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ABSTRACT

In this paper we present algorithms to calculate the probability and severity of
ruin in both finite and infinite time for a discrete time risk model. We show
how the algorithms can be applied to give approximate values for the same
quantities in the classical continuous time risk model.
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1. INTRODUCTION

The probability and severity of ruin for the classical continuous time risk
model was first discussed in a paper by GERBER et al. (1987). Using their
notation, G(u,y) represents the probability that ruin occurs given initial
surplus u and that the deficit at the time of ruin is less than y. In that paper,
general equations for G(u,y) are derived and explicit solutions are found for
certain individual claim amount distributions. This work was extended by
GERBER and DUFRESNE (1988) who found explicit solutions for G{u, y) when
individual claim amounts were distributed as a combination of exponential
distributions. DICKSON (1989) showed that approximate values of G(u, y)
could be calculated by a recursive method by defining a relationship between
survival probabilities and the density of G{u, y).

DICKSON and WATERS (1991) present a recursive algorithm to calculate
survival probabilities for a discrete time risk model which can be used to
approximate to survival probabilities in the classical continuous time risk
model. In the present paper, we show how these methods can be adapted to
calculate approximate values of G(u, y).

We also present a recursive algorithm for the approximate calculation of the
probability and severity of ruin in finite time. Our algorithm is derived from an
algorithm presented by DE VYLDER and GOOVAERTS (1988) for the approxi-
mate calculation of finite time ruin probabilities.
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2. PRELIMINARIES

In this paper we are interested in the classical continuous time risk model
defined as follows. The claim number process is a Poisson process and
individual claim amounts are identically distributed and are independent both
of each other and of the number of claims. It is assumed that individual claim
amounts are non-negative and have finite mean. Without loss of generality we
assume that the Poisson parameter is 1 and that the mean individual claim
amount is also 1. Premiums are assumed to be received continuously at a
constant rate. Premiums are calculated using a loading factor 8 (> 0) so that
the premium income per unit time is (1 + 9). The stochastic process {0Z(/)},>0
denotes the surplus at time t, given an initial surplus oZ(O), which we denote u.
(We use the subscript " 0 " to indicate that we are dealing with our initial
model.) The time until ruin for this process, denoted 0T, is defined as
follows:

0T = inf{r : 0Z(0<0, f >0}
= oo if QZ(t)^0 for all t> 0

We are particularly interested in the probability and severity of ruin for this
process, i.e. the probability that ruin occurs and that the surplus at the time of
ruin does not go below a given amount, say —y, where y > 0. We denote this
probability 0G(u,y) and define it as follows:

0G(u,y) = P[0T< oo and -0Z(0T)<y]

We define the probability and severity of ruin in finite time, denoted
0G(u,y, t), as follows:

0G(u,y,t) = P[0T<t and -0Z(0T)<y]

The probability of ruin in finite time for this process is denoted oy/(u, t) and
is defined as follows:

Our objectives in this paper are to obtain numerical values for, or at least
approximations to, 0G(u,y) and 0G(u, y, t). To do this we consider a second
risk model which is still a compound Poisson risk model and can be regarded
as a rescaled and discretized approximation to the initial risk model. The
characteristics of this second model are:

(2.1) — individual claim amounts are distributed on the non-negative inte-
gers and have mean /?, where /? (> 1) is an integer,

— the Poisson parameter for the expected number of claims per unit
time is l/[(l + 0)j?],

— the premium income per unit time is 1.

The method for constructing this second risk model and the reasons why it
can be regarded as an approximation to the initial model are discussed fully by
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DICKSON and WATERS (1991, Section 1). The discrete time stochastic process
{Z(n)}*=0 denotes the surplus at time n for the model specified by (2.1) given
an initial surplus of Z(0) = u, which we shall always assume to be a
non-negative integer. An important feature of this model is that the aggregate
claims in each unit of time are distributed on the non-negative integers so that
in one unit of time the surplus can increase by 1 (if the aggregate claims are 0),
stay at the same level (if the aggregate claims are 1) or decrease by an integer
amount. The (discrete) time until ruin for this model is denoted T and defined
as follows:

T = min {n:Z{n) sC 0, n = 1,2,...}
= oo if Z(«)>0 for n = 1,2,...

