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Abstract. We obtain quenched almost sure invariance principles (with convergence rates)
for random Young towers if the average measure of the tail of return times to the base
of random towers decays sufficiently fast. We apply our results to some independent
and identically distributed perturbations of some non-uniformly expanding maps. These
imply that the random systems under study tend to a Brownian motion under various

scalings.
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1. Introduction

A collection (22, P, 0, (Aw)we9> (hw)wecns (Fu)oes) is called a random dynamical system
(RDS) if the following statements hold.

(1) o :Q — QisaP-preserving transformation on a probability space (€2, P).

(2) (A, 1) is a probability space, called a fiber, at w € Q.

(3) F,: Ay —> Agy,iscalled a fiber map from A, to Agy,.

@) (Uwp)weq are equivariant probability measures, namely, for almost every w € €2,

(Fo)slo = How- (L.1)

In this paper we only consider an invertible o : Q — €.
A decreasing series 8, Y\ 0is called an almost sure mixing rate for the RDS if for almost
every (a.e.) w € , there is a constant C,, > 0 and a Banach space B,, C L'(A,,, jt,,) such
thatforany n € N, ¢, € By, Vorp € L% (Agne, tone), there is a constant Cy ¢ > 0 and

’ / ¢w . qla”(u o Fz d/“w - / ¢w d//Lw f \Ija”w dﬂa"w = C¢,\Pcw9n - 0, (12)

where ¢ (®, -) := ¢u (), ¥(w, -) 1= W, (-) are functions on | J,,.o{w} x A,. We say that
an RDS has a uniform almost sure mixing rate if ess sup,.q C,» < 00, and a non-uniform
almost sure mixing rate if ess sup, .o Co = 00.

A random Young tower (RYT), a random extension of Young towers [You99], is a pow-
erful tool to study the almost sure mixing rate for the RDS with a weak hyperbolicity. The
original one was constructed by Baladi, Benedicks, and Maume-Deschamps [BBMD02]
to obtain an almost sure mixing rate for independent and identically distributed (i.i.d.)
translations of unimodal maps. In recent years, the RYT has been extended and used
intensively. Du [Dul5] extended [BBMDO02] to a more general RYT and applied it to
1.i.d. perturbations of a wider class of unimodal maps. Li and Vilarinho [LV18] applied
the RYT [BBMDO02] to obtain almost sure mixing rates for i.i.d. translations of some
non-uniformly expanding maps. Bahsoun, Bose, and Ruziboev [BBR19] extended the
RYT [BBMDO02, Dul5] under additional assumptions (see (P6) and (P7) in [BBR19]) and
obtained an almost sure mixing rate for i.i.d. perturbations of Liverani—Saussol-Vaienti
(LSV) maps.

For an RDS with a uniform almost sure mixing rate, quenched limit laws have been
studied by numerous authors; see [ALS09, DFGTV18a, DFGTV18b, HL20, HS20,
Sul9a, Sul9b]. However, it is quite natural and more likely to have a RDS (e.g. the
RYT) that has a non-uniform almost sure mixing rate. To the best of our knowledge,
three papers [AA16, ANV1S5, Kif98] do make progress for such RDSs: Abdelkader,
Aimino, Nicol and Vaienti [AA16, ANV15] study an RDS with expanding average. Their
approach was inspired by the paper [ALS09], fixing a reference measure rather than finding
equivariant probability measures. However, their applications are limited; see [ANV15,
§7]. A different approach (assuming equivariant probability measures) is given by Kifer
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[Kif98]. He proved quenched central limit theorems (QCLTs) under various technical
assumptions. However, he remarks in Proposition 2.2 and Remark 6.5 of [Kif98] that
this method has to work on specific cases with explicit representations, even under the
assumption that (€2, o) is Bernoulli (that is, i.i.d. perturbations).

In this paper, we will give a different method to prove a quenched limit law, called
a quenched almost sure invariance principle (QASIP; see Definition 2.1), for the RYT
provided that the average measure of the tail of return times to the base of the RYT decays
sufficiently fast (see the precise statement in Definition 2.2 and Theorem 2.3). QASIP
convergence rates (see (2.1)) are also obtained. The QASIP implies various quenched limit
laws including the QCLT.

Finally, we mention the papers [CDKM20, Kor18] which obtained a sharp QASIP
convergence rate for deterministic Young towers (that is, 2 is a singleton).

The structure of the paper is as follows. In §2 we introduce conventions, which are
used throughout the paper, give the necessary definitions and formulate the main results.
In §3 we revisit the RYT and improve some inequalities in [Dul5]. In §4 we give several
technical lemmas. In §5 we present a proof for the QASIP for the RYT. In §6 we obtain
the QASIP for the RDS which can be modeled by the RYT. In §7 we apply our results to
some i.i.d. perturbations of some non-uniformly expanding maps. We end our paper with
a technical lemma in Appendix A.

2. Conventions, definitions and main theorems

Convention 2.1. We start with some conventions.

(1) C, means a constant depending on a.

(2) [E,, means the expectation with respect to (W.r.t.) i.,; IE means the expectation of PP.

(3) We do not specify the o-algebra of a measure space if it is clear from context.

4  ay, = O4(by) and a, 2, b, mean that a, < Cy4b, for a constant C, > 0 and all
n € N.

o) a,= C;an means that Ca_lb,, <a, < Cyb, for aconstant C, > 1 and alln € N.

(6) We define ¢, () := ¢ (w, -) for any function ¢ : | cqfw} X Ay — R.

Definition 2.1. (QASIP and coboundary) Consider an RDS (2, P, 0, (Ayp)wens (Uo)wes
(Fp)wen) and let A = Uweg{w} X A,. We say that a fiberwise mean zero function ¢ :
A — R (that is, f b ditey, = 0) has a QASIP if there is a constant e € (0, 1/2) such that
fora.e. w € , there is a Brownian motion B“ defined on some extension of the probability
space (Ay, Uw), Say A, such that

Z Dok © F£ - Bg)z(w) = O((n° almost surely (a.s.) on A, 2.1

k<n

where anz(a)) = I(Zkgn Pykg © Falﬁ)2 due < oo for all n > 1 and the constant in O(-)
depends on w € Q and x € A,,. e is called a convergence rate.
We say that ¢ is a coboundary if there is a function g : A — R such that fora.e. w € €,

Gow© Fy = 86w © Fy — 8w Hw-a.s. (2.2)
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Definition 2.2. (Random Young towers; see [Dul5]) A random Young tower (A, F) is
constructed by the following 11 steps.

(1

2

3)

“4)

®)

(6)

)

(®)

€))

Fix a probability space (A, B, m) and a Bernoulli scheme (22, P, o) := (SZ, vZ, o)
where v is a probability on a measurable space S, o is an invertible left shift on SZ
and B is a o-algebra of (A, m).

Assume that for a.e. w € Q, there is a countable partition #,, of a full measure
subset D, of A and a function R, : A — N such that R, is constant on each
Uy € Py.

Assume that R, (x) is a stopping time: if R, (x) = n and w; = a); forall0 <i < n,
then R,y (x) = n.

Forae.w € Q,1 € N, define A, 0 := A x {0} and the /th level by

Aps={(x.1):x € A, R —1,(x) > I}.

Define a tower at w by

Ay = U Ay

>0

A, is endowed with a measure m,,, a o-algebra B, and a partition Z,, naturally
from the probability space (A, B, m) and the partitions (P;-i,,)i>0.

For a.e. w € , a dynamics F, : A, — Ay is defined in the following way: if
Ro-1,(x) > 141, then Fy,(x,!) = (x,l +1); if Rp—i1,(x) =1+1, x €Uy, €
P, and (x,1) € Uy, x {I} € A, then F,, maps U,-i,, x {I} bijectively onto
Atnu,O-

Define F)} := F_ n-1, 0 F n—2,0- -0 Fyy o Fy, assume that the partition Z,, is
generating for F,, in the sense that v;iO(Fg)—lz
points.

Assume that for a.e. w € @, m,(Ay,) < 00.

Assume that there is an integer M € N, {¢; > 0,i =1,...,M}and {t; e N,i =
1,..., M} with gcd(#;) = 1 such thatfora.e. w € Q,all 1 <i < M,

»ie 18 @ trivial partition into

m(x € A: Ry(x) =t) > €.
Extend R, from A, to A, (still denoted by R,,). For any (x, /) € A,
Ry(x, 1) := Ry-1,(x) — [,
define an nth return time to A, inductively: for any x € A,
R%(x):=0, R!(x):=R,x),

R'(x) = R"' (o) + R (FR (),

URZTI(X)w
and define a separation time s, : A, X A, — N U {oco} by
sw(x, y) = infln : Fgo™ (x), F5*Y () lie in different elements of Z_xy v, }-

Assume that there are constants Cr > 0 and 8 € (0, 1) such that for a.e. w € Q2
and each element J,, € Z,, the map F(f 1y, and its inverse are non-singular w.r.t.

https://doi.org/10.1017/etds.2021.164 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.164

Random Young towers and quenched limit laws 975
m, and for each x, y € J,,

< Cp ooy (Fo® GLFSY (), 2.3)

‘JFf%x) |

JFE (y)

(10)  Assume that there is a constant C > 0 such that

/ m(x € A: R,(x) >n)dP < Cp,,

b
where p,, := e~ %" or n~—P for some constantsa > 0, b € (0, 1], D > 4.

