) are reverse martingales w.r.t. (Gωi )i≥0 and ((F iω)
−1Bσ iω)i≥0 respectively.

And for a.e. ω ∈ �,

R′
n(ω) = O(δ2+2ε

n (ω)), R′′
n(ω) = O(δ2+2ε

n (ω)) a.s.

where the constants in O(·) depend on ω, ε and x ∈���ω and ε := 2p(1 + δ)2/

(p − 1)(D − 2 − δ) for a sufficiently small δ > 0 such that ε ∈ (0, 1/2).

Proof. It is straightforward to verify the decompositions. We will now prove that
(R′

n(ω))n≥0, (R′′
n(ω))n≥0 are reverse martingales w.r.t. (Gωi )i≥0 and ((F iω)

−1Bσ iω)i≥0,
respectively. It is obvious that R

′
n(ω) and R

′′
n(ω) are measurable w.r.t. (Gωi )i≥0 and

(F nω)
−1Bσnω, respectively.

We now study R′
n(ω). By (5.9),

EQω
[R′
n(ω)|Gωn+1]

= EQω
(τωn − τωn+1|Gωn+1)− EQω

{
EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]∣∣∣∣Gωn+1

}

+
∑
i≥n+1

EQω
(τωi − τωi+1|Gωn+1)− EQω

{
EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]∣∣∣∣Gωn+1

}

= EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]

− EQω

{
EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]∣∣∣∣Gωn+1

}

+
∑
i≥n+1

EQω

[
τωi − τωi+1

∣∣Gωn+1
]−EQω

{
EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]∣∣∣∣Gωn+1

}
.

Since (F n+1+i
ω )−1Bσn+1+iω ⊆ Gωn+1 and τωn+1+i is Gωn+1-measurable for any i ≥ 0, we can

continue the calculation above as

= EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]
− EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]

+
∑
i≥n+1

τωi − τωi+1 − EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]
= R′

n+1(ω).

Therefore (R′
n(ω))n≥0 is a reverse martingale w.r.t. (Gωi )i≥0.
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We now turn to R′′
n(ω). Since ((F nω)

−1Bσnω)n≥0 is a decreasing filtration,

EQω
[R′′
n(ω)|(F n+1

ω )−1Bσn+1ω]

= EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]
− EQω

[
ψ2
σnω ◦ Fnω
η

4γ
n (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

]

+ EQω

{ ∑
i≥n+1

[
EQω

ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]
− ψ2

σ iω
◦ F iω

η
4γ
i (ω)

∣∣∣∣(F n+1
ω )−1Bσn+1ω

}

= R
′′
n+1(ω).

Therefore (R′′
n(ω))n≥0 is a reverse martingale w.r.t. ((F iω)

−1Bσ iω)i≥0.
We now estimate R′

n(ω). Let q := (p − 1)(D − 2 − δ)/2p(1 + δ) > 2, ε :=
2p(1 + δ)2/(p − 1)(D − 2 − δ) ∈ (0, 1/2) for a sufficiently small δ > 0. By the
Burkholder–Davis–Gundy inequality and Minkowski inequality, there is a constant Cq
such that

‖R′
n(ω)‖Lq(Qω)

≤ Cq

∥∥∥∥ ∑
i≥n

∣∣∣∣τωi − τωi+1 − EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]∣∣∣∣2∥∥∥∥1/2

Lq/2(Qω)

≤ Cq

( ∑
i≥n

∥∥∥∥
∣∣∣∣τωi − τωi+1 − EQω

[
ψ2
σ iω

◦ F iω
η

4γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]∣∣∣∣2∥∥∥∥
Lq/2(Qω)

)1/2

≤ √
2Cq

( ∑
i≥n

∥∥∥∥|τωi − τωi+1|2 + EQω

[
ψ4
σ iω

◦ F iω
η

8γ
i (ω)

∣∣∣∣(F i+1
ω )−1Bσ i+1ω

]∥∥∥∥
Lq/2(Qω)

)1/2

.

Using (5.10) and the fact that (���ω, Qω) is an extension of (�ω, μω), we can continue the
estimate above as

≤ Cω,q

( ∑
i≥n

‖ψ4
σ iω

◦ F iω‖Lq/2(Qω)

η
8γ
i (ω)

)1/2

= Cω,q

( ∑
i≥n

‖ψ4
σ iω

◦ F iω‖Lq/2(μω)
η

8γ
i (ω)

)1/2

(5.12)

for some constant Cω,q > 0.
LetKn(ω) := ∑

i≤n ‖ψ4
σ iω

◦F iω‖Lq/2(μω). Then E‖ψ4
ω‖Lq/2(μω)≤(E

∫
ψ

2q
ω dμω)

2/q <∞
due to Lemma 5.1 and 2/q < 1. By Birkhoff’s ergodic theorem, for a.e. ω ∈ �, there is a
constant Cω ≥ 1 such that Kn(ω) = C±1

ω n for all n ∈ N. Using (5.3) and (5.12), we have

‖R′
n(ω)‖Lq(Qω) ≤ Cω,q

( ∑
i≥n

Ki(ω)−Ki−1(ω)

η
8γ
i (ω)

)1/2

≤ Cω,q

(
Kn−1(ω)

η
8γ
n (ω)

+
∑
i≥n

Ki(ω)
(η

8γ
i+1(ω)− η

8γ
i (ω))

η
16γ
i (ω)

)1/2

≤ Cω,q
√
Cω,γ

(
n

n4γ +
∫ ∞

η
8γ
n (ω)

x−(16γ−2/8γ ) dx

)1/2

≤ C′
ω,q,γ n

−(4γ−1)/2
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for some constants Cω,γ , C′
ω,q,γ > 0. Recall that q := (p − 1)(D − 2 − δ)/2p(1 + δ) > 2,

ε := 2p(1 + δ)2/(p − 1)(D − 2 − δ) and γ = (4ε)−1. Using (5.4), there are constants
Cω,q,γ , C′′

ω,q,γ > 0 such that

∥∥∥∥ R′
n(ω)

δ2+2ε
n (ω)

∥∥∥∥q
Lq(Qω)

≤ C′′
ω,q,γ

n−(4γ−1/2)q

σ
(1+ε)(2−4γ )q
n

≤ Cω,q,γ
n(2γ−1)(1+ε)q

n(4γ−1)/2q = Cω,q,γ n
−(1+δ).