Note that we regard hitting zero as being ruined. This is because we are
approximating continuous time probabilities by discrete time probabilities. If
the surplus in discrete time hits zero then, with probability one, it was below
zero in continuous time immediately prior to passing through zero. DICKSON
and WATERS (1991, Section 8) discuss this point at greater length. Note also
that if the initial surplus is 0 then ruin does not occur at time 0 but will occur
at time 1 unless the aggregate claims in the first time period are 0. The
probabilities of ruin in finite time and in infinite time for this process are
denoted y/(u, t) and i)/(u) respectively and are defined as follows:

y/(u, t) = P[T<t]
y/{u) = P[T< oo]

The probability and severity of ruin in infinite and finite time for the model
specified by (2.1) are denoted G(u, y) and G(u, y, t), respectively, where y is a
positive integer, and are defined as follows:

G(u,y) = P[T<cc and -Z(T)<y]
G{u,y,t) = P[T<t and -Z(T)<y]

For any choice of values of u, y, t and /? such that /?, yfi and tfi(\ +6) are
positive integers and ufi is a non-negative integer, we regard y/(ufi, tp{\ + 6)),
G{u[l, yp) and G(M/?, yfi, tjl{\ +8)) as approximations to oi//(u, t), 0G(u, y) and
0G(u, y, t), respectively, for the reasons given by DICKSON and WATERS (1991,
Section 1). In general, the larger the value of /?, the better we would expect
this approximation to be.

In the following section we present an algorithm which can be used to
calculate G(u, y) and in Section 4 we present some numerical results illustrat-
ing the use of this algorithm. In Section 5 we present an algorithm for the
calculation of G{u,y, t) and finally in Section 6 we present some numerical
results illustrating the use of this second algorithm.

Before doing this we need some more notation. For k = 1, 2, ... we denote
by fk and F(k) the probabilities that the aggregate claims in a single time
period are equal to k and are less than or equal to k, respectively. Note that fk

can be calculated using PANJER'S (1981) recursion formula since the aggregate
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claims have a compound Poisson distribution with individual claim amounts
distributed on the non-negative integers.

3. THE PROBABILITY AND SEVERITY OF RUIN IN INFINITE TIME

By considering aggregate claims in the first time unit we can write
u u + y

G{u,y)= X fjG(u+l-j,y)+ £ / ; for M = 1,2, 3,...
j=o i=u+\

7 = 0

Hence

(3.1) G(u+l,y)=fo
G(u,y)-

7=1

for u = 1,2, 3 , . . . .
Thus we can calculate values of G(u,y) recursively from (3.1) provided that

we can calculate G(0,y), since

G(0,y)=f0G(l,y)

and hence

We can find G(0, y) by using a method similar to that of DUFRESNE (1988,
Section 3). For a fixed value of y, define

d(0) = G(Q,y) and

d(u) = G(u,y)-G(u-\,y) for u=\,2, 3, . . .

Then

^ / u + , - / , , f o r « = 1 , 2 , 3 ,
7 = 0

7=0

Also, note that

(3.3) G(0,y)

Now define 7(j) = J ] 5X rf(x) and #(*) =
x=0 x=0
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Note that both these generating functions exist for |s| < 1.
GO

Then J(s) = d(0) + Z sxd(x)

x=\<:=!
fxd(p)+ £ fjd(x+l-j)

7 = 0

fQd(l)+fod(O)

(using (3.2) and (3.3))
00 X

= Z *X Z /;
x=0 /'=0

= Z

x = 0 x = 0
•Xfx+y- Z

00

- 1 H(s)(J(s)-d(0))

-\)-s-1 H(s) - l ) H(s)

and hence

(3.4)

Now note that / ( I ) = lim G(x, y) = 0, and that H{\) = 1. Hence we

can find rf(0) from (3.4) by setting s = \. With s = 1, both the numerator and
denominator of (3.4) are zero, so by applying L'Hospital's rule we find that

d(0) = V xf

= y j/i + y y /,-= Y (1-FU
7=1 7=y+l 7=0

v - 1

(3.5) i.e. G (0 , j )=
7 = 0

Hence we can calculate G(0,y) as it is expressed in terms of the distribution
function of aggregate claims per unit time. Note that by letting y -> oo on the
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right hand side of (3.5) we find the mean of the distribution, i.e.
As lim G(0, y) = (i/(0), we see that the limiting form of (3.5) is consistent

y-*co

with the expression for the survival probability from initial surplus zero given
by DICKSON and WATERS (1991, Section 7). It is interesting to compare our
expression for G(0, y) with that for 0G(0,y). Integrating equation (4) of
GERBER et al. (1987) we find that, using their notation