(11)  Define a random Young tower (A, F):

A = U {w} x Ay, F(w,x):=(ow, Fyx).

weR

Remark 2.2. For a visualization of the dynamics of the RYT, see Figure 1 in [BBR19].

Definition 2.3. (Dynamical Lipschitz cones)

7—'; :={¢ : A — [0, 00)| there is a constant Cy > 0, such that for any J,, € Z,

. $o(x)
b0 (y)

either ¢, 17, = 0or ¢yly, >0, |lo

< C¢/3S“J(x’y) forany x, y € Jw},
where Cy is called a Lipschitz constant for ¢.

Definition 2.4. (Bounded random Lipschitz functions) For any p € (1, oo], define

7’?3(’17 :={¢ : A — R| there are constants Cy > 0, K, > 1 such that for a.e. w € Q,
K € LP(Q), |$po(x)| < Cg and [¢o (x) — ¢ (3)] < CpKunp*™),

where Cy is also called a Lipschitz constant for ¢.

THEOREM 2.3. (Quenched limit laws for the RYT) The following results hold for
(2, P, 0, (Aw)wes (Fo)we) in Definition 2.2.

(1)  Equivariant probability measures (1.1) (JLy)weq exist. Define a probability u on A
by

n(A) :=/,uw(Aw) iy 2.4

for any measurable subset A C A and A, = {x € A, : (w, x) € A}. Moreover, for
any fiberwise mean zero function ¢ € Tgfp, suppose that p, (see Definition 2.2) is
e—an’ orn~P for some constantsa > 0,b € (0, 11and D > 2+ (4p/(p — 1)). Then
the following statements hold.

(2) There is a constant 2 > 0 such that limn%oo(o,% (w)/n) = Ezfor a.e w € Q.

3 I 32 >0, then ¢ has a QASIP (see Definition 2.1). The convergence rate is
e =€y + 1/4, where €y € (0, 1/4) satisfies the following: if p, = e_‘”’b, then €y > 0
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can be arbitrarily small; if p,, = n~P, then €y can be any number in (ep, 1/4), where

1+361—26f—612 1+¢€ 1 4
€p = max { - , €1, - €1 =
b 4 4 Ty g e

) S
(p—1(D=-2)
(2.5)

@ I ¥2 =0, then ¢ is a coboundary (see Definition 2.1), and the function g in (2.2)
satisfies the following: if py = n~P, then g € LP~2=9WP=D/U+P(A 1) for any
sufficiently small § > 0 such that (D —2 —8§)(p — 1)/(1 + 8)p > 4. In particular,
if pn = e—an’ (which implies p, < n~P for n, D > 1), then g € L*(A, ) for all
k> 1.

Remark 2.4. In §7, p is chosen to be oo.

Remark 2.5. For any n > 1, define S;) := Zkin Pyky © Fa’j, and ™% on [0, 1]:
S® i — 1\ S? — 8¢ i —1 i
St"’wzz'—_l—}—n r— L ! izl for any t € l—,i and 1 <i <n.
Jn n Jn n n

Then the QASIP implies the following limit laws for the RYT: for a.e. w € €2, we have
the convergence (w.r.t. the probability 1,)

5@ o
L 54N, T, §™ -4 EB, limsup

n
Jn n—oo +/nloglogn

where B is a standard one-dimensional Brownian motion.

= X a.s.

Remark 2.6. For the RYT with p, =n~P, Du [Dul5] obtained a mixing rate (1.2)
0, = n~P7379 for any small € € (0, 1) when D > 4 (see [Dul5, Theorem 1.2.6]), while
Bahsoun, Bose and Ruziboev [BBR19] obtained a better 6, = n~P~1-9 for any small
€ € (0, D —1) when D > 1, under two more restrictive assumptions (P6) and (P7) in
[BBR19]. In this paper, we only consider the general RYT in [Dul5] for the following
reasons: first, the restrictive RYT in [BBR19] is a special case of the general RYT in
[Dul5] when D > 4; second, the assumptions (P6) and (P7) for the restrictive RYT in
[BBR19] are not satisfied by all RDSs in our applications. We believe that the conditions
D > 4in [DulS]and D > 2+ (4p/(p — 1)) in our Theorem 2.3 are technical only, and
the QASIP for the restrictive RYT in [BBR19] should hold for a smaller D.

3. Random Young towers revisited
LEMMA 3.1. (See [DulS5]) We have the following results for the RYT in Definition 2.2.

(1) There is a function h € "fg and a family of absolutely continuous equivariant
probability measures d, ‘= hydmgy, on Ay, such that for a.e. w € L,

(Fo)shho = How,  €SSSUp h,(x) < oo, hy >0, (3.1)
weR,XEA,

(A, F, ) is exact, mixing and ergodic,

where [ is the probability defined in (2.4) and h, > 0 for a.e. w € Q (that is,
melhy, =0} =0forae w e Q).
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(2)  There is an integer ly > 0 such that for any | > ly, there is a constant €; € (0, 1) such
that for a.e. w € Q, Myu(Apo N Fw_lAﬂzw,o) > €.
(3)  Define return times on | J weal®w) X Ay X A, alternatively and recursively:

¥, x) =0, T°(x,x') = RO(),

_ _ I T (x,x")

(0, x) =7 x) + R oy (Fo' X)),
o w

_ _ I/ T2 (x,x")

5, x) = x) + R ) (F 7 X),
a2 w

_ _ 1 ¢ (x,x")

P(x, x) =P (x, x') + R Ofgj(”,) (F, x, ...
o w

T(x,x") == min{7”(x, x),i > 1:

I8

(Fop X Fw)f"w(x’X/)(x x/) €A o4 X A o
’ ofi w0 o'i w0

Ty =0, T:=T% ...
) N . T / an—l(x’X/)w T (x,x") /
Tx,x):=T"(x,x)+T ((Fp X Fy) n-1 (x,x7)),

where ng (x) is the loth return time of x € A, to the Oth level.

Let Ly, M, be absolutely continuous probability measures on A, whose den-
sity functions are d/dm, d)' /dm € 7—‘; where d)/dm(w, ) := dAy,/dmy(+), d\'/
dm(w, -) :=dry,/dmy(-).

Then we have the following matching: there are constants C = Cgrp > 0,1 €
(0, 1) (independent of A, \') such that for a.e. w € £,

d(F)she  d(FL).N,

dmegng dmegng,

dmegng

[(F)sho — (Fp)shgl : =/ ‘

SCY F@N)TP <n<TY%). (32
i>0
@ Ifp, = e’“”h ornP wherea > 0,b € (0, 11, D > 4, then for any small § € (0, 1),
there is a constant C = Cg p s > 0 and a small o = o5 > 0 such that

/ (Mo ® my)(T{oa) > n) dP < Cn~P7279, (3.3)

Proof. See Theorem 2.2.1 and Propositions 2.3.1, 2.3.3 and 2.3.4 of [Dul5] for the proof
of (3.1). See Theorem 3.1.1 of [Dul5] for the proof of (3.2). The proof of Proposition
2.3.4 of [Dul5] showed that i, > 0 for a.e. w € Q2 only. It does not imply a uniform lower
bound inf,ecq xen, o (x) > 0. Actually, our proofs do not require such a lower bound.
Since p, < e‘“”b implies p, < n~P for D,n > 1, we consider on < n—P only and
refer to Corollary 7.1.2 of [Dul5] for the proof of (3.3). ]

LEMMA 3.2. Consider the RYT in Definition 2.2. Suppose that ¢ € Tgfp and p, = e—an’
orn—P wherea > 0, b € (0, 11, D > 4. Define a probability

K,Cyp +2C
dhy == o+ KoCo +2Co dile,
[ (@0 + KCyp + 2Cy) diie
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where Cy is a Lipschitz constant for ¢. Then for any small § € (0, 1), there is a constant
C = Cy,F s such that

f [(FD) sk — (FM)shte] dP < Cn=P7279), (3.4)

Proof. By (3.1) and K, > 1,

dry _ Cp(3+Ky) 3+ Ko
< ess sup hy, <
dmy, — Cp(1 +Kyp)  wen 1+ %Ky

Ch < 2Ch, (3.5)

where Cj, is a Lipschitz constant of 4. For any x, y € A, using the inequality log z <
z— 1 when z > 1, we have

dry/dm,(x)

. b (x) + KyCy + 2Cy
& Do/ (y)

8 Dw(y) + KuCyp +2Cy
|po(x) — G0 (¥)]

[P0 () + 7<.qub +2 C¢|
C¢7(wﬂs‘“(x’y)

100 + KoCy +2Cy

hw(x)
= ‘ °% 70

< Cppt)

+‘lo

< Chﬁsw(x,y) +

S (G DY,

Therefore, dX)/dm € T/;r with a Lipschitz constant 2C;, 4+ 1 where dA/dm(w, -) :=

dry/dmy,(+). By (3.2) and (3.3), there are constants C’ = Cgrs >0, C = Cg,rpn >0,
o = a such that

o
/ [(F)sho — (F)sito] dP < C / D e ® )T <n < Tf%,) dP
i=0

00
:é/ Z ri()\w®ﬂw)(7}w§n<]}ﬁ1)dﬂb
i=[n%]
[n%]—-1
+C/ > F G ® (TP <n < T2) dP.
i=0