By the Borel–Cantelli lemma, we have R′
n(ω) = O(δ2+2ε

n (ω)) a.s. The estimate for R′′
n(ω)

is similar.

LEMMA 5.5. (Estimates for S′
n(ω) in (5.11)) Define Sn(ω) := ∑

i≤n(ψ2
σ iω

◦ F iω −∫
ψ2
σ iω

◦ F iωdμω), γ = (4ε)−1. Suppose that

Sn(ω) = O(η
2−(4γ−2)ε
n (ω)) = O(n(ε+1)/2) μω-a.s.

Then S′
n(ω) = O(δ

2(1+ε)
n (ω))μω-a.s. All constants in O(·) here depend on ω, ε and

x ∈ �ω.

Proof. Since S′
n(ω) := ∑

i≥n(ψ2
σ iω

◦ F iω − Eμωψ
2
σ iω

◦ F iω)η−4γ
i (ω), we have that

S′
n(ω) =

∑
i≥n

Si(ω)− Si−1(ω)

η
4γ
i (ω)

= −Sn−1(ω)

η
4γ
n (ω)

+
∑
i≥n

Si(ω)(η
−4γ
i (ω)− η

−4γ
i+1 (ω)).

Using (5.7), we can continue the calculation above as

= O(η
2−(4γ−2)ε
n (ω))

η
4γ
n (ω)

+
∑
i≥n

O(η
2−(4γ−2)ε
i+1 (ω))

η
4γ
i+1(ω)− η

4γ
i (ω)

η
8γ
i+1(ω)

= O(η
−(4γ−2)(1+ε)
n (ω))+O

( ∫ ∞

η
4γ
n (ω)

x−((8γ−2+(4γ−2)ε)/4γ ) dx

)
= O(δ2(1+ε)

n (ω))

where the last equality is due to (5.4). All constants in O(·) depend on ω, ε and
x ∈ �ω.

We will use Lemma 5.5 to estimate Sn(ω) to control S′
n(ω). Using ψω = φσω ◦ Fω −

gσω ◦ Fω + gω, we have∑
i≤n
ψ2
σ i−1ω

◦ F i−1
ω =

∑
i≤n
(φσ iω ◦ F iω − gσ iω ◦ F iω + gσ i−1ω ◦ F i−1

ω )2

=
∑
i≤n

φ2
σ iω

◦ F iω + g2
σ iω

◦ F iω + g2
σ i−1ω

◦ F i−1
ω + 2φσiω ◦ F igσ i−1ω ◦ F i−1

ω

− 2φσiω ◦ F iωgσ iω ◦ F iω − 2gσ i−1ω ◦ F i−1
ω gσ iω ◦ F iω

=
∑
i≤n

φ2
σ iω

◦ F iω − g2
σ iω

◦ F iω + g2
σ i−1ω

◦ F i−1
ω + 2φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω

+ 2g2
σ iω

◦ F iω − 2φσiω ◦ F iωgσ iω ◦ F iω − 2gσ i−1ω ◦ F i−1
ω gσ iω ◦ F iω.
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Using ψω = φσω ◦ Fω − gσω ◦ Fω + gω again, we can continue the calculation above as

=
∑
i≤n

φ2
σ iω

◦ F iω − g2
σ iω

◦ F iω + g2
σ i−1ω

◦ F i−1
ω + 2φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω

− 2ψσi−1ω ◦ F i−1
ω gσ iω ◦ F iω

=
∑
i≤n

φ2
σ iω

◦ F iω − g2
σnω ◦ Fnω + g2

ω + 2
∑
i≤n

φσ iω ◦ F iωgσ i−1ω ◦ F i−1
ω

− 2
∑
i≤n

ψσi−1ω ◦ F i−1
ω gσ iω ◦ F iω.

Then we have

Sn−1(ω) =
∑
i≤n
(φ2
σ iω

◦ F iω − Eμωφ
2
σ iω

◦ F iω)

+ 2
∑
i≤n

(
φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω −
∫
φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω dμω

)

− 2
∑
i≤n

(
ψσi−1ω ◦ F i−1

ω gσ iω ◦ F iω −
∫
ψσi−1ω ◦ F i−1

ω gσ iω ◦ F iω dμω
)

− g2
σnω ◦ Fnω + g2

ω + Eμωg
2
σnω ◦ Fnω − Eμωg

2
ω

=
∑
i≤n
(φ2
σ iω

◦ F iω − Eμωφ
2
σ iω

◦ F iω) (5.13)

+ 2
∑
i≤n

(
φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω −
∫
φσiω ◦ F iωgσ i−1ω ◦ F i−1

ω dμω

)
(5.14)

− 2
∑
i≤n

ψσi−1ω ◦ F i−1
ω gσ iω ◦ F iω (5.15)

− g2
σnω ◦ Fnω + Eμωg

2
σnω ◦ Fnω + g2

ω − Eμωg
2
ω (5.16)

where (5.15) is due to

Eμωψσi−1ω ◦ F i−1
ω gσ iω ◦ F iω =

∫
gσ iω ◦ F iωEμω [ψσi−1ω ◦ F i−1

ω |(F iω)−1Bσ iω] dμω = 0.