(3.6) 0G(0,y) = - f (\-P(x))dx
Joc o

where X is the Poisson parameter, c is the premium income per unit time and
P(x) is the distribution function of individual claim amounts. The right hand
side of (3.6) equals the expected retained aggregate claim amount per unit time
under excess of loss reinsurance with retention level y, divided by the premium
income per unit time before reinsurance. The right hand side of (3.5) gives the
expected retained aggregate claim amount per unit time under stop loss
reinsurance with retention level y, divided by premium income per unit time
(i.e. 1) before reinsurance. By making this comparison, it is reasonable to
expect that, for a large value of /?, G (0, yp) will give a good approximation to
QG(0,y). The reason for this is that for a large value of ft, the probability of
more than one claim per unit time will be very small and hence stop loss
reinsurance will be virtually identical to excess of loss reinsurance. For
example, if ft = 100 and 6 = 0.1, then the probability of more than one claim
per unit time is 0.00004.

4. NUMERICAL EXAMPLES

Tables 1 and 2 show exact and approximate values for 0G(u,y) when the
individual claim amount distribution is exponential. For this distribution, we
can apply the methods of GERBER et al. (1987) to show that

0G(u,y) = exp{-0M/(l+0)}(l-exp {->>})
\+e

In Table 1, the premium loading factor, 9, is 10% and in Table 2 it is 20%.
The key for these tables is as follows:

(1) denotes the exact value of 0G(u, y),
(2) denotes the approximation to 0G(u,y), calculated using (3.5) and (3.1),

with the parameter /? = 50,
(3) denotes the ratio of the value in (2) to that in (1),
(4) as (2), but with /? = 100,
(5) denotes the ratio of the value in (4) to that in (1).
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TABLE 1

INDIVIDUAL CLAIM AMOUNTS ARE EXPONENTIALLY DISTRIBUTED

AND THE PREMIUM LOADING FACTOR IS 0.1

y = •

y = 3

y = 5

>• = co

(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)

u = 0

0.57466
0.57162
0.99473
0.57314
0.99736
0.86383
0.86259
0.99857
0.86321
0.99928
0.90297
0.90268
0.99969
0.90283
0.99985
0.90909
0.90909
1.00000
0.90909
1.00000

u = 20

0.09328
0.09279
0.99480
0.09303
0.99738
0.14022
0.14003
0.99863
0.14012
0.99930
0.14657
0.14653
0.99975
0.14655
0.99986
0.14756
0.14757
1.00006
0.14757
1.00001

u = 60

0.00246
0.00245
0.99491
0.00245
0.99741
0.00369
0.00369
0.99874
0.00369
0.99933
0.00386
0.00386
0.99986
0.00386
0.99989
0.00389
0.00389
1.00017
0.00389
1.00004

u = 100

0.00006
0.00006
0.99498
0.00006
0.99743
0.00010
0.00010
0.99883
0.00010
0.99936
0.00010
0.00010
0.99995
0.00010
0.99990
0.00010
0.00010
1.00045
0.00010
1.00012

TABLE 2

INDIVIDUAL CLAIM AMOUNTS ARE EXPONENTIALLY DISTRIBUTED

AND THE PREMIUM LOADING FACTOR IS 0.2

y = i

y = 3

>• = 5

y = co

(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)

u = 0

0.52677
0.52422
0.99516
0.52549
0.99758
0.79184
0.79080
0.99869
0.79132
0.99934
0.82772
0.82748
0.99971
0.82760
0.99986
0.83333
0.83333
1.00000
0.83333
1.00000

u = 20

0.01879
0.01870
0.99528
0.01875
0.99761
0.02825
0.02821
0.99879
0.02823
0.99937
0.02953
0.02952
0.99981
0.02952
0.99988
0.02973
0.02973
1.00010
0.02973
1.00002

u = 60

0.00002
0.00002
0.99544
0.00002
0.99765
0.00004
0.00004
0.99895
0.00004
0.99941
0.00004
0.00004
0.99997
0.00004
0.99992
0.00004
0.00004
1.00042
0.00004
1.00011

u = 100

0.00000
0.00000
0.98153
0.00000
0.99357
0.00000
0.00000
0.98162
0.00000
0.99435
0.00000
0.00000
0.97859
0.00000
0.99370
0.00000
0.00000
1.19154
0.00000
1.05533
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In all of our numerical examples, the discretization of the individual claim
amount distribution is the same as that given by DE VYLDER and GOOVAERTS
(1988, Section 8).