By (3.5) and r € (0, 1), we can continue the estimate above as

Crin®l
<

~ o Pyalall
Can ] Q,Chgc < Cn_(D_z_(S)
1—r pbD—2-6 —

+2C3C /(mw @ my)(T(a; > n) dP <

1—r
where the constant C depends on o, 6, 8, F, h. O

Definition 3.1. (Random transfer operators) P, : L' (A, tte) = LY (Agw, tow) is called
a random transfer operator for F,, : A, — Ay, if for any ¥, € Ll(Aw, o), Yoo €
L®(Asw, How)

/ Vo Yowo Fpdiny = / Po(Yo)Yow ditsw.
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LEMMA 3.3. (Properties of random transfer operators) Consider the RYT in Definition 2.2.
The random transfer operator P, for F, has the following expression: for a.e. w € €2,
Yo (Mho(y)

(P @) = () 30 =R i L ). (3.6)
Fo(y)=x Y

where J F,, is the Jacobian of F, w.r.t. m, ¥, € Ll(Aw, Ue). Moreover, for any i, k > 0,
any measurable functions V, Y on A, the following results hold for a.e. v € Q.
If W € L*(A, ), then

| Po¥oll Lo (uge) < 1WollLoo(uy)- 3.7
IfV e LY(A, ), then
) i i+I\—1gp . _ . . i+1 .71
By, (Wi o0 FLIFLY B i1, ] = [Pyiyy, (Wi )]0 FUTYin LY (14), (3.8)
F), (Y, d ‘
M =PI (¥,) in LI(MJiw)' (3.9)
ditgig,
IfW, Y € L*(A, ), then
PU (Wi, 0 Fl - o) = PY, (Wyi,, - PL(Yw)) in L' (iyite,) (3.10)

where P’ = -0 Py o P,

oi=lw ©

Proof. By (3.1), hyy > O for a.e. @ € Q. Similarly to Ruelle-Perron—Frobenius operators,
it is straightforward to verify (3.7)—(3.10) from Definition 3.1. To verify (3.6), let ¥, €
LY (Aw, ho)s Tow € L®(Agw, ow). By Definition 3.1,

/P(\ij) Tawdﬂaw—/\p “Yowo Fydiy = Z / Wy Towo Fopdie
IveZy

Z / dwOFw|1kdmw'

IreZy

Since F,, is injective on Iy € Z,, we can continue the calculation above as

-1
dmg o F‘”|lk

= / (Woho) 0 Folp! + Yoo——dmga.
IeZo Foo(Ix) Mo w

Since hso, > 0 for a.e. w € 2, we can continue the calculation above as

. dmwon|Ik1 O
(Wophy) o Fw|]k : Tow—hgw dilew
Fu(I) d

LeZ,, Mege
(Voho) _
:/ Z 1[: ) * JFw OF | hO.C})To'w d,l,ng.
[kEZa)
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Therefore ZIkGZw 1r, 0 (Wohe)/JFy o Fy, |1 o, 1sin L'(it4e), finite almost every-
where on A, and equal to P, (V) in L! (Uow)- Observe that

W, (he(y) Y, w)
( ) Z J;); (y)y Z 1Fw(1k)(x) oF, |1k (x)h; (x).
Fo(y)=x keZo

Thus our lemma holds. O]

LEMMA 3.4. Consider the RYT in Definition 2.2. Suppose that p, = e~ or n= where
a>0,be(0,1,D>4and ¢ € ¢§p~ Then for any small § € (0, 1), there is a constant
C :=CyChrps.p Kl p such that

P£<¢w - / Dw de)

Proof. Letd)y := (¢pp + KopCy + 2C¢)/f(¢w + KowCy +2Cy) dliy dire. By (3.9) and
the Holder inequality,

E/ P£<¢w_f¢w dﬂw)‘dﬂa”w

= / '/(d’w + 2C¢> + C¢7(w) dite
< 3C4E|(FM) ke — (F)utto] + CoEK | (F™) ke — (FM)iito|
< 3CHRI(FY) ke — (FDattol + ColKIpEIFD )ik — (FD)ipin P17

E dpgn, < Cn—(P=2=9=D/p),

: |(F£)*)\w - (Fg)*ﬂw| dP

where 1/p’ =1—1/p. Using [(F})shre — (FM)apte| <2 and (3.4), we continue the
estimate

< 3CyChrpon~ P72 L2 =D/ Co| K HEI(F) sk — (F1) i 1VP
< 3C¢Ch’F’ﬂ’5n*(D72—5) + 2(P’71)/P'C¢||r](||pcli,/lf_”ﬂsanf(D7278)/P/
< C¢Ch’F,ﬂ,5’p“7(”pn—((D—Z—S)(P—l)/P)’

where the last inequality is due to 1/p’ = (p — 1)/p. O

4. Several lemmas
LEMMA 4.1. Suppose that WV € LY9(A, n), g > 2. Then for any § > 0, for a.e. w € 2,

[ W0 E219 dit = Oy, [ War© FIP dit = Oug 7',

Wong 0 F1(xX) = 0prs®T/)  as x € A,.

Proof. By Birkhoff’s ergodic theorem, lim, o} ;- [ |Wyi, 0 Fil9dp,/n) =
E [|Wy,|? djug, < oo forae. w € Q. Thus [ [Wgne 0 F21| djiy, = Oy q(n) and

2/q
/ [Wone 0 Fil* dpte < ( / [Wony 0 Fiol? duw> = O04pq(n*9).
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Since [ [Wong 0 FI/n @094 dpuy, = 04 (n/n*F0) = 04 q(n=1F%), by the
Borel-Cantelli lemma we have Wgng 0 F2(x) = Oy x5 @Dy as. x € A,,. O

LEMMA 4.2. (Martingale convergence rates) Suppose that W € L1(A, n), g > 2, and

(Wony o F2)u=0 is a sequence of reverse martingale differences for a.e. w € Q. Then for
any § > 0, for a.e. w € L,

ZwainFLf)

i<n

= Ow(\/;l)» Z q’loiw ° Fci)(x)

L9 (pe) i<n

= Ox,w,q,é(n(1/2)+(l+3/q)) as. x € A,.

Proof. By the Burkholder—Davis—Gundy inequality and Minkowski inequality, there is a
constant C,; such that for a.e. w € €,

12
Z\IJU;woF(L <Cq <Z\I/§iwoF(f)>
= L9(10) = L9 (1)
_ 172
= Cq( Z ||‘p§iw o Fé)||Lq/2(Mm)>
i<n
1/2
=C, ( > ||W§iw||m/z(,%,.w)) = Ouq(n'’?),
i<n

where the last equality is due to E[W2|1a2(,,) < (B [ |¥l?du,)*? < 0o and
Birkhoff’s ergodic theorem. Then for any 6 > 0,

Zi<n Vie © Fc{) i ni/2 —(1+3
/ i/ dpy = Ouwg <m> = Ouwg(n ),

n(1/2)+((1+8)/q)
= Z Wiy, 0 FL(X) = Oy g s(nV/PHTATVDY g x e A,

i<n

where the last equality is due to the Borel-Cantelli lemma. O
LEMMA 4.3. Suppose that € L1(A, p), g > 2, satisfies

IP Vol Laapm = Ogy ™) withd > 1.

Then for any § > 0, for a.e. w € €,

Z Vi © Fci) = O(U,l/f,q (n1/2)’

i<n L1 (ue)
Z Voig © Fé)(x) = Ox,w,q,&,(//(n(1/2)+(1+5/q)) a.s. x € Ay.
i<n

Proof. Define g, := ) ;- P;,iw(lﬁa_;w). This is well defined because

<Y NP Womi) oo = 0q,¢< > id) < 00.

Li1(A,un) i>0 i>1

PriWVoi)

i>0
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By Lemma 4.1, [gone © F [l 14(11) = Ow,g(m'/9). Let Wy := Yoy © Fiy — o © Fop +
8w- By (3.10) we have for a.e. w € €,

PV, = w(WowOFw)_Pw(gowOFw)""ngw:wow_gaw'i‘ngw

=Yow— Y P Womigy) + Y PF (¥,-1,) =0.

i>0 i>0

Then by (3.8), E,, [Wyip 0 FLIFLNY 1B 1,1 = [Pyiy(Wyi,)] 0 Fitl =0, that is,
(Wgig, 0 F(i))izo is a sequence of reverse martingale differences w.r.t. ((F(f))_lgo.iw)[zo.
Then by Lemma 4.2, we have || Zifn Wi, o Fcf)||Lq(Mw) = 0,(n'/?). Therefore,

> Ygipo Fl

Z W i-1, 0 Fcf)_l + gone © Farj — %0

1<i<n L9 (per) 1<i<n L4 ()
<| > w0 F! + lgomw 0 Fl |24
1<i<n L1 (uew)
+ 18wl L4 (1)
= 0,('?) + 0,(n"?) + 0,(1) = 0,(n""?).
Then for any § > 0,
2izn Yoin o Fy | du = O ni? N\ _ O (1= (149
n/2 (g | He = Yeal Jgpyiys | T Yea ’

= Z Vi © Fi(X) = O g5y nVPTATIDY s x e A,

i<n
where the last equality is due to the Borel-Cantelli lemma. O

LEMMA 4.4. (Regularities) Suppose that ¢ € Tgfp with a Lipschitz constant Cy. Define
D, (w, ) = (Plpo,) () for any n € N and Cp,r := Cp + eChCr 4 eCntCrCy,. Then for
anyn € N,

—4+C . . .
D, € 7’73(375 +ohr with a Lipschitz constant Cg.