To estimate Sn−1(ω), we will estimate (5.13), (5.14), (5.15) and (5.16).

LEMMA 5.6. (Estimates for (5.16)) For a small δ>0 such that ε := max{2(2+δ)(1+δ)p/
(D − 2 − δ)(p − 1)− 1

2 , 0} ∈ [0, 1/2), we have for a.e. ω ∈ �,

(5.16) = O(n(ε+1)/2) μω-a.s.

where the constant in O(·) depends on ω, ε and x ∈ �ω.

Proof. By Lemma 5.1,

(5.16) = Oω,x,δ(n
2(2+δ)(1+δ)p/(D−2−δ)(p−1))+Oω,δ(n

2(1+δ)p/(D−2−δ)(p−1))

+Oω,x(1) = Oω,x,δ(n
(ε+1)/2)

where 2(2 + δ)(1 + δ)p/(D − 2 − δ)(p − 1) ≤ ε + 1/2 for a sufficiently small
δ > 0.
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LEMMA 5.7. (Estimates for (5.13)) For a small δ > 0 such that ε := p(1 + δ)2/

(p − 1)(D − 2 − δ) ∈ (0, 1/4), we have for a.e. ω ∈ �,

(5.13) = O(n(ε+1)/2) μω-a.s.

where the constant in O(·) depends on ω, ε and x ∈ �ω.

Proof. Let q := (D − 2 − δ)(p − 1)/(1 + δ)p. Since φ2
(·) − Eμ(·)φ

2
(·) ∈ L∞(�, μ)

⋂
F Kβ,p ⊆ Lq(�, μ) with a Lipschitz constant 2C2

φ , there is a Cφ,q,p,h,F > 0 by Lemma 3.4
and (3.7) such that(

E

∫
|Pnω(φ2

ω − Eμωφ
2
ω)|q dμω

)1/q

≤ (2C2
φ)
(q−1)/q

(
E

∫
|Pnω(φ2

ω − Eμωφ
2
ω)| dμω

)1/q

≤ Cφ,q,p,h,F n
−((D−2−δ)(p−1)/qp) = Cφ,q,p,h,F n

−(1+δ).

By Lemma 4.3, for a.e. ω ∈ �, (5.13) = Oω,x,δ(n
(1/2)+((1+δ)/q)) = Oω,x,δ(n

(ε+1)/2)

μω-a.s.

LEMMA 5.8. (Estimates for (5.15)) For a small δ > 0 such that ε := 2p(1 + δ)2/(p − 1)
(D − 2 − δ) ∈ (0, 1/2), we have for a.e. ω ∈ �,

(5.15) = O(n(ε+1)/2) μω-a.s.

where the constant in O(·) depends on ω, ε and x ∈ �ω.

Proof. From Lemma 5.1, for a.e. ω ∈ �, (ψσ iω ◦ F iω)i≥0 and (ψσ i−1ω ◦ F i−1
ω ·

gσ iω ◦ F iω)i≥1 are reverse martingale differences w.r.t. ((F iω)
−1Bσ iω)i≥0. Let q :=

(D − 2 − δ)(p − 1)/2(1 + δ)p. By Lemma 5.1 again and the Hölder inequality,(
E

∫
|ψω · gσω ◦ Fω|q dμω

)1/q

≤
(
E

∫
|gσω ◦ Fω|2q dμω

)1/(2q)(
E

∫
|ψω|2q dμω

)1/(2q)

is finite. Then by Lemma 4.2, (5.15) = Ox,ω,q,δ(n
(1/2)+((1+δ)/q)) = Ox,ω,q,δ(n

(ε+1)/2)

μω-a.s.

LEMMA 5.9. (Estimates for (5.14)) For any small δ > 0 such that ε := 2p(1 + δ)2/(p − 1)
(D − 2 − δ) ∈ (0, 1/2), we have for a.e. ω ∈ �,

(5.14) = O(n(ε+1)/2) μω-a.s.

where the constant in O(·) depends on ω, ε and x ∈ �ω.

Proof. Let q := (D − 2 − δ)(p − 1)/2(1 + δ)p > 2 for a small δ > 0. Denote �ω :=
φσω ◦ Fωgω − ∫

φσω ◦ Fωgω dμω, �(ω, ·) := �ω(·). By Lemma 5.1, ‖�‖Lq(�,μ) ≤
2Cφ‖g‖Lq(�,μ) < ∞.
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Therefore, by the Minkowski inequality and (3.10),(
E

∫
|P kω(�ω)|q dμσkω

)1/q

=
(
E

∫ ∣∣∣∣P kω
[
φσω ◦ Fωgω −

∫
φσω ◦ Fωgω dμω

]∣∣∣∣q dμσkω
)1/q

≤
∑
i≥0

(
E

∫ ∣∣∣∣P kω
[
φσω ◦ FωP iσ−iω(φσ−iω)

−
∫
φσω ◦ FωP iσ−iω(φσ−iω) dμω

]∣∣∣∣q dμσkω
)1/q

≤
∑
i≥0

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣q dμσkω
)1/q

=
∑
i<k

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣q dμσkω
)1/q

+
∑
i≥k

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣q dμσkω
)1/q

.

