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1. We shall show in this part the relation of generalised C.F.'s
to ordinary C.F.'s, in the main confining our attention to Stieltjes
type fractions. Moreover we shall bring out the part played by
Parseval's theorem in our development of the subject, and a property
of extremal solutions of the Stieltjes moment problem given by
M. Riesz.1

2. The Stieltjes moment problema (S.M.P.) concerns itself with
finding a bounded non-decreasing function ifi(x) in (0, oo ) such that

= /*„, n = 0, 1, 2, ,

where the /x's are real. The solution offered by Stieltjes depends
upon the characteristics of the C.F. associated with the formal
expansion

JoJo z + x
namely

and the corresponding C.F. (obtained by contraction)

A necessary and sufficient condition for the existence of a
solution of the S.M.P. is that a^> 0, j = 1, 2, 3, . . . ; the solution

00 CO

is unique if S ay diverges. If S a, converges there may be an
I I

1 M. Riesz, "Sur le probleme des moments," Arkiv for matematik, astronomi och
Jysik, 16 (12), 1-21 ; 16 (19), 1-21 ; 17 (16) 1-52.

2 See, for example, J . A. Shohat and J . D. Tamarkin, The Problem of Moments
(American Mathematical Society Surveys No. 1, 1943).
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154 L. R. SHENTON

infinity of solutions; of these there are two called extremal solutions,
which have the property that {(tu2«( ~ 2)} and {a>2»+i( — z)} are ortho-
gonal systems with respect to them, where x«(z)A"»(z) *8 the s *
convergent of (2).

The moments /x̂  and the elements a,- are related as follows:
2 . '2

A; Ai+ 1

[ Aj = I ^o» /**i • • • M2j - 2 I . A'j •-- I /*i .

where -j > 0. > 0-j > 0. > 0

[ A O = 1 , A1 = MO, A ' O = 1 , b'^iiy

Stieltjes showed that when there is a solution of the S.M.P. then

J?(«> <A)-X2,(z)A"o,(z) = min *,\ 1 r\ >
p Jo
p, 2 + a;

where p»( — 2) = 1, 2 > 0, and the minimum is taken over all poly-
nomials of degree less than or equal to s. For our present discussion
it is important to write these in the form

|o { ^ } (5)

2{X2S + 3(2)/^s + 3(2) - ^(2, 0)}= min | J ^ ( z + ^ W ^ J ^ - n ^ j (6)

the forms (5) and (6) showing the obvious relation to Parseval'a
theorem. Indeed from a formal point of view all we have to do
to find the even part of (2) is to write down the Parseval expansion
for

where f(z)=(z + x)~ \ f(x)= j\z +} 0 f(x)*dt(

and the Tchebicheffian orthogonal polynomials with respect to
dip(x) are related to those for dif(x) by the theorem of Christoffel

(Part 1, 14). Similarly the odd part of (2) follows from /(a;)2# (x)
Cx

where if> (x) = t{z + t)d>p(t).
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DETERMINANTAL EXPANSION FOR A CLASS OF DEFINITE INTEGRAL 155

On the other hand it has been proved by Riesz (loc. cit.) that if
ifi(z) is an extremal solution of the S.M.P. (or the unique solution)
then Parseval's theorem applies to all f(x)eL2,. An extension of
this which we require is the following: If ifj[x) is an extremal
solution of the S.M.P., then Parseval's theorem applies to f(x)eL*^

where <p (x) = Il(t)dtjj (t) and U(t) is a non-negative polynomial of
J o

fixed degree which is not identically zero. Clearly tji (x) is bounded
and non-decreasing and the moments are given by

= f = j xsU(x)d>lj(x)

= £ yr Pr + » where U(x) = £ yrx
r.