Proof. By Lemma 3.3, || P} ol Lo (u,n,) < 00. Suppose that x, y € Agn,,; for some [ €
N and s5n4(x, y) > 0. Then by (3.6), we have

Plou@) = hly () Y bu(@ho(@)/TFi (),

Fij(zx)=x

Pioo(¥) =hl, () Y. $u@)he(zy)/TFi(zy),

FJ3(zy)=y
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where z,, z, are in the same element of \/’;:0( F)y~1 Zyi,- Therefore,

Z Do (23 o (2x)

|P)dw(x) — Pl (y)| = JF"(z,)

hono () p,(S_

1 Z ¢w(Zy)hw(Zy)

hone(y) Frzn=y JFj(zy)

1 Z (Pw(zx) — ¢a)(zy))hw(zx)

hg"w(x) F' (z,)=x JFarﬁ(ZX)
ho(zx) ho(zy)
+ 2 ""“(Zy)(fmzx)hgnw(x)_JF£<Z>~>ha"w<y))'
Fl(zy)=y
hw(Zy)

< C(bq(wﬂsa"m(x,}’) + C¢ Z
Ff)(zy):y

o et )‘1
JFarﬁ(Zx)ho'"w(x) JF£ (Zy)ho”w(Y)

< CpK 0 0™ + Chp)anafo ™)

JF} (Zy)ha”w(y)

where the last inequality is due to |1 — z1z2z3| < [l — z1]| + |z1lll — z2] + |z1llz2l11 —
sl =1 =z + "1 — ] 4 Ml RlT — 23], 0 € 7,7 and (2.3). O

5. Proof of Theorem 2.3
The equivariant probability measures (14,)ne have been obtained in Lemma 3.1. Thus it
remains to prove the coboundary or the QASIP and its convergence rate. In Theorem 2.3

we suppose that ¢ € ?‘gfp, [ ¢ dpw =0, py =n=P for some D >2+4p/(p—1).

—anb

In particular, p, = e is a special case of p, = n~P when a > 0,b € (0, 1] and

D,n> 1.

5.1. Martingale decompositions.
LEMMA 5.1. (Decompositions) Let § > 0 be small such that (D —2—368)(p—1)/
G+ 1p >4 and

8w = Z P;*iw«ba*iw)’ g(@, ) == gu ("),

i>0

Vo = Pow © Foo — 860w © Fo + 8w, V¥ (@, ) :i= Yu ().

Then ¥, g € L(D_z_‘s)(”_l)/(‘s"'l)p(A, w) C L4(A, W) and for a.e. w € <2,

Vo €ker Py Y GpinoFi= Y Waity0 Fo '+ gang o Flt —go,  (5.1)

1<i<n 1<i<n
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namely, this is a martingale decomposition where (i, o F, cl(;)iZO are reverse martingale
differences w.r.t. (F.)~'B:,)i0 for a.e. ® € Q. Moreover,
/ 8010 0 FpI* djtey = 0 s(n* 1 FOP/P2200=D) g0 ) € @,

8o"w © FZ(X) = Ow,x,é(n(2+8)(1+5)p/(D_2_5)(17_1)) as.x € A,.

Proof. Let g :=(D—2—-68)(p—1)/(14+68)p >4 for a small § > 0. By Lemma 3.4,
(3.7)and ¢ € L*®°(A, 1),

lgllLaam = Z 1P Boie) oA

i>0
; Y4 -y
sC¢+Z[E / |P;_iw<¢g-fw>|duw} cu=v
i>1

-1 . (D=2— —
<Cy +Céq 4(CyChor psplKllLr) 4 Z’ (D=2=8)(p=1)/(PD) _ .

i>1

Then by Lemma 4.1,

/ 18070 0 Fi* ditey = O s (*!TOP/P=2200=D) g6 ) € Q,

Zoney 0 FI(X) = Oy s (nHOUIFIP/D=2=0=Dy 5 g x € A,

W € LI(A, p) follows from g € L9(A, p) and ¢ € . By (3.10),

PoYo = Pu(@pow 0 Fo) — Pu(8ow © Fo) + Pugo = Pow — gow + Poue

_ i . i+1 . _
- ¢oa} - Pg—iaw((bg*tgw) + Z P(;—iw((bo*’w) =0

i>0 i>0

for a.e. w € Q. By (3.8), E,,, (Wi, 0 FLI(FIFYTIB i11,)) = [Pyiy(Wgin)] 0 FiFl =0,
that is, (¥, 0 Fi,)izo are reverse martingale differences w.r.t. ((F(L)_IBin)izo. O

5.2. A coboundary.

LEMMA 5.2. Let n?(w) = JQich Voin © F)?due, 2% :=E [ ¥2 du, and consider
any small § > 0 such that (D —2 —68)(p — 1)/(6 + 1)p > 4. Then for a.e. w € L2,

O’nz(a)) _ 775_1(0)) — Ow’a(n(1/2)+((1+5)P/(D—2—5)(P—1))’

(5.2)

2 2
T GOt GO

n— 00 n n—00 n

»2.

If ©% > 0, then there is a constant C! € [1, 00) such that 17,2! (w) = C(’Uiln; if % =0, then
¢ is a coboundary (see (2.2)), and the function g in (2.2) is in L(P=2=9@=D/U+3)p (A ).
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Proof. Letq:=(D —-2—-68)(p—1)/(1+6)p > 4 for a small § > 0. By (5.1) and the
Holder inequality,

2 2

0',12(60)—7]5_1(0)) Z/ Z¢0inFZ) dﬂw_/ ngiqwoFi;] dite

i<n i<n

- /(gana)OF"r’l — 80) | 80w © Fy, —gw-}-ZZl/fg,-qwoFéf)—l dpte

i<n

= /(ga”a)OF(Z _gw)2 dﬂw+2/(ga’lw0F£ - 8w) ZWai_leFci)il d:uw

i<n

3 Vi g0 FL

i<n

< / (8000 ' — 800 ditr + 208070 0 F — gl 200

Lz(ﬂw)
Using Lemmas 5.1 and 4.2, we can continue the estimate: for a.e. w € €2,

Z Wyio1, 0 Fi=1
i<n Lz(,uw)
= 005 (171 + 045 (n'14) 0 (1) = 04 5(n'1H112).

= 04,5(n*9) + 0, 5(n'4)

Using results above and applying Birkhoff’s ergodic theorem to nﬁ (w)/n, we have

2 2
T GO e CO
n— 00 n n—oo n

/ wi duy, = ¥? forae. w € Q.

IfF22=FE f wf) diLy, > 0, then there is a constant C;) > 1 such that
n2(w) = nC/E!, (5.3)

If 22=E [¢2duw=E [($owo Fu — 80w © Fuo + 80)* ditwy =0, then for ae.
w e Q,

Pow O Fo — 86w © Foy + 80 =0  pgp-as.

which means that ¢ is a coboundary. By Lemma 5.1, g € LY(A, w). O

5.3. Approximations by Brownian motions. From now on, we assume (5.3), that is,
Y2 =E [¢2du, > 0.

LEMMA 5.3. (Approximations for martingale differences) Let € € (0, 1/2), y := 1/(4e).
Define

Ro(w) =Y Yoo to 20, / R2 () dite,

izn ”izy (@)
N2
775(0)) = f < Z Yeig © F;) die.
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Then for a.e. w € R, there is a constant C,,, > 1, a probability space (A, Qu) (Which is
an extension of (Ay, L)), a Brownian motion B® and decreasing stopping times t{* ~ 0
defined on A, such that

52(w) = CELoy V(@) = CELn Y (@) — 0, (5.4)
R.(w) = B,
Moreover, if
@ _ 52 (w) = 082 ¢ (w)) as. (5.5)
then we have
> Vaiwo Fo— B, — 0(I/HHBe=2E=e /)y ¢ (5.6)

i<n
where the constants in O (-) of (5.5) and (5.6) depend on w, € and x € A,,.
Proof. Equation (5.3) implies that there is a constant C,, > 1 such that for all n > 1,
M@ =Cgln,  np@) = Cyln(). (5.7)
Since (Y4i, 0 F, (f)) i>1 are reverse martingale differences, it follows that by (5.7),

2 o Fid w 2 (W 0 Y w
aﬁ(w)zsz‘”;y w Ao _Zn,( )4yn, 1 ( )ff g — n,{_lz( )’
n;" (o) () n_ (@) 14

i>n i>n

2 4y
83(w) = C, ZVZMECZZV /Oo Y dx = €22 '7n 1 (w),
i>n n; yl(w) n_1 (@) 1 -2y

which implies (5.4) using (5.2) and (5.3). Since (i, © Fcf)),-zl is a sequence of reverse
martingale differences and R, (w) is (Fg)_lBgnw—measurable, we have that (R, (®))n>0 1S
a reverse martingale w.r.t. ((F, Lﬁ)_lBgnw)nZo. Therefore, by Theorem 2 of [SH83], there
is a probability space (A, Q) (Which is an extension of (A, 1)), @ Brownian motion
B®, a decreasing family of stopping times 7;” N O defined on A, a decreasing family
of o-algebras G 2 o{rl.“’, (Fcf))’lﬂaiw, i > n} and a constant C,, > 1 such that for any

qg=>1,
Ry () = B%, (5.8)
w [9) 10) _ 1//2 —1
Eq, [t — 1,16, 1 = Ey, ) B a1, (5.9)
nn
Fn n+1y— +1 q
Ep, | 2@ [(FIY 1B iy, | = CEEQ, [(22 — 22 )G, 1 (5.10)
77n