By (3.7), ‖φσωP i+1
σ−iω(φσ−iω)‖L∞(μσω) ≤ C2

φ . By Definition 3.1,∫
|P k−1
σω [φσωP i+1

σ−iω(φσ−iω)]| dμσkω

= sup
ξ :‖ξ‖∞≤1

∫
ξP k−1

σω [φσωP i+1
σ−iω(φσ−iω)] dμσkω

= sup
ξ :‖ξ‖∞≤1

∫
ξ ◦ Fk−1

σω · φσωP i+1
σ−iω(φσ−iω) dμσω

≤ Cφ

∫
|P i+1
σ−iω(φσ−iω)| dμσω.

Then we can continue the estimate: there are constants Cφ,q , C′
φ,q > 0 such that

≤ C′
φ,q

∑
i<k

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣ dμσkω
)1/q
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+ C′
φ,q

∑
i≥k

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣ dμσkω
)1/q

≤ Cφ,q
∑
i<k

(
E

∫ ∣∣∣∣P k−1
σω

[
φσωP

i+1
σ−iω(φσ−iω)

−
∫
φσωP

i+1
σ−iω(φσ−iω) dμσω

]∣∣∣∣ dμσkω
)1/q

+ Cφ,q
∑
i≥k

(
E

∫ ∣∣P i+1
σ−iω(φσ−iω)

∣∣ dμσω + E

∫ ∣∣P i+1
σ−iω(φσ−iω)

∣∣ dμσω
)1/q

.

To continue the estimate, we need the regularity of φσωP i+1
σ−iω(φσ−iω): by Lemma 4.4

and (3.7), for any x, y ∈ �σω,

|φσω(x)P i+1
σ−iω(φσ−iω)(x)− φσω(y)P

i+1
σ−iω(φσ−iω)(y)|

≤ |φσω(x)− φσω(y)|Cφ + |P i+1
σ−iω(φσ−iω)(y)− P i+1

σ−iω(φσ−iω)(x)|Cφ
≤ Kσωβsσω(x,y)C2

φ + (Kσ−iω + Ch,F )β
sσω(x,y)C2

φ .

Thus φ(·)P i+1
σ−(i+1)(·)(φσ−(i+1)(·)) ∈ F K+K◦σ−(i+1)+Ch,F

β,p with a Lipschitz constant C2
φ . Now

we can continue our estimate: by Lemma 3.4, there is a constant C = [C2
φCh,F ,β,δ,p‖K+

K ◦ σ−(i+1) + Ch,F ‖Lp ]1/q ≤ [C2
φCh,F ,β,δ,p(2‖K‖Lp + Ch,F )]1/qsuch that

(
E

∫ ∣∣P kω(�ω)∣∣q dμσkω
)1/q

≤ CCφ,q
∑
i<k

(k − 1)−((D−2−δ)(p−1)/qp) + 2CCφ,q
∑
i≥k

i−((D−2−δ)(p−1)/qp)

≤ Cφ,q,δ,p(k − 1)−((D−2−δ)(p−1)/qp)+1 �φ,q,δ,p k
−(2δ+1)

for a constant Cφ,q,δ,p > 0. Therefore, by Lemma 4.3,
∑
i≤n(φσ iω ◦ F iω · gσ i−1ω ◦ F i−1

ω −∫
φσiω ◦ F iω · gσ i−1ω ◦ F i−1

ω dμω) = Ox,ω,q,δ(n
(1/2)+((1+δ)/q)) = Ox,ω,q,δ(n

(ε+1)/2)

μω-a.s.

We now turn to the QASIP for martingale differences (ψσ iω ◦ F iω)i≥0.

LEMMA 5.10. (QASIP for (ψσ iω ◦ F iω)i≥0) For any sufficiently small δ > 0 such that ε =
2p(1 + δ)2/(p − 1)(D − 2 − δ) ∈ (0, 1/2), we have for a.e. ω ∈ �,∣∣∣∣ ∑

i≤n
ψσiω ◦ F iω − Bω

η2
n(ω)

∣∣∣∣ = O(n(1/4)+(3ε−2ε3−ε2/4)) a.s.

where the constant in O(·) depends on ω, ε and x ∈���ω.
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Proof. By Lemmas 5.6–5.9, we have for a small enough δ > 0 and a.e. ω ∈ �,

Sn(ω) = Oω,ε,x(n
(ε+1)/2) μω-a.s.

where ε = max{2p(1 + δ)2/(p − 1)(D − 2 − δ), max{(2(2 + δ)(1 + δ)p/(D − 2)(p −
1))− 1

2 , 0}, p(1 + δ)2/(p − 1)(D − 2 − δ)} = 2p(1 + δ)2/(p − 1)(D − 2 − δ).
By Lemma 5.5, S′

n(ω) = Oω,ε,x(δ
2+2ε
n )μω-a.s. By Lemma 5.4,

τωn − δ2
n(ω) = Oω,ε,x(δ

2+2ε
n (ω)) a.s.

By Lemma 5.3, | ∑
i≤n ψσiω ◦ F iω − Bω

η2
n(ω)

| = Oω,ε,x(n
(1/4)+(3ε−2ε3−ε2)/4) a.s.

5.5. Proof of the QASIP for Birkhoff sums.
LEMMA 5.11. (QASIP for (φσ iω ◦ F iω)i≥0) For a.e. ω ∈ �,∣∣∣∣ ∑

i≤n
φσ iω ◦ F iω − Bω

σ 2
n (ω)

∣∣∣∣ = O(nε0+1/4) a.s.

where the constant in O(·) depends on ω, ε and x ∈���ω.
If ρn = n−D , then ε0 is any number in (εD , 1/4), where εD is defined in (2.5). In par-

ticular, if ρn = e−anb for some a > 0, b ∈ (0, 1] (which implies ρn ≤ n−D for n, D � 1),
then εD can be arbitrarily small, as is ε0 > 0.

