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Abstract

A discrete spatial model of a multi-species environment is formulated, and the behaviour
of the system is studied. The model is used to explore stability and resilience of biological
systems and discuss how they are dependent on spatial scale chosen.

1. Introduction

Nature is in constant change. Disturbances, such as a cyclone passing over a coral
reef or fires in bushlands, lead to a change in the composition of an ecosystem. In
turn, these changes impact upon the stability of the system.

Recent works [5, 14, 20] have suggested the existence of multiple stable states
within the dynamic of model ecosystems. Hence, the system will almost surely not
revert to its original form. This poses the question of how properly to specify 'stability'
of such a system, and what constitutes a 'recovery'.

The traditional approach to the concept of stability of a system is that of mathe-
matical stability. Here one identifies the equilibrium points of the system and then by
local analysis around these points, deduces whether or not the system is stable.

Ecologists and biologists find it difficult to deal usefully with this form of stability
when analysing the dynamics of an ecosystem. As has been mentioned above, a
system may have many equilibrium points to which it moves under perturbation.
Mathematically, this system may be classified as being unstable. However its ability
to 'recover' to an ecosystem with similar assemblages as before, would lead an
ecologist to declare the system stable.

The notion of resilience [13] seems to be a much more useful concept for describing
the dynamics of an ecosystem. Here resilience is a measure of the persistence of
systems and of their ability to absorb change and disturbance and still maintain the
same relationships within their population. It is, the basic property of a system
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maintaining established relationships among its parameters.
An important factor which has been noted with regards to a system's stability is

spatiality [2, 8]. Here the effects of spatial variability can stabilize an otherwise
unstable model ecosystem.

What follows within this paper is a formulation of a discrete spatial model which
will be shown to have an equilibrium space. Stability of the model will be shown to
be dependent on the spatial scale chosen. The stability of the system is judged by the
ability of the system to maintain a non-trivial assemblage after perturbation. When
the model is iterated, we say that the system has formed a trivial assemblage if the
collection of species collapses into a mono-culture.

Thus if the system is resilient to the perturbations introduced we can conclude that
our system is in fact stable. We shall see that the resilience of the system is dependent
on the spatial scale of the model.

2. The model

Cellular automata are a powerful class of simulation models for explicitly spatially
functioning ecosystems, such as the competition between species on a coral reef.
Such a reef consists of millions of polyps, so that attempting to model the complete
system is computationally inefficient. Instead we have taken a smaller section, and
identified the boundaries (forming a torus) in order to avoid edge effects. However,
running the program with finite boundary conditions does not significantly alter the
results for reasonably sized grids. Within this lattice structure we apply our specific
neighbourhood form and transition function.

Symbolically we can represent the new state of the center cell in the neighbourhood
a'c

+l being dependent on the specific neighbourhood chosen with the transition function
<t> operating on the cells in this neighbourhood a\. That is, a'c

+i =

Grid Neighbourhood forms

von-Neumann Moore

FIGURE 1. Common neighbourhood forms applied to a grid structure.

In the model being considered here, the transition function which operates on the
cell states within the certain neighbourhood form chosen is a particular rule called an
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intransitive rule system. We have four species which are linked together in a certain
chain of interaction. This defines which species will outcompete/overgrow the other
species within its neighbourhood. This model then simulates a possible assemblage
on a coral reef where certain species are better competitors than others.

The rule which is deterministically applied to this neighbourhood throughout the
grid is described as below. Numbers one through to four represent the four species
which can populate the environment in this model.

outcompetes

FIGURE 2. Intransitive Model.

Once the grid size is chosen, initialisation of the grid guarantees that there is a
complete fill of all sites within the grid structure with one of the four possible species.

Below is a simple worked example where we chose a grid size of 3x3, and then
apply our algorithm. To see how the updating works for each generation we take two
cases.

Initial grid structure

Neighbourhood of
row 1, col 1 element

Neighbourhood of
row 2, col 2 element

1

3

3

2

4

2

3

1

1

Here species 3 wins
the site of species 1.