Note that in Theorem 2 of [SH83], 0{ri“’, i >n} C G only, but (5.9) and (5.10) still
hold after conditioning on o {G?, 7/, (F, i )_ i I = n}. Therefore we assume without
loss of generality that G’ 2 o {t/", (F’) '8 . . i>n}).

olw>
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2 .
By (5.8), (B;‘i’w — B:;(il)nl.y(w) = VYyi, o F.. Then

D Voiw© Fy= ) _(BR@) — By (@)
8y ()

i<n i<n

> Voiwo Fy = Rw|=

i<n

Z[(Bw o (Bgié(w) - 62 (w))]n’ y(w)‘

i<n

D (Bt = B )0 @) = @) ~ (Bl — By (w))n,,y(a»‘

i<n

Since Brownian motions are locally Holder continuous with exponent (1 — €2)/2, we can
continue the estimate above: for a.s. x € A,

2
Zoex [ Y17 = @) P (@) — i (@)

i<n
o 2 (1—€%/2. 2y
+ |Tn+1 8n+1(a))| ' (o) |
Using (5.5) and 82(w) 3y n _ ] ¥ (w), we can continue the estimate above: for a.s. x € A,

2 2 2(1 —e2 2
Soex [Zw 9 @) =2 (@) — 7 (@) + 18,4 @) ”/277/(«))}

i<n

2—4y)(1+€)(1—€2)/2 2
Zoew [an L IHOEOR () (0 ()

i<n

2 2—4y)(1+e)(1—€2)/2 2
— n yl(a)))+ ( y)(A+e)(1—€%)/ (a))nny(a))}

2y
' (@) )
R [/ (@4 1+0/21)(1=€/2) g o 2y +Q-dy) (41— )/2(60)}
0
= Ow ¢ x(nV—(ZV—l)(l+e)(l—52)/2) — Ow . x(n(1/4)+(36_263_62)/4)
where the last two equalities are due to (5.7) and y = 1/(4e€). O

5.4. Proof of the QASIP for martingale differences. To prove the QASIP (5.6), we will
verify (5.5) in Lemma 5.3: for some € € (0, 1/2),

82(w) = 0829 (w)) as.forae we Q.

LEMMA 5.4. (Stopping times decompositions) The following decompositions hold:

¥ — §2(w) := R. () + R/ (w) + S, (), (5.11)
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where

y2, o F V2, oFl
S (@) ;:Z < _]EM)L)’

i>n iy(“’) 4y( )
¢2 i
i>n n; (w)
wz F! 1//21' OF(L
R (w) := ZEQM[— (Fh=lg ] — g 9
! P 0 () ’ 0 (@)

R'(®), R"(w) are reverse martingales w.r.t. (G{)i=0 and (F))™'8,:,)i=0 respectively.
And for a.e. w € €,

Rl () = 083 (w)), R!() = 0> *(w)) as.

where the constants in O(-) depend on w,e and x € A, and € :=2p(1 + 8)2/
(p — 1)(D — 2 — §) for a sufficiently small 6 > 0 such that € € (0, 1/2).

Proof. Tt is straightforward to verify the decompositions. We will now prove that
(R, (@))n>0, (R (w))n>0 are reverse martmgales w.rt. (G7)i=0 and ((F‘) 1B(,,-w),-zo,
respectively. It is obvious that Rn (w) and Rn (w) are measurable w.r.t. (G);>o and
(F g)_lBgnw, respectively.

We now study R/, (w). By (5.9),

]EQIU [R (w) |gl’l+1

V2,
ZEQw(T}?_TIflU+1|gZ)+I)_EQw{EQwI: 4)/( ) Fn+l) IBO-)H»I g’(fl)+1
Mn
Ilfzi o F} il —
+ Z ]F‘Qw(tiw - Tl'aillg;ll)+]) _EQw{EQw[:”A].i—(Q))w (Fclu+1) 180i+1wj| gfl)+l}
i>n+1 i
wZ n
M (@)
Vo, o Fi -
_EQ‘”{EQM[W IBGn+lw QZJ_H
wZ i
+ ) EQa)[Tiw_Tia-)i-l|g;)+l]_EQw{EQw|:y— ot }g20+1}~
i>n+1 n; ()

: n+1+iy—1 X 10) .
Since (F)} )" Biuiiti, S GY 1 and n+1+l is §n+1-measurable for any i > 0, we can
continue the calculation above as

Varw © Fy | nst i1 V2,0 Fll 1
ZEQw|: ny(w) (F ) Bo.nJrl :| EQ(»[ )’(w) (F ) Bo-n+l :|
+ Yy 7 -E [—wz Fe (Firh™'s ]—R’ (
Qo 4y yitly | = Rypq(@).
i>n+1 n; ()

Therefore (R, (w)),=>0 is a reverse martingale w.r.t. (G¢);>o0.
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We now turn to R/ (). Since ((F")~!Byn,)n>0 is a decreasing filtration,
Eq, [R!(@)|(F) 1B, i1,)]
Y2, 0 Fl I—1 V2
= EQw[JQ)—w Ft )Y B w1, | — ]EQm
(@) | e 4V ()
w2 i w2 i
+Eq, { > [EQw T W

i>n+1 ;" (@

Fn+1)_1BO-n+l i|

©\FFYIB, 0, ] _

(Fn+1) IBO-H+1 }

= RnJr] (w).

Therefore (R) (w)),>0 is a reverse martingale w.r.t. ((Fcf))_lBaiw)iZo.

We now estimate R, (w). Let g:=(p—1)(D—-2-68)/2p(1+38) >2, €:=
2p(1+8)2/(p—1)(D—2—-8) € (0,1/2) for a sufficiently small § > 0. By the
Burkholder-Davis—-Gundy inequality and Minkowski inequality, there is a constant C,
such that

IR, (@)l 24(Q.)

1#2 Fi 2,11/2
<Cq| D |#" ~ 7% —Eq, [T (F™h” ]Bai+1wj|
imn n; (@) L9/2(Qy)
w2i Fl 2 1/2
<C, < ol = - EQ(D[ L (Fi+Ty~ lﬂ,mw} )
i=n l n;” (@) L12(Q.)
7 Z 1/,4 Fi 1/2
< 2Cq< |T-w — +1|2 +EQ&)[8— IBUH—I :| ) .
il B " " () L97(Qu)

Using (5.10) and the fact that (A, Q) is an extension of (A, i), We can continue the
estimate above as

¥ o Flllpan 12 W2 o Fillpae 12
< Cw,q(z olw wllL9 (Qm)) _ C@q(z olw wll L4 (Mw)) (512)

8 8
izn m; (@) izn n; (@)

for some constant Cy, 4 > 0.

i 2

Let Ky (w) = Zign [ 1»/j::iw °© Fclu ”L‘J/z(uw)- Then E|| Iﬂi ”LQ/Z(M(D) = (Ef wwq d,ua))z/q <00
due to Lemma 5.1 and 2/g < 1. By Birkhoff’s ergodic theorem, for a.e. w € €2, there is a
constant C,, > 1 such that K, (w) = Cfln for all n € N. Using (5.3) and (5.12), we have

K; —K;_ 1/2
IR, (@)l L4(Qu) < cw,q( 3 Kit@ l(w))

i=n ”?y(“’)
(@) M (@) — 07 (@) /2
<C, AT ¢ it )
’q( () ; @ ' ()

12
n o0

/ —(16y—2/8y) ! —@y-=0/2
= CoqvCor <n4V " /nﬁy(w) ! dx) = Coqr™
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for some constants C,,,, C('U,q,y > (.Recall thatg := (p — )(D —2—6)/2p(1 +§) > 2,
€:=2p(1+8)2/(p—1)(D—2—38) and y = (4e)~ . Using (5.4), there are constants

Coq.y> Ch ., > 0such that

.q,y
—(4y-1/2 2y—-1(1
R (w) || . n—@r=1/2)q -c nCv—=(+e)q _c —(149)
83[4—26((1)) L9(Q,) — Twqy 0,’514‘5)(2_41/)‘] = @y n(4y—1)/2‘l ey ’

By the Borel-Cantelli lemma, we have R/ (w) = O (83"‘2E (w)) a.s. The estimate for R/ (w)
is similar. 0

LEMMA 5.5. (Estimates for S, (w) in (5.11)) Define S,(w):= ZiSn(wgiw
/ ‘ﬂiiw o Fidue), vy = (4€)~\. Suppose that

2—(4y—2)e

Sp(@) = O(ny (@) =0m“TV%)  p,-as.