Proof. Since ε1 = 2p/(p − 1)(D − 2) ∈ (0, 1/2), there is a small δ > 0 such that ε =
2p(1 + δ)2/(p − 1)(D − 2 − δ) ∈ (ε1, 1/2). By Lemmas 5.1 and 5.10,∑

1≤i≤n
φσ iω ◦ F iω =

∑
1≤i≤n

ψσi−1ω ◦ F i−1
ω + gσnω ◦ Fnω − gω

=
∑

1≤i≤n
ψσi−1ω ◦ F i−1

ω +O(n(2+δ)(1+δ)p/(D−2−δ)(p−1))+O(1)

= Bω
η2
n−1(ω)

+O(n(1/4)+((3ε−2ε3−ε2)/4))+O(nε)+O(1)

= Bω
η2
n−1(ω)

+O(nmax{(1/4)+((3ε−2ε3−ε2)/4)ε}).

Using (5.2) and the basic property of Brownian motion, we can continue the estimate
above as

= Bω
σ 2
n (ω)

+O(n(1/4)+((1+δ)2p/2(D−2−δ)(p−1)))+O(nmax{(1/4)+((3ε−2ε3−ε2)/4),ε})

= Bω
σ 2
n (ω)

+O(n(1+ε)/4)+O(nmax{(1/4)+((3ε−2ε3−ε2)/4),ε})

= Bω
σ 2
n (ω)

+O(nmax{(1/4)+((3ε−2ε3−ε2)/4),ε,(1+ε)/4}) = Bω
σ 2
n (ω)

+O(n(1/4)+ε0) a.s.

where ε0 := max{ 1
4 + (3ε − 2ε3 − ε2/4), ε, (1 + ε)/4} − 1

4 ∈ (εD , 1/4). All constants in
O(·) depend on ω, ε and x ∈���ω.
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6. Projection from towers
In this section we consider the RDS which can be described by the RYT.

Definition 6.1. (Induced random Markov maps) We say that (fω)ω∈� are induced random
Markov maps if they satisfy the following conditions.
(1) Let (�, P, σ) := (IZ, νZ, σ) be a Bernoulli scheme where (I , ν) is a probability

space and σ is an invertible left shift on IZ. (M , Leb, d) is a compact Riemannian
manifold with a Riemannian volume Leb and a Riemannian distance d. (fω)ω∈�
are non-singular random transformations w.r.t. Leb on M. Define f nω := fσn−1ω ◦
fσn−2ω ◦ · · · ◦ fσω ◦ fω.

(2) Assume that 	 is an open geodesic ball in M, with a normalized probability m
inherited from Leb.

(3) Assume that for a.e. ω ∈ �, there is a countable partitionPω of a full measure subset
Dω of 	 and a function Rω : 	 → N such that Rω is constant on each Uω ∈ Pω,
Rω(x) is a stopping time (see Definition 2.2) and f Rωω |Uω is a diffeomorphism from
Uω to 	.

(4) Assume that there is an integer N ∈ N, {εi > 0, i = 1, . . . , N} and {ti ∈ N, i =
1, . . . , N} with gcd(ti) = 1 such that for a.e. ω ∈ �, m(x ∈ 	 : Rω(x) = ti ) > εi

for all 1 ≤ i ≤ N .
(5) Assume that there are constants β ∈ (0, 1), C ≥ 1 and a function K ∈ Lp(�)

(K ≥ 1, p ∈ (1, ∞]) such that for a.e. ω ∈ �, any Uω ∈ Pω, x, y ∈ Uω, and 0 ≤
k ≤ Rω|Uω ,

d(f Rωω (x), f Rωω (y)) ≥ β−1d(x, y), (6.1)∣∣∣∣ log
Jf

Rω
ω (x)

Jf
Rω
ω (y)

∣∣∣∣ ≤ Cd(f Rωω (x), f Rωω (y)), (6.2)

d(f kω(x), f
k
ω(y)) ≤ CKσkωd(f Rωω (x), f Rωω (y)). (6.3)

(6) Assume that there is a constant C > 0 and a decreasing sequence (ρn)n≥1 such
that ∫

m(x ∈ 	 : Rω(x) > n) dP ≤ Cρn ↘ 0.

THEOREM 6.1. (Quenched limit laws for the RDS) Let Mω := M . Then the following
statements hold for (�, P, σ , (Mω)ω∈�, (fω)ω∈�) in Definition 6.1.
(1) Equivariant probability measures (1.1) (υω)ω∈� exist. Define a probability υ by

υ(A) :=
∫
υω(Aω) dP

for any measurable subset A ⊆ �×M and Aω := {x ∈ M : (ω, x) ∈ A}. For any
Hölder function ϕ on M with a Hölder exponent γ ∈ (0, 1], define

ϕω := ϕ −
∫
ϕdυω, �(ω, ·) := ϕω(·), σ 2

n (ω) :=
∫ ( ∑

k≤n
ϕσkω ◦ f kω

)2

dυω.
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Suppose that ρn := e−anb or n−D for some constants a > 0, b ∈ (0, 1], D >

2 + (4p/(p − γ )), γ ∈ (0, 1]. Then the following statements hold for the RDS
(�, P, σ , (Mω)ω∈�, (υω)ω∈�, (fω)ω∈�).

(2) There is a constant �2 ≥ 0 such that limn→∞(σ 2
n (ω)/n) = �2 a.e. ω ∈ �.