(r) W

Thus if ifi(x) is the unique solution for a given sequence {/*,} (assuming
ex

such a solution exists) then IL(t)di/j(t) is the unique solution for the
Jo

sequence {II(/z)}, provided U(x) is a non-negative polynomial. It is
of interest to recall that the S.M.P. is determined in the particular
cases1

f"
/*„ = xsxb~^ exp ( — kx«) dx, b > 0, k > 0, a ^ J (7)

/•OO

=
Jo

xb ~' exp (— kxa)dx (8)

where f(x) is a positive bounded function on (a, c© ), a > 0. Moreover
quite apart from the theory of continued fractions, Hardy 2 proved

that the S.M.P. is determined for ifj(t) = <j>(x)dx, <j>(x) :> 0, provided
Jo

\ n(t)]qewidt < oo for q ̂  1, 8 > 0.
Jo

I t will be noticed that the uniqueness of the moment problem

!

«>
xn4> (x)dx depends upon the order of magnitude of <j>(x) for

o
large positive x. Thus </>(x) = exp — a;1 does not approach zero
rapidly enough for a;->oo, and the Stieltjes C.F. corresponding to

I = F(z) diverges bv oscillation. But making the substitu-
Jo Z + X w e .

1 T. J. Stieltjes, Oeucres Completes, Vol. 2, pp. 505-506, 518-520.
2 G. H. Hardy, "On Stieltjes' ' probllme des moments,'" Messenger of Mathe-

matics., 46 (1917), 175-182 ; 47 (1917), 81-88.
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tion x = <2 we have z) = I and we shall show in the sequel

that the second order C.F. for F(z) converges. In general it may be
remarked that if if>(x) is the solution of a determined S.M.P. then
the C.F. (2), with elements given by (4) in terms of the moments, con-
verges for 2 > 0; but the Stieltjes C.F. corresponding to _ri£> =F(z\

Jo z-\-x' '
may not converge, 5 being a positive integer greater than unity.
However, the 3th order C.F. corresponding to F(z) does converge in this
case.

2.0 We now state some properties of the convergents of Stieltjes
C.F.'s which we require. We consider the expansions

dj>_(x) = 6 , 62 63 64

x+z 2 +1 + 2 +1 + "
b2b3 6465

= Z&\ as s -> 00
A) (9>

- z + 63 as s63 + 64 - z+ b 5 + bs - ••
assumed to be convergent for 2 > 0. Then we have the recurrence
relations

[W2S(Z) = (Z + b2s _! + 62s) W28 _ 2(2) - 62. - A s - 2">2« - 4(2)

\ w 2 , + l ( z ) = ( 3 + 62s + 62, + l ) w 2 S - l ( 2 ) - ^ 2 S &2S - 1^28 - 3(2) 5 = 2 , 3 , . . . (11)

and similarly for x*(z) with x0 = 0, xi = &i5 w0 = 1, a>j = 2,
from which we derive the determinantal relations 1

1 The following abbreviated notation for alternant types of determinants will be
used throughout:

) Br(zt) Cr(z3)

) Bs(z2) Cg(z3)

At(zt) Bt(z2) Ct(z3)
where any functional symbol cannot be separated from its argument.
Thus

t X2f(zl) «>2r(z2)

I =

^ ) , Be(z2), Ct{z3) I =

but I to.,r(?i)i oi"r+H.z2) I i s unambiguous. Similarly when the symbol of functionality
is tied to its suffix we shall write

+

Ar(z2)

Ct(zx)

C,(zt)

Ct(z3)

Thus /,(*),
fl(z) Pr(z)
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DETERBUNANTAL EXPANSION FOR A CLASS OF DEFINITE INTEGRAL 157

= II b,
V = 1

+ 2*4-2
| = 2 n b, (12)

V = 1

2*+l
= ( Z + 6 2 , 4 . 3 + ^2, + i) n 6 -

v = 1

+ 2« + 2
I X28 + I (z). W2, + 5 (2) I = 2(z4-62s + 4 + &2s + 5) n 6r .