Then S, (w) = 0(83(1+€)(w))uw-a.s. All constants in O(-) here depend on w, € and
x € Ay

Proof. Since S}(w) == Y, (W2, 0 Fi =By w2 o Fin; ¥ (), we have that

Si(w) — Si— Su— _
Sy = 3 2 S @) @) S 07 (@) — 17 @),

7 =3
i>n Uiy(w) nny (w) i>n

Using (5.7), we can continue the calculation above as

2—(4y—2)e 4y 4y
O (n (@) 2-(4y—2 Ny (@) — ;" (w)
— + Z 0(’7,+1( 14 )E((l))) i+1 14
4y
M () i>n T]l+1(a))
(0.¢]
— O(n;(47—2)(1+€)(a))) + 0( f4y( )x—((Sy—2+(4)/—2)6)/4V) dx) — 0(83[(1"!‘5)(60))
" (W

where the last equality is due to (5.4). All constants in O(-) depend on w, € and
X € Ag. O]

We will use Lemma 5.5 to estimate S, (w) to control S/, (w). Using ¥, = ¢oew © Fopy —
oo © Fyy + g, we have

D V2, 0 F = (i 0 Fly = 8gin 0 Fiy + gyic1, 0 Fi)?

i<n i<n
=Y 92, 0 Fl g2, 0 Flt g2, 0 Fol 4 20,1, 0 Figgioi, 0 Fi~!
i<n
—2¢4i, © ggwoF zgai—leFci_lgainFcf)
= Z ¢U,-w o F(i) — gi,-w o F’ + gol Lo Fé,_l +2¢,i, 0 Fi)gai—lw o Fé,_l
i<n

+2g% 0 FL = 26,10 Flgyiy 0 Fi — 28,114, 0 Fi g, 0 FL.
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Using ¥, = ¢ow © Fy — 80w © Fu + 8w again, we can continue the calculation above as
:Z¢§iw0Fci_giiw°Fl+go' lwoFl ]+2¢aw g(f" OFLi;]
i<n
- 21//Ji*1w ° Fi_lga‘a) ° Fi
=Z¢§ia)OFl gan an+gw+22¢oa) go-l lgy © F(f)_l

i<n i<n
§ : ) i—1_ i

_2 woz—]wOFw ga.leFw.
i<n

Then we have

Su1(@) =Y (@2, 0 F)—Eu,¢%, o Fl)

i<n

+2)° (¢aw 801450 FL! /qﬁm Qg ity 0 Fi~ ld,uw>
lfn

_22<wai1woFl grerFl /%z Iy © g(erF(Ldl’Lw>
i<n

— 8oy 0 Flb + g0 + B 8on, 0 Fis — By, g0

=2 @, 0 Fo—Eu 83,0 F) (5.13)

i<n

+2 Z(% 00 Figoi-1,0 Fy! f@, 00 Fogyic, 0 Fi7! duw) (5.14)
l<n

—2 Vim0 Fi ' ggi, 0 F) (5.15)
i<n
2 w ° F£ + ]El/fwg(%'"w © FS + g(%) - Eﬂwggz) (516)

where (5.15) is due to
B Voi-1o © Foy 8510 © Fyy = / 8ot © Foly, Wigim14, © Fy~ 1(Fy) ™ Byi) ] dpt = 0.
To estimate S,,—1 (w), we will estimate (5.13), (5.14), (5.15) and (5.16).

LEMMA 5.6. (Estimates for (5.16)) For a small § > 0 such that € := max{2(2+6)(1+38)p/
(D-2-8p-—-1)— 1,01 o0, 1/2), we have for a.e. w € L,

(5.16) = O(n“tV2)y  py-as.
where the constant in O(-) depends on w, € and x € A,,.

Proof. By Lemma 5.1,
(5.16) = wa8(n2(2+5)(1+8)P/(D—2—5)(P—1)) + Ow6(n2(1+5)P/(D—2—5)(17—1))

+ Opx (1) = Opy s (nTD/2)

where 22+ 68)(1+8)p/(D—-2—-8)(p—1) <e—+1/2 for a sufficiently small
> 0. O

https://doi.org/10.1017/etds.2021.164 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.164

992 Y. Su
LEMMA 5.7. (Estimates for (5.13)) For a small 8§ >0 such that € := p(1+ 8)%/
(p—1D(D—2-256) €(0,1/4), we have for a.e. w € L,
(5.13) = 0(n“tV/2y -
where the constant in O (-) depends on w, € and x € A,.
Proof. Let q:= (D —2—8)(p—1)/(1+8)p. Since ¢ﬁ) - EM(4)¢(2.) e L®(A, )N

Tgfp C L9(A, ) with a Lipschitz constant 2C£, there is a Cy 4, p.n,r > 0 by Lemma 3.4
and (3.7) such that

1/q
(E / P (@2 — B, @2 duw)

1/q
< @Ccj)aDi (E f | P2 (b5 — Epu, o) duw)

< C¢’q’p’h’Fn—((D—2—3)(1?—1)/qp) = CpygphFl~

By Lemma 4.3, for ae. w € , (5.13) = Oy, s(nV/PHA+D/Dy = g, s(n€+D/2)
Uew-a.S. O]

(1+8)

LEMMA 5.8. (Estimates for (5.15)) For a small § > 0 such that € := 2p(1 + 8)2/(17 -1
(D —-2-16) €(0,1/2), we have for a.e. w € L,

(5.15) = 0(n“tV%)  py-as.
where the constant in O (-) depends on w, € and x € A,,.

Proof. From Lemma 5.1, for ae. we R, (Yui,o0 Fé,)izo and (Ygi-1, 0 F(f,_l .
8oiw © Fcf))izl are reverse martingale differences w.r.t. ((FLf))_lﬂa,-w),-zo. Let g :=
(D—-2-=68)((p—1)/2(1 +6)p. By Lemma 5.1 again and the Holder inequality,

1/q
(E/ Yo - 8ow 0 Ful? d,wa)
5 1/(2q) , 1/2q)
=< (E/ |8ow © Fol K dﬂw) <E/ [V | dﬂw)

is finite. Then by Lemma 4.2, (5.15) = Oy 44 s(V/PHATD/Dy = 0, . s(n€TD/2)
Lew-a.S. O]

LEMMA 5.9. (Estimates for (5.14)) For any small § > 0 such that € := 2p(1 + 8)2/(19 -1
(D —2-16) €(0,1/2), we have for a.e. w € L,

(5.14) = 0“2y p,-as.
where the constant in O (-) depends on w, € and x € A,,.

Proof. Let g :=(D—-2—-68)(p—1)/2(1 +6)p > 2 for a small § > 0. Denote &, :=
Pow © Fpgw — f Pow © Fp8w A, P(w, ) := Pyp(-). By Lemma 5.1, ||q)||LfI(A,,,L) <
2CyllgllLa(a,m < oo.
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Therefore, by the Minkowski inequality and (3.10),

. 1/q
(E / | P (D)l duokw)

= <E/ Pa]§|:¢)ow°ngw_ Pow © Fugw d/‘bw:|

=2 (2

i>0

q 1/q
dﬂgkw>

Py [%w 0 FyPl i ($g-i)

q 1/q
d,LLka>

Pc];;l [¢GwP;+ilw(¢0'_iw)

q 1/q
d,uo.kw>

(Do-ie)

q 1/q
d,bLka>

P! [%wP;*}wwm)
q 1/q
d,l/Lka) .

By .7, $ow Pt (Bo-in) L% 10e) < C3. By Definition 3.1,

- / ¢O’Ll) o Fa)sz.—iw(d)g*ia)) dﬂw]

SZ(]E/

i>0

- / ¢owpét~lw(¢g*iw) d,uowi|
-2 (=
- / PooPT! (B5-i4) dum}

(e

i>k

—ig

- / PooPT! (Bo-i4) dum}

/ 1Py [BowPit) (@oi)] ditgi,

,iw

= sup f EPY bow Pl T (Bo-i)] ditor,

EllEllo=1
= sup f o F(,,C;l : ¢awpétilw(¢a—[w) diow
E:llloo=1

<, f 1P @) ditoer

Then we can continue the estimate: there are constants Cy 4, C ;,) g > 0 such that

<G X (2 f

i<k

- / ¢Uwpétilw(¢a—’w) dﬂaw]

P! [%P;*}w (o0

1/q
d,LLakw)
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+Chy Y. <Ef

i>k

o 'w

1/q
d,lLUkw>
P! [%P;ﬁlw (bo-ie)

/9
d,u(,kw>

. . 1/q
+Cyq Z <E / |P;in1w(¢o_,-w)|duaw+E / |P;+’_1w(¢a_,-w)|dum) :

i>k

Pé‘;l[ame"“ (By—igy)

- f bowP T (Dy-iy) duaw]

o lw

<Coq Y, <E/

i<k

- / ¢aa)P;tilw(¢a—iw) dﬂaw]

To continue the estimate, we need the regularity of ¢wP;JI,.1w(¢Gf,- »): by Lemma 4.4
and (3.7), for any x, y € Ay,
0w P (@0-i0)(¥) = G0 (P ($5-1,) ()]
< b0 () = dow(MICp + |PIEL ($6-1,)(3) = PIT (9-i,) ()ICy

< KoY CG + (Kyigy + Crp) B CG.

i+ K+Koo =D 40y p
Thus ¢(.)PU_(,-H)(.)((]ﬁJf(iH)(,)) €Fpp
we can continue our estimate: by Lemma 3.4, there is a constant C = [C(]%Ch,F,,B,&p K +

Koo WD + Cypller]V® < [C5ChF 52N Kl Lr + Ch,r)]'/such that

1/q
(E/ |Pj§(<1>w)|"dugkw)

< CCyy Z (k — 1)~ (P=2=9(p=D/ap) | 2CCyhy Z ;—(D=2=8)(p—1)/qp)
i<k i>k

< Cpygiplk — 1)—((D—2—5)(17—1)/6]P)+1 iqﬁ,q,&,p g~ (284D

with a Lipschitz constant Cq%. Now

for a constant Cy 4 5., > 0. Therefore, by Lemma 4.3, Y, _ (¢yi,, 0 Fl - gyi-1,, 0 Fi7l —

w

[ boic © Fiy-8iv1yy 0 Fildi) = Oxugsm2PTUD) = 0, 5(n(€HD/2)
Lew-a.S. O]

We now turn to the QASIP for martingale differences (i, o F, é,)izo-

LEMMA 5.10. (QASIP for (i, © Fcf))izo) For any sufficiently small § > 0 such that ¢ =
2p(1+8)2/(p — 1)(D —2 —8) € (0, 1/2), we have for a.e. w € L,

S Uor o B B, | = 0@OMB2 )

i<n

where the constant in O (-) depends on w, € and x € A,,.
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Proof. By Lemmas 5.6-5.9, we have for a small enough § > O and a.e. w € €,
Sn(@) = Opex V2 py-as.
where € = max{2p(1 +8)%/(p — 1)(D — 2 —§), max{(2(2 4+ 8)(1 + &) p/(D — 2)(p —
1) = 1,00 p(1 +8)2/(p = (D =2 = 8)) = 2p(1 +5)2/(p — 1)(D =2 — ).
By Lemma 5.5, S/ (w) = Oy x(8272)1t,p-a.5. By Lemma 5.4,

T2 — 82(0) = Oper (827 (w)) as.