(3) If �2 > 0, then � has the QASIP (see Definition 2.1). The convergence rate is e =
ε0 + 1/4, where ε0 ∈ (0, 1/4) satisfies the following: if ρn = e−anb , then ε0 > 0 is
any small number; if ρn = n−D , then ε0 is any number in (εD , 1/4), where εD is
defined in (2.5) with a different ε1 = 2p/(p − γ )(D − 2).

(4) If �2 = 0, then � is a coboundary (see Definition 2.1). The function g in (2.2)
satisfies the following: if ρn = n−D , then g ∈ L(D−2−δ)(p−γ )/(1+δ)p(υ) for any small
δ > 0 such that (D − 2 − δ)(p − γ )/(1 + δ)p > 4. In particular, if ρn = e−anb

(which implies ρn ≤ n−D for n, D � 1), then g ∈ Lk(υ) for all k ≥ 1.

Proof of Theorem 6.1. We identify the 0th levels of all (�ω)ω∈� with the base 	 and
denote A := supx,y∈M d(x, y). From Definition 6.1, we can construct � and F such that
F
Rω
ω = f

Rω
ω . To show that (�, F) is an RYT, we just need to verify the distortion (2.3)

from (6.2): if the separation time for x, y ∈ �ω is sω(x, y) = n, then for any i < n,

F
Riω(x)
ω (x), FR

i
ω(y)

ω (y) lie in the same element of P
σR

i
ω(x)ω

and FR
n
ω(x)

ω (x), FR
n
ω(y)

ω (y) lie
in different elements of P

σR
n
ω(x)ω

. By (6.1) and (6.2),

d(x, y) ≤ βd(f Rωω (x), f Rωω (y)) ≤ · · · ≤ βnd(f
Rnω
ω (x), f R

n
ω

ω (y)) ≤ βnA,∣∣∣∣ log
JF

Rω
ω (x)

JF
Rω
ω (y)

∣∣∣∣ ≤ Cd(f Rωω (x), f Rωω (y)) ≤ CAβn−1,

that is, there is a constant C′ > 0 such that∣∣∣∣JFRωω (x)

JF
Rω
ω (y)

− 1
∣∣∣∣ ≤ C′βsσRω(x)ω(F

Rω
ω (x),FRωω (y)).

Thus, by Definition 2.2 and Lemma 3.1, (�, F) is an RYT and there are equivariant
probability measures (μω)ω� for (�, F). Define a projection πω : �ω → M by

πω(x, l) := f l
σ−lω(x)

which is a random semiconjugacy: fω ◦ πω = πσω ◦ Fω. Therefore

(υω)ω∈� := ((πω)∗μω)ω∈�

are equivariant probability measures (see §3.1 in [BBR19]).
Define functions φω := ϕω ◦ πω and φ(ω, ·) := φω(·) satisfying

‖φω‖L∞(�ω) ≤ max
x∈M |ϕ(x)|,

∫
φω dμω = 0.

Claim. φ ∈ F Kγβγ ,p/γ with a Lipschitz constant CϕCγAγ (βγ )−1.
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This claim holds since for any (x, l), (y, l) ∈ �ω with sω((x, l), (y, l)) = n, we have,
using (6.3),

|φω(x, l)− φω(y, l)| = |ϕω(f lσ−lωx)− ϕω(f
l
σ−lωy)| ≤ Cϕd(f

l
σ−lωx, f l

σ−lωy)
γ

≤ CϕC
γKγωd(f

R
σ−lω

σ−lω (x), f
R
σ−lω

σ−lω (y))γ

≤ CϕC
γKγωAγ (βγ )−1(βγ )sω((x,l),(y,l)).

We now apply Theorem 2.3 to φ.
(1) There is a constant �2 ≥ 0 such that

lim
n→∞

∫
(
∑
k≤n ϕσkω ◦ f kω)2dυω

n
= lim
n→∞

∫
(
∑
k≤n φσkω ◦ Fkω)2 dμω

n
= �2.

(2) If �2 > 0, then φ has the QASIP: there is a constant e > 0 such that for a.e. ω ∈ �,
we have a Brownian motion B̄ω defined on an extended probability space (���ω, Qω) and∑

k≤n
ϕσkω ◦ f kω ◦ πω − B̄ω

σ 2
n (ω)

=
∑
k≤n

φσkω ◦ Fkω − B̄ω
σ 2
n (ω)

= O(ne) Qω-a.s.

Here σ 2
n (ω) = ∫

(
∑
k≤n φσkω ◦ Fkω)2 dμω, and e = 1/4 + ε0 satisfies the following: if

ρn = e−anb , then ε0 > 0 is any small number; if ρn = n−D , then ε0 is any number in
(εD , 1/4), where εD is defined in (2.5) with a different ε1 = 2p/(p − γ )(D − 2).

(3) If �2 = 0, then φ is a coboundary: there is a function g′ on � such that for a.e.
ω ∈ �,

φσω ◦ Fω = g′
σω ◦ Fω − g′

ω μω-a.s.;

in other words,

φ ◦ F = g′ ◦ F − g′ μ-a.s. (6.4)

If ρn = n−D , then g′ ∈ L(D−2−δ)(p−γ )/(1+δ)p(�, μ) for a sufficiently small δ > 0 such
that (D − 2 − δ)(p − γ )/(1 + δ)p > 4.

Now we show how to project this QASIP and coboundary to the RDS. Let χ(ω, x) :=
(σω, fω(x)), χ∗ be its transfer operator w.r.t. υ, andM =:

⋃
ω∈�({ω} ×Mω).

Projection for the coboundary. We will apply Theorem 1.1 of [Liv96] to the stationary
system (M, χ , υ) and the fiberwise mean zero function �, verifying three conditions of
the theorem.