We note the following points about Tables 1 and 2:
(i) For all combinations of u and y, we get a better approximation to 0G (u, y)

when P = 100. We commented in Section 2 that this is what we expected.
The approximate values are less than the exact values for finite values of y,
but in most cases are very close to the exact ones. For a given value of w,
the approximations generally improve (i.e. the ratio becomes closer to one)
as y increases.

(ii) For a given value of y, the ratios do not always increase as u increases. An
example is when y = 3 in Table 2. This, however, seems unimportant,
particularly in Table 2 where the values of 0G(u,y) are so small for the
larger values of u. The approximate values in Table 2 agree to five decimal
places with the exact ones when u > 40 and /? = 100.

For each value of u, 0G (u, 5) is fairly close to the ultimate ruin(iii)
probability.

Tables 3 and 4 show values for 0G(0,y) when individual claims amounts
follow a Pareto distribution with distribution function

(4.1) B(x) = l - - 2

For this distribution, we can calculate exact values for 0G{u,y) only when
u = 0, and by integrating equation (3.6) we find that

0G(0,y) =
1

1+6 \+y

In Table 3 the premium loading factor is 10% and in Table 4 it is 20%. The
key to these tables is the same as for Tables 1 and 2, and the same method as
above has been used to discretize the individual claim amount distribution.

TABLE 3
INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION,

THE PREMIUM LOADING FACTOR IS 0.1 AND THE INITIAL SURPLUS IS 0

(1)
(2)
(3)
(4)
(5)

y = i

0.45455
0.45278
0.99612
0.45366
0.99806

y = 5

0.75758
0.75712
0.99940
0.75735
0.99970

y = 10

0.82645
0.82630
0.99982
0.82637
0.99991

y = oo

0.90909
0.90909
1.00000
0.90909
1.00000
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TABLE 4

INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION,

THE PREMIUM LOADING FACTOR IS 0.2 AND THE INITIAL SURPLUS IS 0

y= y = 10 y = oo

(1)
(2)
(3)
(4)
(5)

0.41667
0.41518
0.99644
0.41593
0.99822

0.69444
0.69406
0.99945
0.69425
0.99973

0.75758
0.75745
0.99983
0.75751
0.99992

0.83333
0.83333
1.00000
0.83333
1.00000

We note the following points about Tables 3 and 4:

(i) The approximations are better when /? = 100. Also, for a given value of /?,
the ratios become closer to one as y increases.

(ii) As in Tables 1 and 2, the approximate values are less than the exact values
for finite values of y and are closer to the exact values when /? = 100. The
difference between exact and approximate values is small in most cases.

Tables 5 and 6 show approximate values of 0G(u, y) when individual claims
have the Pareto distribution given by (4.1) and when u > 0. In this situation,
we cannot calculate exact values of 0G(u, y). In Table 5 the premium loading
factor is 0.1 and in Table 6 it is 0.2. The key to Tables (5) and (6) is as
follows:

(1) denotes the approximation to 0G(u,y), calculated using (3.5) and (3.1),
with the parameter /? = 50,

(2) as (1), but with P = 100.

We note that the pattern of results in Tables 5 and 6 is the same as that in
Tables 1 and 2. In particular, for finite values of y, the approximations are

TABLE 5

INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION

AND THE PREMIUM LOADING FACTOR IS 0.1

U = 20 U = 100 u = 200

y=

y = 5

y = 10

(1) 0.07966
(2) 0.07982

(1) 0.21114
(2) 0.21124

(1) 0.28207
(2) 0.28213

(1) 0.49815
(2) 0.49814

0.01289
0.01292

0.03591
0.03593

0.05068
0.05069

0.16486
0.16486

0.00359
0.00359

0.01013
0.01014

0.01455
0.01455

0.07633
0.07632
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TABLE 6
INDIVIDUAL CLAIM AMOUNTS HAVE A PARETO DISTRIBUTION

AND THE PREMIUM LOADING FACTOR IS 0.2

y =

y =

y =

y =

1

5

10

co

u = 20

(1) 0.04170
(2) 0.04178

(1) 0.11546
(2) 0.11551

(1) 0.15818
(2) 0.15821

(1) 0.30054
(2) 0.30054

u = 100

0.00343
0.00344

0.01027
0.01027

0.01528
0.01528

0.06915
0.06915

u = 200

0.00079
0.00080

0.00242
0.00242

0.00370
0.00370

0.03114
0.03114

larger when /? = 100, but are very close to each other for most combinations of
u and y. One interesting point about Tables 5 and 6 is that values of 0G(u, 10)
are not at all close to the values of 0G(u, oo).