FIGURE 3. Worked example.

Here species 2 wins
the site of species 4.

First case we take the row 1, col 1 element and apply the Von-Neumann neighbour-
hood to see what its immediate neighbours are. From this we then infer which species
number will survive according to the rule structure as described above. Here we can
see that the only species which outcompetes species 1 is species 3 and hence it is 3
which becomes the new owner of this site.
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Another interesting example of the rule structure is when we consider element at
row 2, col 2 where species 4 is in the neighbourhood structure as noted in diagram.
From the rule structure we can see that there are two species which outcompete 4,
those being species 2 and 3. However it can be seen that species 2 outcompetes species
3 and hence species 2 wins the site.

Thus after one iteration it can be verified that our initial starting configuration
transforms into the new environment as pictured below.

• • • •

FIGURE 4. Complete update of environment.

3. Behaviour of the model
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Having formulated our model we can discuss the dynamical behaviour of the system
under iteration. If the system collapses to a mono-culture then we define this to be a
fixed point, otherwise the system will fall into a cyclical equilibrium. We call the set
of all fundamental attractors to which the system will fall its 'equilibrium space'.

We shall see that the time taken to reach these equilibria is comparatively small
but that as one increases the grid size, the number of iterations to equilibria increases
slightly.

Finally, as one increases the grid size it will be apparent that there is an decreased
chance of the system forming a mono-culture. This shows that for larger chosen grid
sizes there is a greater chance of a non-trivial ecosystem assemblage forming. That
is, the chance for species co-existence is high for large grid sizes.

3.1. Equilibrium space The underlying deterministic algorithm and finite state
space in which the system evolves is responsible for the basic type of equilibria
always formed. We define the collection of basic attractors for a specified grid size its
equilibrium space. The number of attractors in this set is dependent on the grid size
chosen.

To look in a little more depth at the notion of equilibrium space we can study simple
examples such as a grid size of 2x2 or 3x3. One of the problems with trying to explore
all possibilities of these spatial systems is that computationally the problem increases
exponentially. An upper bound for the number of starting states (initial configurations)
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can be expressed by 4*2 where k is the row size of a square grid. Hence it becomes
obvious that for larger grid sizes the only feasible technique of enquiry is that of a
Monte-Carlo type simulation.

For a 2x2 case the set of attractors, 'Equilibrium space', can be seen as pictured
below. All possible initial starting configurations fall into one of the seven basic
non-trivial attractors or into one of the four trivial fixed points. There is a high bias
towards mono-cultures at this level indicating instability.

Non-trivial period 4 attractors.
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Mono-cultures

FIGURE 5. Equilibrium space of 2x2 system.

It is interesting to note that all the cycles formed here for the 2x2 are of period 4.
It shall be seen that when looking at grid size of 3x3 and over there are a variety of
different periods formed.

When we increase the grid size to 3x3 the number of attractors in the equilibrium
space is now 1027, with 1023 non-trivial assemblages and 4 mono-cultures. The
number of attractors continues to grow exponentially as one proceeds to increase the
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grid size. This increase of attractors within the system will be seen to be the reason
for a decline in mono-cultures being formed as the grid size is increased.

3.2. Settling time The average number of iterations taken to reach equilibrium is
an important gauge of the systems stability when we are considering its response to
perturbation. If a system is able to recover rapidly after perturbation then obviously
this has a higher degree of stability then a system which takes a long time to regain a
functional assemblage.

8 10 12 14 16 18 20 22 24 26 28

FIGURE 6. Stepwise increase in average length to equilibrium.

It can be seen from the graph that there is a kind of step function underlying the
increase in the average number of iterations taken to reach equilibrium. 2

The deviation in equilibrium times for different realizations for a 12x12 grid can
be seen from the table below.

If one perturbs the system which is at equilibrium the time taken to reach a new
equilibrium is much less then the system starting from a random configuration.