By Lemma 3.4, there is a constant C = Cφ,h,F ,βγ ,δ,p/γ ‖Kγ ‖Lp/γ such that

∑
i≥1

∣∣∣∣
∫
�� ◦ χidυ

∣∣∣∣ =
∑
i≥1

∣∣∣∣
∫ ∫

ϕωϕσiω ◦ f iωdυω dP
∣∣∣∣

=
∑
i≥1

∣∣∣∣
∫ ∫

φωφσiω ◦ F iω dμω dP
∣∣∣∣
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≤ Cφ
∑
i≥1

∫ ∫
|P iω(φω)| dμσiω dP

≤ CφC
∑
i≥1

i−(D−2−δ)(p/γ−1)/p/γ < ∞,

∑
n≥1

∫
|(χ∗)n�|dυ =

∑
n≥1

sup
‖ψ‖∞≤1

∫
ψ ◦ χn�dυ

=
∑
n≥1

sup
‖ψ‖∞≤1

∫ ∫
ψσnω ◦ πω ◦ Fnωφω dμω dP

≤
∑
n≥1

∫ ∫
|Pnω(φω)| dμσnω dP

≤ C
∑
i≥1

i−(D−2−δ)(p/γ−1)/p/γ < ∞.

Using
∫
φφ ◦ Fn dμ ≤ Cn−(D−2−δ)(p−γ )/p ≤ Cn−4 and following the same compu-

tations as in the proof of Corollary 3.10 of [Su19b] (we skip this here), we have∫
�2dυ + 2

∑
i≥1

∫
�� ◦ χidυ =

∫
φ2 dμ+ 2

∑
i≥1

∫
φφ ◦ F i dμ

= lim
n→∞

∫
(
∑
i≤n φ ◦ F i)2 dμ

n
= lim
n→∞

∫
(φ + g′ ◦ Fn − g′)2 dμ

n
= 0

where the last two equalities are due to (6.4) and g′ ∈ L4(�, μ). Therefore, by Theorem 1.1
of [Liv96], there is a measurable function g on (M, υ) such that � ◦ χ = g ◦ χ − gυ-a.s.
and g := ∑

n≥0(χ
∗)n�. Let q := (D − 2 − δ)(p − γ )/(1 + δ)p. Using ‖�‖∞ ≤ Cφ , we

have

‖g‖q ≤
∥∥∥∥ ∑
n≥0

(χ∗)n�
∥∥∥∥
Lq(υ)

≤ Cϕ + C(q−1)/q
ϕ

∑
n≥1

( ∫
|(χ∗)n�|dυ

)1/q

= Cϕ + C(q−1)/q
ϕ

∑
n≥1

(
sup

ξ :‖ξ‖∞≤1

∫
ξ ◦ χn�dυ

)1/q

= Cϕ + C(q−1)/q
ϕ

∑
n≥1

(
sup

ξ :‖ξ‖∞≤1

∫ ∫
ξσnω ◦ f nωϕωdυω dP

)1/q

= Cϕ + C(q−1)/q
ϕ

∑
n≥1

(
sup

ξ :‖ξ‖∞≤1

∫ ∫
ξσnω ◦ πσnω ◦ Fnωφω dμω dP

)1/q

.

By Definition 3.1, |ξσnω ◦ πσnω| ≤ 1 and Lemma 3.4, there is a constant C =
(Cφ,h,F ,βγ ,δ,p/γ ‖Kγ ‖Lp/γ )1/q such that the last expression above can be
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estimated as

≤ Cϕ + C(q−1)/q
ϕ

∑
n≥1

( ∫ ∫
|Pnω(φω)| dμσnω dP

)1/q

≤ Cϕ + CC(q−1)/q
ϕ

∑
n≥1

n−(D−2−δ)(p−γ )/(qp) = Cϕ + CC(q−1)/q
ϕ

∑
n≥1

n−(1+δ) < ∞.

Therefore g ∈ L(D−2−δ)(p−γ )/(1+δ)p(υ).
Projection for the QASIP. By lemma A.1, the QASIP for the RYT∑

k≤n
ϕσkω ◦ f kω ◦ πω − B̄ω

σ 2
n (ω)

= O(ne) Qω-a.s. for a.e. ω ∈ �

implies that there is a function H : RN × [0, 1] → C[0, 1], a uniform distribution U
on [0, 1] and a Brownian motion B̂ω := H((ϕσkω ◦ f kω ◦ πω)k≥1, U) defined on (�ω ×
[0, 1], μω × Leb[0,1]) such that for a.e. ω ∈ �,

Qω{((ϕσkω ◦ f kω ◦ πω)k≥1, B̄ω) ∈ (·, ·)}
= (μω × Leb[0,1]){((ϕσkω ◦ f kω ◦ πω)k≥1, B̂ω) ∈ (·, ·)}.

This implies that for a.e. ω ∈ �,∑
k≤n

ϕσkω ◦ f kω ◦ πω − B̂ω
σ 2
n (ω)

= O(ne) μω × Leb[0,1] -a.s.

Then Bω := H((ϕσkω ◦ f kω)k≥1, U) is also a Brownian motion defined on (M ×
[0, 1], υω × Leb[0,1]). Therefore, for a.e. ω ∈ �,∑

k≤n
ϕσkω ◦ f kω − Bω

σ 2
n (ω)

= O(ne) υω × Leb[0,1] -a.s.

and the extended probability space is Mω := (M × [0, 1], υω × Leb[0,1]).