; 3.2
By Lemma 5.3, | i, Voin © Foy = B )| = Ouexn/ITET2OM) as. O

5.5. Proof of the QASIP for Birkhoff sums.
LEMMA 5.11. (QASIP for (¢,i,, o Fl)i=0) Forae o€ L,

Z Dgig © FL - Bz%(w) = 0motY  as.

i<n

where the constant in O(-) depends on w, € and x € A,,.

If pn = n~PL, then € is any number in (ep, 1/4), where €p is defined in (2.5). In par-
ticular, if p, = e—an’ for some a > 0, b € (0, 1] (which implies p, < n~P forn, D > 1),
then € p can be arbitrarily small, as is €y > 0.

Proof. Since €1 =2p/(p — 1)(D —2) € (0, 1/2), there is a small § > 0 such that ¢ =
2p(1+8)%/(p — 1)(D —2 —§) € (e, 1/2). By Lemmas 5.1 and 5.10,

Z ¢0’i(l)oFLi)

Z Voi-ty o Foy '+ gomw o Fiy = go

1<i<n 1<i<n
— Z wgi—l OF’71+0(n(2+8)(1+8)p/(D7278)(p71))+O(l)
w w
1<i<n
3_.2
— B:;)z 1(a)) + O(n(1/4)+((3€—2€ —€ )/4)) _|_ O(né) + 0(1)

o + O(nmax{(1/4)+((3e—2€3—62)/4)e}).
n,_1 (@)

Using (5.2) and the basic property of Brownian motion, we can continue the estimate

above as
=Bt O (/O3 p2D=2-0)p=1)) | () (pmax{(1/H+(Ge=267 =€)/l
= Bg;z(w) + 0(n(1+e)/4) + 0(nmax{(l/4)+(<367263762)/4),6})
= B, + O(DHCe2E = ettalty - po, Ly o@Dty s,

where €g := max{} + (3¢ — 2e3 — €2/4), €, (1 + €)/4} — 1 € (ep, 1/4). All constants in
O(-) depend on w, € and x € A,,. O
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6. Projection from towers
In this section we consider the RDS which can be described by the RYT.

Definition 6.1. (Induced random Markov maps) We say that ( f,,),eq are induced random

Markov maps if they satisfy the following conditions.

(1) Let (P, o0):= %%, o) be a Bernoulli scheme where (1, v) is a probability
space and o is an invertible left shift on / Z, (M, Leb, d) is a compact Riemannian
manifold with a Riemannian volume Leb and a Riemannian distance d. (fy)wen
are non-singular random transformations w.r.t. Leb on M. Define f := f u-1, 0
Jor-20 00 fow O fo-

(2) Assume that A is an open geodesic ball in M, with a normalized probability m
inherited from Leb.

(3) Assume that fora.e. w € 2, there is a countable partition P, of a full measure subset
D, of A and a function R, : A — N such that R, is constant on each U, € P,
R, (x) is a stopping time (see Definition 2.2) and fcf “|y, 1s a diffeomorphism from

U, to A.
(4) Assume that there is an integer N € N, {¢; >0,i=1,...,N} and {f; e N,i =
1,..., N} with gcd(#;) = 1 such that for a.e. w € Q, m(x € A : R,(x) =1t;) > €

foralll <i < N.
(5) Assume that there are constants 8 € (0, 1), C > 1 and a function K € LP(R2)
(K> 1, p e (1, 00]) such that for a.e. w € Q, any U, € Py, x,y € Uy, and 0 <

k < Rolu,,
d(f,f (0, fufe () = B~1d(x, ), 6.1)
o Lo O _ ey koo, fhoo. ©2)
Jfo? (y)
d(fi (). f5()) = CHrd (£, [ () (6.3)
(6) Assume that there is a constant C > 0 and a decreasing sequence (p,),>1 such
that

/m(xeA:Rw(x)>n)dIP’§Cpn\0.

THEOREM 6.1. (Quenched limit laws for the RDS) Let M, := M. Then the following
statements hold for (2, P, o, (My)weq, (fo)weq) in Definition 6.1.

(1)  Equivariant probability measures (1.1) (vy)weq exist. Define a probability v by

v(A) := / Up(Ay) dPP

for any measurable subset A C Q2 x M and A, :={x € M : (w, x) € A}. For any
Holder function ¢ on M with a Holder exponent y € (0, 1], define

2
Do :=(p—/g0de, D(w, *) = @u(-), onz(a)) :=/ (Zq)akwofa]f> du,.

k<n
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Suppose that p, = e~ o n=P for some constants a >0, b€ (0,1], D >
24+ @p/(p—v)), v €(0,1]. Then the following statements hold for the RDS
(2, P, 0, Mp)wea, (Vo)wea, (fo)oe)-

(2) There is a constant £2 > 0 such that lim,,_mo(o,% (w)/n) = Y2 ae we Q.

3 I ¥2 > 0, then ® has the QASIP (see Definition 2.1). The convergence rate is e =
€0 + 1/4, where g € (0, 1/4) satisfies the following: if p, = e_“”b, then €y > 0 is
any small number; if p, = n=PL, then €y is any number in (ep, 1/4), where €p is
defined in (2.5) with a different e = 2p/(p — y)(D — 2).

(4) If 2 =0, then ® is a coboundary (see Definition 2.1). The function g in (2.2)
satisfies the following: if p, = n~P, then g € LP=2=9P=1)/U+0)p () for any small
6 > 0 such that (D —2—-368)(p—vy)/(1 +68)p > 4. In particular, if p, = e—an’
(which implies p, < n_Dfor n,D> 1) then g € Lk(v)for allk > 1.

Proof of Theorem 6.1. We identify the Oth levels of all (A,),eq Wwith the base A and
denote A := SUD yep d(x, y). From Definition 6.1, we can construct A and F' such that
Ff ¢ = falf @, To show that (A, F) is an RYT, we just need to verify the distortion (2.3)
from (6.2): if the separation time for x,y € A, is s,(x, y) = n, then for any i < n,

FRo and FLo% (x), FFY (3) Lie

(x), Fal)%(y) (y) lie in the same element of PJR:;J
in different elements of Pd R () g By (6.1) and (6.2),

@

d(x,y) < Bd(fRe (), fRo(y)) < - < Brd(fRo (o), £Ro () < B A,

Ry
‘10 ji‘;—?; < Cd(fRe ). [l < capr,
o Y

that is, there is a constant C’ > 0 such that

< €' BFokut(Fu 0 FS 0

'JFf%x) _1

JES ()

Thus, by Definition 2.2 and Lemma 3.1, (A, F) is an RYT and there are equivariant
probability measures (iy,),q for (A, F). Define a projection , : A, — M by

Mo, 1) = fl (x)
which is a random semiconjugacy: f, o Ty, = Ty o Fy. Therefore

(Vo)we = (Tw)xMhw)we

are equivariant probability measures (see §3.1 in [BBR19]).
Define functions ¢, := ¢, o 7y, and ¢ (w, -) 1= ¢ (-) satisfying

o llca) < max [9(), / b dite = 0.
xeM

Claim. ¢ € ngfp/y with a Lipschitz constant C,C” AV (BY)~ L.
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This claim holds since for any (x, [), (v,/) € A, with s, ((x, ), (y,1)) = n, we have,
using (6.3),

P05 1) = G0 (3 DI = 100 £, ) = G (FLa NI < Cod (L% fioy )
<C¢Cy7(yd(f “_,w( ), f a—/w(y))l/
< CyCTHLAY (V) (7) DD,

We now apply Theorem 2.3 to ¢.
(1) There is a constant 2 > 0 such that

. I(Zkgn Poke © f£)2de . /(Zkgn Poke © Falg)2 dpe 2
lim = lim = X

n—o0 n n—o00 n

(2) If £2 > 0, then ¢ has the QASIP: there is a constant ¢ > 0 such that for a.e. w € 2,
we have a Brownian motion B® defined on an extended probability space (A, Q,,) and

Z Poke © fa) 0Ty — 2(&)) Z Poky © F Z(w) =0(n°) Qu-as.

k<n k<n

Here an(a)) = [Cpep Poke © Fcﬁ)2 duy, and e = 1/4 + € satisfies the following: if
On = e"‘"b, then €y > 0 is any small number; if p, = n~?, then €y is any number in
(ep, 1/4), where €p is defined in (2.5) with a different € = 2p/(p — y)(D — 2).