Unfortunately, for larger values of u than those tabulated, this algorithm
appears to be unstable, giving probabilities outside the interval [0, 1] for both
distributions. DICKSON and WATERS (1991, Sections 5 and 7) present a
pragmatic approach to the problem of instability which can also be adopted for
this algorithm.

In terms of numerical accuracy, there is little to choose between this
algorithm to calculate 0G(u,y) and the one presented by DICKSON (1989). A
major difference between the algorithms is that the algorithm in Section 3 is for
a fixed value of y whereas DICKSON'S (1989) algorithm is for a fixed value of w.
A second difference is that to apply DICKSON'S (1989) algorithm, calculated
values for ultimate survival probabilities in our initial model are required to
calculate 0G(u, y). The above algorithm works in the opposite way in the sense
that the ultimate ruin probability is just the limiting value of 0G(u, y). A
similarity between the algorithms is that to perform the recursive calculations
in each case values from a compound distribution have to be calculated: for
the algorithm in Section 3, values from a compound Poisson distribution are
required; in DICKSON'S (1989) paper, values of the ultimate survival probability
were required and were approximated using values from a compound geomet-
ric distribution (see PANJER (1986)). Despite these similarities, we have found
that the algorithm in Section 3 generally requires less computer time.

5. THE PROBABILITY AND SEVERITY OF RUIN IN FINITE TIME

In this section we present a recursive algorithm for the calculation of G(u, y, t),
where u is a non-negative integer and y and ; are positive integers. Our
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algorithm is based on an algorithm presented by D E VYLDER and GOOVAERTS

(1988) for the calculation of finite time ruin probabilities. (See DICKSON and
WATERS (1991, Section 2) for comments on this algorithm.)

Our algorithm, which is derived by considering the aggregate claims at the
end of the first time unit, is as follows:

(5.1) G(u,y,\) = F(u + y)-F(u)

G(u,y,t) =

for u = 0, 1,2, ...

y = 1,2,3,. . .

t = 2 , 3 , . . .

We can use (5.1) to calculate G(u,y, t) by calculating successively:

G(w, y , 1) for w = 1 ,2 , ...,u+t— 1

G(w, y , 2) for w = 1 ,2 , ...,u+1 — 2

G(w,y,t-l) for w = 1, 2, . . . , w+ 1

and finally G(u,y, t).
We can reduce the number of calculations involved in this procedure by

discarding very small values of fk. This was a device used by D E VYLDER and
GOOVAERTS (1988, Section 5). Let s be some suitably small positive number.
We define a sequence {f/}cf=o as follows:

(5.2) f/=fj if F(j)<l-s

/ / = 0 if

It follows immediately from (5.2) that for any j > 0:

(5.3) £ fk-e <
k = 0 k = 0 k = 0

We now define GE(u,y, t) as follows:

(5.4) Ge(u,y, 1) = F(u + y)-F(u) if F ( w ) < l - e

= 0 if F(u)> 1-e

and for t = 2, 3, 4, ...

(5.5) G'(u,y,t) =
7 = 0

The advantage of using (5.4) and (5.5) rather than (5.1) is that the
summation in (5.5) is restricted to those values ofy for which ff is not zero.
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The error introduced by using (5.4) and (5.5) can be bounded as shown by the
following Result (see D E VYLDER and GOOVAERTS (1988, Section 5)):

Result:

(5.6) G(u,y, l)-e < Ge(u,y, 1) < G(u,y, 1)

and for t = 2, 3, ...

(5.7) G(u,y, t)-2ts < G£(u,y, t) < G(u,y, t)

Proof: The second inequality in (5.6) follows from the definition of Ge(u, y, 1);
the second inequality in (5.7) follows by induction from (5.6) and from noting
that/;8 < / ; for a l l /

To prove the first inequality in (5.6) note that G{u,y, 1) equals C(u, y, 1)
unless F(u) is greater than (1 — s), in which case the former is less than e and
the latter is zero.

It remains to prove that:

(5.8) G{u,y,t)-2te<Ge(u,y, t)

First note that (5.8) is true for t = 1 (and for all u and y). Suppose it is true
for a particular value of t (and for all u and y). Then:

G(u, y, t+ \)-G'(u, y,t+\)=Y, ifjG(u+ l ~h J, t)-f/GE(u+ 1 -j, y, t)}
7 = 0

+ G(u,y,l)-Gt(u,y,l)

{frf/}G(u+\-j,y,t)
7 = 0

f/{G(u+ 1 -j, y, t)-Ge(u+] -j, y, t)} + e

7=0 7=0

< s + 2et + s = 2s(t+\)

and (5.8) follows by induction.