7. Applications
We will apply Theorem 6.1 to each of the following RDS, by verifying conditions (1)–(6)
in Definition 6.1: i.i.d. translations of unimodal maps (satisfying the Collet–Eckmann
conditions) in [BBMD02]; i.i.d. translations of non-uniformly expanding maps (with
a slow recurrence to singularities) in [AA03, AV13]; i.i.d. perturbations of admissible
S-unimodal maps (satisfying the Collet–Eckmann conditions or summability conditions
of exponent 1) in [Du15]; and i.i.d. perturbations of random LSV maps with a neutral
fixed point in [BBR19]. Here i.i.d. means that the randomness of fσ iω only depends on
ωi ; then for any n ∈ N, fσnω is independent of (fσ iω)i≤n−1. In Definition 6.1, conditions
(1), (2), (4), (6.1) and (6.2) are satisfied when the RYT is constructed. Condition (3) is
also satisfied since {Rω = n} is constructed inductively in these papers (it only depends on
(fσ iω)0≤i≤n−1), that is, {Rω = n} only depends on ω0, ω1, . . . , ωn−1. Thus it remains to
verify condition (6.3):

d(f kω(x), f
k
ω(y)) ≤ CKσkωd(f Rωω (x), f Rωω (y)),
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and condition (6), that is,∫
m(x ∈ 	 : Rω(x) > n) dP ≤ Cρn ↘ 0. (7.1)

7.1. i.i.d. translations of unimodal maps. Condition (6.3) is due to the proof of Lemma
9.1 of [BBMD02, pp. 123]. Condition (7.1) is due to Proposition 8.3 of [BBMD02].
The probability measure ν := νε is defined as (2.1) of [BBMD02, pp. 82]. The QASIP
convergence rate is 1/4 + ε0 for any small ε0 > 0.

7.2. i.i.d. perturbations of S-unimodal maps. Condition (7.1) is due to Theorems 8.1.2
and 8.1.4 of [Du15]. We now verify (6.3).
(1) For S-unimodal maps satisfying the Collet–Eckmann conditions in [Du15], (6.3) is

due to Proposition 8.3.5 of [Du15].
(2) For S-unimodal maps on interval I satisfying summability conditions of exponent 1

in [Du15], we will verify (6.3) with K ∈ L∞(�), that is, there is a constant C > 0
independent of ω ∈ � such that

d(f kω(x), f
k
ω(y)) ≤ Cd(f Rωω (x), f Rωω (y)),

where k ≤ Rω = n, x, y ∈ Uω(z, n) := (f nω )
−1(B̃(δ))

⋂
Jωz,n and n is a θ -good

return time of (ω, z) into B̃(δ). Moreover, f nω : Uω(z, n) → B̃(δ) is a diffeomor-
phism, n− k is also a θ -good return time of (σ kω, f kω(z)) into B̃(δ), and f n−k

σ kω

is a diffeomorphism from f kω(Uω(z, n)) ⊆ Uσkω(f
k
ω(z), n− k) into B̃(δ) (These

properties can be found in Lemma 8.2.1 and Propositions 8.2.3 and 8.2.4 of [Du15],
and see Definition 8.2.2 of [Du15] for θ -good return times.) Equivalently, we will
prove (6.3) by showing

|Df n−k
σ kω

|f kω(Uω(z,n))| ≥ C−1.

By Lemma 8.2.1 of [Du15], for any z1, z2 ∈ Uσkω(f kω(z), n− k),

e−1/2 ≤ |Df n−k
σ kω

(z1)|
|Df n−k

σ kω
(z2)|

≤ e1/2.

Then for any z1 ∈ f kω(Uω(z, n)),

|Df n−k
σ kω

(z1)| ≥ e−1/2 |f n−k
σ kω

[Uσkω(f
k
ω(z), n− k)]|

|Uσkω(f kω(z), n− k)| ≥ e−1/2 |B̃(δ)|
|I | =: C−1.

The probability measure ν := νε is defined in §8.1.1 of [Du15, pp. 80]. The QASIP
convergence rates for these two RDS are 1/4 + ε0 for any small ε0 > 0.

7.3. i.i.d. translations of non-uniformly expanding maps. Condition (7.1) is due to
Proposition 5.1, Theorem 2.9, and §5.2.2 of [AV13]. Condition (6.3) is due to Proposition
4.9 of [AV13]. The probability measure ν := θε is defined on p. 687 of [AV13]. The QASIP
convergence rate is 1/4 + ε0 for any small ε0 > 0.
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7.4. i.i.d. perturbations of LSV maps with a neutral fixed point. Condition (6.3)
follows since LSV maps have derivatives no less than 1, that is, d(f kω(x), f

k
ω(y)) ≤

d(f
Rω
ω (x), f Rωω (y)). Condition (7.1) is due to Proposition 5.3 and (5.5) in [BBR19] with

α−1
0 > 6, that is, the QASIP holds for � = [α0, α1]Z where 0 < α0 < 1/6 and α1 < 1.

The probability measure ν can be different distributions; see §5.2 of [BBR19]. The QASIP
convergence rate is 1/4 + εD + ε0 where D = α−1

0 and ε0 > 0 is any small number.
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A. Appendix
LEMMA A.1. (See [Kal02, Theorem 6.10]) For any measurable space S and Borel space
T, let ξ , ξ ′ be random elements in S and η be a random element in T such that ξ =d ξ

′. Then
there is a random element η′ in T such that (η, ξ) =d (η

′, ξ ′). More precisely, there exists a
measurable function f : S × [0, 1] → T such that η′ = f (ξ ′, U) where U ∼ U(0, 1) and
ξ ′ are independent.

Indeed, to guarantee the independence above, we can simply extend the probability
space by multiplying ([0, 1], Leb).
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