(3) If £2 =0, then ¢ is a coboundary: there is a function g’ on A such that for a.e.

w € Q,
bowo Fo=8,,0Fy— 8, loas.;
in other words,
poF =g oF —g pu-as. (6.4)

If p, =n"P, then g’ € LP=2=0(p=y)/A+)p (A 1) for a sufficiently small § > O such
that (D —2 —-8)(p—y)/(1 +d8)p > 4.

Now we show how to project this QASIP and coboundary to the RDS. Let x (w, x) :=
(ow, fu(x)), x* be its transfer operator w.r.t. v, and M =: |, cq({®} x M,).

Projection for the coboundary. We will apply Theorem 1.1 of [Liv96] to the stationary
system (M, x, v) and the fiberwise mean zero function ®, verifying three conditions of
the theorem.

By Lemma 3.4, there is a constant C = Cy j F g7 5,p/y 1KY || /v such that

> /f%%wofdua,dﬂb'

i>1
//¢w¢gwoFl dﬂde‘

/ PP o Xidu

l>1

=2

i>1
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<G Y- [ [ 1020w dugs, ap

i>1

< C4C Z j—(D=2=8)(p/y=D/ply _ 00,

i>1

Z/I(X*)"@dl}:Z sup fwox”cbdv

n>1 n>1 IYllec<1

:Z sup f/wgnwonwoF£¢wdude

i1 W=l

= [ [ 126 dur ap

n>1

<C Z i~ (D=2=0)(p/y=D/ply _ .

i>1

Using [ ¢¢p o F'du < Cn=P=2=9(r=1)/P < Cp~* and following the same compu-
tations as in the proof of Corollary 3.10 of [Sul9b] (we skip this here), we have

/¢2dv+22/d><1>oxidU=/¢2du+22/¢¢oFidu
i>1 i>1

_ S i 9o FO*de  [(p+g oF"—gdu
= lim = lim =

n—o00 n n—o00 n

0

where the last two equalities are due to (6.4) and g’ € L*(A, p). Therefore, by Theorem 1.1
of [Liv96], there is a measurable function g on (M, v) suchthat ® o y = g o x — gv-ass.
and g := ano(x*)"dl Letg :=(D —2—-8)(p—y)/(1 +6)p. Using ||®|o < Cy, We
have

1/q
< Cp+CV Yy ( / |(x*)"d>|dv>

Li(v) n>1

lglly < ” Do
n>0

1/q
=Cy + Cé,q_l)/q Z ( sup o X”<de)
I\l

1/q
= Cfﬂ + Céqil)/q Z ( Sup<1 / / Egng © far)l‘/)wde dP)

no1 \ElEloos

1/q
— C(p + C(E’q—l)/q Z < sup / Eong O Mong © Fg(f)w dite dP) .
§illElloc=1
n>1

By Definition 3.1, |é5n4 0 Tone| <1 and Lemma 3.4, there is a constant C =
(Conrprspy T llLpy)1/9  such that the last expression above can be
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estimated as

/q
<Cy+ Cglfl)/q Z (/ / [P ()| ditone dIE”)
n>1
<C,+ Ccéqfl)/q Z n~P=2=00p=n/apn) — ¢, 4 Ccéjqfl)/q Z n ) - o

n=1 n>1

Therefore g € L(P~2=9)(p=1)/(1+3)p (4,
Projection for the QASIP. By lemma A.1, the QASIP for the RYT

Z Goke © from, — 13’;‘)3(60) = 0(n° Q-as.forae weQ

k<n

implies that there is a function H : RN x [0, 1] — C[0, 1], a uniform distribution U
on [0, 1] and a Brownian motion B® := H ((¢4k,, © fa’j 0 TTy)k=1, U) defined on (A, x
[0, 1], 4, x Lebyo,17) such that for a.e. w € Q,

Qul(@oke © £ 0 k=1, B®) € (-, )}
= (1o X Lebio i {(@pke © X 0 i1, B?) € (-, ).

This implies that for a.e. w € €,

Z Doy © fX o0, — é;‘;z(w) = 0(n°) e X Lebpg, -as.

k<n

Then B¢ := H((¢yk, o fclj)kzh U) is also a Brownian motion defined on (M x
[0, 1], vy x Lebyg,17). Therefore, for a.e. w € €2,

Z Qgky © fC’; — B(‘;’;(w) = 0(n°) v, x Lebyp,] -a.s.

k<n

and the extended probability space is M,, := (M x [0, 1], v,, x Lebjo,1}). O]

7. Applications

We will apply Theorem 6.1 to each of the following RDS, by verifying conditions (1)—(6)
in Definition 6.1: i.i.d. translations of unimodal maps (satisfying the Collet—-Eckmann
conditions) in [BBMDO02]; i.i.d. translations of non-uniformly expanding maps (with
a slow recurrence to singularities) in [AA03, AV13]; i.i.d. perturbations of admissible
S-unimodal maps (satisfying the Collet—-Eckmann conditions or summability conditions
of exponent 1) in [Dul5]; and i.i.d. perturbations of random LSV maps with a neutral
fixed point in [BBR19]. Here i.i.d. means that the randomness of f,:, only depends on
w;; then for any n € N, f,;n, is independent of (f,i,)i<n—1. In Definition 6.1, conditions
(1), (2), (4), (6.1) and (6.2) are satisfied when the RYT is constructed. Condition (3) is
also satisfied since { R, = n} is constructed inductively in these papers (it only depends on
(fsiw)o<i<n—1), thatis, {R,, = n} only depends on wy, w1, . . . , w,—1. Thus it remains to
verify condition (6.3):

A, fE ) < CKrd (fRo (), fRo (),
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and condition (6), that is,

/ m(x € A: Ry,(x) >n)dP < Cp, \{O. (7.1)

7.1. i.id. translations of unimodal maps. Condition (6.3) is due to the proof of Lemma
9.1 of [BBMDO02, pp. 123]. Condition (7.1) is due to Proposition 8.3 of [BBMD02].
The probability measure v := v, is defined as (2.1) of [BBMDO02, pp. 82]. The QASIP
convergence rate is 1/4 4 € for any small €p > 0.

7.2. ii.d. perturbations of S-unimodal maps. Condition (7.1) is due to Theorems 8.1.2

and 8.1.4 of [Dul5]. We now verify (6.3).

(1) For S-unimodal maps satisfying the Collet—~Eckmann conditions in [Dul5], (6.3) is
due to Proposition 8.3.5 of [DulS5].

(2) For S-unimodal maps on interval [ satisfying summability conditions of exponent 1
in [Dul5], we will verify (6.3) with K € L°°(£2), that is, there is a constant C > 0
independent of w € €2 such that

d(fE@), Aoy < cd(fRo ), £R (),

where k < R, =n, x,y € Uy(z,n) := (fa')’)_l(E(S)) N J¢, and n is a 6-good
return time of (w, z) into E(c‘i). Moreover, f):U,(z,n) — 1§(8) is a diffeomor-
phism, n — k is also a 6-good return time of (c¥w, ffj (z)) into B (8), and f:k_w k
is a diffeomorphism from folj(Uw(z, n)) C ngw(fa’j(z), n — k) into E((S) (These
properties can be found in Lemma 8.2.1 and Propositions 8.2.3 and 8.2.4 of [Dul5],
and see Definition 8.2.2 of [DulS5] for 6-good return times.) Equivalently, we will
prove (6.3) by showing

IDFe | s waean] = €7

By Lemma 8.2.1 of [Dul5], for any z1, 22 € Uyk,, (f45(2), n = k),
n—k
12 Plato GUL_ o
T DS )l T
Then for any z; € f!;(Uw(Z, n)),
U@ =01 1B _
> 1200 o,
ARG ED] T

The probability measure v := v, is defined in §8.1.1 of [DulS5, pp. 80]. The QASIP
convergence rates for these two RDS are 1/4 + ¢( for any small €g > 0.

IDf" K@) = e

7.3. iid. translations of non-uniformly expanding maps. Condition (7.1) is due to
Proposition 5.1, Theorem 2.9, and §5.2.2 of [AV13]. Condition (6.3) is due to Proposition
4.9 of [AV13]. The probability measure v := 6, is defined on p. 687 of [AV13]. The QASIP
convergence rate is 1/4 + €g for any small ¢y > 0.
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74. iid. perturbations of LSV maps with a neutral fixed point. Condition (6.3)
follows since LSV maps have derivatives no less than 1, that is, d( falj(x), fa’j(y)) <
d(fXe(x), 8 (y)). Condition (7.1) is due to Proposition 5.3 and (5.5) in [BBR19] with
ozo_l > 6, that is, the QASIP holds for Q = [«o, a1]% where 0 < ap < 1/6 and o < 1.
The probability measure v can be different distributions; see §5.2 of [BBR19]. The QASIP
convergence rate is 1/4 + e€p + €9 where D = «y Vand ¢y > 0 s any small number.

Acknowledgements. The author warmly thanks his advisor Prof. Andrew Torok for
posing him one of the questions in this paper, and Prof. Ian Melbourne and the reviewer
for valuable remarks and comments.

A. Appendix
LEMMA A.l. (See [Kal02, Theorem 6.10]) For any measurable space S and Borel space
T, let &, &' be random elements in S and n be a random element in T such that § =4 &'. Then
there is a random element ' in T such that (n, §) =4 (', &'). More precisely, there exists a
measurable function f : S x [0, 1] — T such thatny’ = f(&', U) where U ~ U (0, 1) and
&' are independent.

Indeed, to guarantee the independence above, we can simply extend the probability
space by multiplying ([0, 1], Leb).
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