6. NUMERICAL EXAMPLES

Table 7 shows approximate values of 0G(u,y,t) and, for comparison, of
oG(u, y) and oy/(u, t) for various combinations of u, y and t and two different
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TABLE 7

APPROXIMATE VALUES OF 0G(u,y, t) AND, FOR COMPARISON, OF 0G(u,y) AND oy/(u, I).
THE PREMIUM LOADING FACTOR IS 0.1

/

10

10

10

100

100

100

It

0

10

20

0

10

20

y

l
3
5

1
3
5

1
3
5

1
3
5

1
3
5

1
3
5

Exponential claim

(1) (2)
0G(u,y,t) 0G(u,y)

0.4899
0.7436
0.7795

0.0198
0.0301
0.0315

0.0002
0.0004
0.0004

0.5552
0.8426
0.8833

0.1625
0.2466
0.2585

0.0376
0.0571
0.0599

0.5747
0.8638
0.9030

0.2315
0.3480
0.3638

0.0933
0.1402
0.1466

0.5747
0.8638
0.9030

0.2315
0.3480
0.3638

0.0933
0.1402
0.1466

amounts

(3)
oV(«. 0

0.7854
0.7854
0.7854

0.0319
0.0319
0.0319

0.0004
0.0004
0.0004

0.8900
0.8900
0.8900

0.2606
0.2606
0.2606

0.0604
0.0604
0.0604

Pareto

(4)
oG(u,y,t)

0.3988
0.5800
0.6318

0.0225
0.0452
0.0575

0.0044
0.0094
0.0126

0.4404
0.6597
0.7305

0.0898
0.1784
0.2264

0.0407
0.0829
0.1074

claim amounts

(5) (6)
0G(u,y) oV(«.')

0.4501
0.6797
0.7564

0.1247
0.2500
0.3198

0.0792
0.1619
0.2108

0.4501
0.6797
0.7564

0.1247
0.2500
0.3198

0.0792
0.1619
0.2108

0.6939
0.6939
0.6939

0.0932
0.0932
0.0932

0.0278
0.0278
0.0278

0.8432
0.8432
0.8432

0.3820
0.3820
0.3820

0.2122
0.2122
0.2122

claim amount distributions: the exponential distribution with mean 1 and the
Pareto distribution specified by (4.1). Columns (1), (2) and (3) relate to the
exponential claim amount distribution and columns (4), (5) and (6) give the
corresponding information for the Pareto distribution. Throughout Table 7 the
premium loading factor, 9, has been taken to be 0.1. The key to Table 7 is as
follows:

(1)&(4) denote the approximate values of 0G(u,y,t). The figures in these
columns are values of Gc(ufi, yfi, ?/?(l + 9)) calculated using the
algorithm in Section 5. The parameter /? has been taken to be 20 and,
for a given value of t, the parameter s has been taken to be
10~3/(2?y9(l +9)) so that from (5.6) and (5.7) it can be seen that the
difference between G(uP, yfi, t0(l + O)) and Ge{uP, yfi, tfi{\ + 9)) is at
most 10"3.

(2) & (5) denote the approximate values of 0G(u,y). The figures in these
columns are values of G (w/?, y/J) with /? taken to be 20 and these have
been calculated as in Tables 1 and 5.

(3) & (6) denote the approximate values OV(U> 0- The figures in these columns
are values of if/(ufi, tfl, t[}{\ + 9)) and have been calculated using the
methods in DICKSON and WATERS (1991, Sections 3, 4 and 8).
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There are two interesting comments to be made about the figures in
Table 7.

The first is that for the exponential claim amount distribution the values of
G(u, 5, t) are reasonably close to the values of y/(u, t). This is not surprising
since ruin must be caused by a single claim and the probability that a single
claims exceeds 5 is very small (0.006738). However, these values are not so
close for the Pareto distribution and this is presumably because the probability
that a single claim exceeds 5 is much larger in this case (0.02778). The second
point is that, apart from the case u = 0, the values of G(u,y, t) are not very
close to the corresponding values of G(u,y), even for the largest value of /
(t = 100) This means that, for these ranges of values of u, y and / and for these
claim distributions, it would not be reasonable to use G(u, y) as an approxi-
mation to G(u,y, t).
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