3.3. Decrease in mono-cultures A result which reflects upon systems ability to
establish itself, is how the frequency of fixed points (mono-cultures) is affected by
grid size. The table below shows that the relative number of starting configurations
which collapse to a mono-culture declines quite rapidly as one increases grid size,
thus indicating the greater chance of a non-trivial ecosystem assemblage for larger
chosen grid sizes.

Since our system is spatial we have to generate new spatial configurations to iterate
2A1I results are obtained by starting the model in a random configuration and then letting it run until
equilibrium is reached.
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TABLE 1. Variations in different realisations.

29

Period Found

3
6
3
3
3
3
3
6

Length to equilibrium

19
15
11
21
20
14
17
19

and from this we extract our data. Here the number of configurations processed
represents the number of ways to assign species one through to four in a relationship
so as to fill the entire grid size chosen. That is, 5) + S2 + 53 + 54 = G2, where 5,
represents each species and G2 represents the number of cells in a particular grid size.
Once the number of each species has been chosen so as to satisfy this relation, the
grid is then filled at random with each these species.

TABLE 2. Collapse to mono-cultures dependent on grid size.

Grid Size

2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9

Percentage Collapse
To Fixed Points

85.74
54.54
38.28
30.06
24.01
18.62
14.44
12.67

Number of
Configurations processed

35
220
969
3276
9139

22100
47905
95284

The reason behind the shrinkage in mono-cultures as grid size is increased is
due to the fact that the number of attractors in the equilibrium space is increasing
exponentially and hence there is a greater chance of the system falling into a non-
trivial species co-existence.

It should be noted that the periodicity of the model is unaffected by choice of
toroidal or open boundary conditions. The number of attractors in the equilibrium
space decreases with open boundaries, but the basic dynamic of the system remains the
same. Similarly, with different choices of neighbourhood rules, the periodic nature
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still remains under this particular rule structure. So it is the rule structure of the
model which governs the behaviour rather then the type of boundary conditions or
neighbourhood rule.

4. Effect of perturbation

Having explored how our model settles into equilibrium states, we are now able
to observe what happens when we start perturbing our model once it has reached an
equilibrium state. Within our model we simulate a perturbation by randomly assigning
different species to, about 10% of the lattice site, at equilibrium, and then allowing
the model to run.

Below shows such an example for a 15x15 grid where perturbations occur at
multiples of 50 generations.

50 100 150
Generation Time

200 250

FIGURE 7. 15x 15 system showing effect of Perturbation.

The cluster of jagged lines in the figure represent a clumping of 3 species forming
a certain periodic cycle. The single line near the x-axis represents the population
numbers of the fourth species, this too has formed a periodic equilibrium. It can be
seen that the time taken for the system to recover after the perturbations is minimal
indicating a high degree of stability.

After many simulations for a 15x15 grid the 3 species equilibria is found to be
highly resilient to perturbation, with the 3 species always reforming a periodic cycle
and hence maintaining co-existence.
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Occasionally, there can be 4 species co-existence. However this assemblage is
highly unstable since it is easily destroyed by perturbation.

The question of how resilience is dependent on grid size, follows naturally after
observing certain simulations for different grid sizes.

By using a Monte-Carlo simulation and allowing the system to settle into a equi-
librium before perturbing the system, we obtain the following graph describing the
percentage of simulations which collapse to a mono-culture as a function of the grid
size.

As the grid size is increased the percentage of collapses to a mono-culture after
perturbation decreases rapidly. This represents an increased resilience of the system
with an increase in the grid size chosen.

FIGURE 8. Percentage collapse to mono-culture after perturbation.

The system attains a highly resilient character once the grid size is chosen above
6x6. Once a system of this grid size or greater has reached an equilibria and is perturbed
it will always fall back into a periodic equilibrium. This shows how the system has
attained a buffering effect to disturbances and is able to maintain a non-trivial resilient
ecosystem.

5. Resilience

In previous sections we have mentioned the notion of resilience and how the system
exhibits the trait of being resilient to perturbation by maintaining the same assemblages
before and after the perturbation. We have seen from Figure 7 how a 15x15 system
responds to perturbation, and how it is able to maintain a non-trivial three species co-
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existence throughout perturbation. Four species co-existence occurs but is unstable
since it is easily destroyed by perturbation. Also the collapse of an ecosystem after
perturbation has been shown by Figure 8 to decrease as one increases the grid size.
All reflecting on the systems ability to deal with disturbances.

It is useful to consider the simple case of a 2x2 grid size, to understand how this
type of stability is obtained within the model. However it must be noted from Figure 8
that the 2x2 case is the most unstable ecosystem assemblage with 79% of simulations
collapsing to a mono-culture after a perturbation.

For a certain grid size we can represent the spatial arrangement by a binary number
which can then be converted back into decimal.

EXAMPLE 5.1. A 2x2 grid as pictured in Figure 9 can be represented by the binary
number 00 01 10 11 which is 27 in decimal. It can be verified then that the complete
iteration (represented in decimal) for this initial configuration is 27, 82, 100, 133, 25,
82 thus forming a period four cycle taking one time step to reach this equilibrium.

Represent Species as:

1

3

2

4

1=

2=

3=

4=

00

01

10

11

Binary

00 01 10 1

Rep:

1 = 27

FIGURE 9. Conversion to binary for a particular configuration.

The way that this relates to the notion of resilience can be seen from certain
dumpings within the data for this 2x2 system.

24 —*~ Fixed Point

25,82,100,133,25

26,98,164,137,26

27,82,100,133,25,82

28 —*~ Fixed Point

FIGURE 10. Iteration data for a 2x2 system.

What this represents then is that if the bottom right corner cell as pictured below is
either species 1, 2, or 3 then the outcome is the same, that being a periodic cycle.

That is, for this assemblage, provided the perturbation is minimal and in the right
hand bottom corner, we can have the system maintaining a non-trivial ecosystem.
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Where '*' can be either 4,3,2

FIGURE 11. Iteration data for a 2x2 system.

For our 2x2 system a group of 3 elements clumped is the greatest that is to be
found. When one increases the dimension to 3x3 grid size, there is a drastic increase
in the clumping, with a group of up to 63 elements clumped.

Like for our 2x2 system, what this large clumping of elements means for a 3x3
system is an increase in the number of cells which can be occupied by a number of
species and still result in a periodic equilibria being formed.

In terms of resilience to perturbation, what this means is that as the grid size of the
system is increased there is a greater number of cells which are able to be occupied
by a number of species and still maintain a non-trivial ecosystem. The mechanism of
perturbation chosen for this model simulates a natural disturbance, such as a crown of
thorns outbreak in a reef which 'eats ' the corals resulting in different species growing
back in the previous site.

Thus when our system attains an ability to have grid sites which are independent
of the species which inhabits it, we have then formed a system which can be resilient
to the type of perturbations introduced to our model.

6. Conclusion

To summarise, we have seen how the resilience of the system is dependent on the
size of the grid chosen for our model. The model has shown a tendency for the four
species co-existence to be unstable, with the fourth species being easily destroyed
by perturbation. The resulting 3-species ecosystem formed has the property of being
stable to perturbation provided that the spatial scale is large enough.

The model has been shown to have a set of fundamental attractors which increase
exponentially as the grid size is increased. This is responsible for the system being
able to form a non-trivial ecosystem as the grid size is increased. The basic dynamic
of this model is unaffected by the choice of toroidal or open boundary configurations.
Similarly the choice of neighbourhood interaction has no effect on the periodicity of
the model. The results hold true over a variety of 'boundary conditions'.

Thus for our model the ability to be stable to perturbation, and exhibit a type of
buffering effect to disturbances, yielding resilience, is dependent on the spatial scale
being sufficiently large.
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