V = 1

The relation between the even and odd convergents is given by *

* bir, (13)

+ «
I ^2,(0) , w2, + 2(2) I = OJ2S{0)OJ2! + 1(Z), X 2 » + i ( 0 ) = II 62r + i .

r = 0
Prom (12) it is easily proved that

+ 2r + l
Xsr(2l)> W2r + 2(2i)i ">2r + 4(za) I = (zl ~ 22) W2r + 2(Z2) II 6,

(14)
+ 2r+2

X 2 r + l ( z l ) . W2r + a(2l)» W2r + 5 (22) | = 2 l ( 2
2 — 2 l ) <*>2r + 3 {**) U bs-

» = 1

2.1 TAe orthonormal polynomials. We introduce the system {pr(
where

r00

MPf(*)Pt(*)#(*) = 8«. (15)
with recurrence relation

pr(*) = ( ^ a i - B , ) ^ . ^ * ) — Cr^r_2(a;), p_ ! = 0, r = 1, 2
Pol*) = *o- Pil^) - (^i* - -Bx)̂  (16)

and Ar = kr/kr - i > 0, Cr= Ar\Ar _ i > 0,
where kr > 0 is the highest coefficient in pr(x). Clearly Br>0, for

Br = Ar] *ps
r_a(a;)#(a0.

Moreover

I 2r + 1
l / fc-2= n 6,

r » = 1

- * = 6,6,

1 See J. Shohafc, " On Stieltjea Continued Fractions," American Journal of Math.,
LIV. (1932), 79-84.
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158 L. R. SHBNTON

by comparison with (11). We also require
lkrco2r(z) = (-yPr(-z)

r=0, 1, 2
3. A fundamental identity. We shall now prove an identity

which relates the generalised convergents of

where /„(*) = IT (x + 2*), to those of F(z).

We consider

?„ ^ ( r ) ^ ( x ) j = J, m; r = 1, 2,

where
I m

ft{x) = I I (x + xK), fjx) = n (x + yK), l<n,m^ n,
\ = i x = i

fi(x), fm(x), fn(x) are polynomials in x with real coefficients, /„(#) > 0
for x ̂  0 with distinct roots, and

J 0 g,(z)qs(x)Mz)d<P(x) = o r 4=

= <£r r=5 .
But from Part 1, paragraph 4, we have

) = (-)"%_" S | !»,( —a,),J», + i(-2e), ...l»r+»-i(-«»)ll».(*) (20)

? t l ( - 2 H ) ! . (21)
r

If now ip(x) is a solution of a determined S.M.P., and the integrals

f (fiWmx) a n ( j f L^5^11!d^(x) converge, then Parseval's theorem
Jo /nt3-) JO Jn\x)
applies to the functions fi(x)/fn(x) and fm(x)/fn(x) giving, with respectex
to the distribution function I fn(t)dip(t),

Jo

i = .t;0 AijAmh (22)

where

Ai&i = ["/*(*)*(*)#(*)• * = *,»», (23)
Jo

j = 0 , 1,2,. . . .
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DETERMINANTAL EXPANSION FOR A CLASS OF DEFINITE INTEGRAL 159

We also write

and (24) gives the rth convergent of the nth order C.F. for
F(zlt zt, .. .zn).

But from (19)

3 = 0

kj

Hence from (24)

r = l , 2, . . . . (25)

3 = 0,1, ...r — 1.

(26)

But since Z < w and the roots of /„(#) are distinct, we have

O , 2 ' , . . .2" ~ 2 , fA Z

1 ' 2 ' n - 1 ' Z n + X

K - Z 2 > - -
Using (27) and (18) in (26) we have

~n - 1
(27)

Xrfa)?

S'r + n - 1 - 2 r + 2n -

(28

where

g = ( - )« | 2o , si , . . . ^ : j

g. = ( - ) " f *?. z2. • ••*;;*>
= r, r + 1, ..r + n — 1

a = 1, 2, . . .»

and (28) consists of the ratio of the determinant of order n + 1 and
the determinant obtained from this by deleting its first row and
column. An alternative to (28) appears by using the partial fraction
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form of the elements in the first column, and we find

» = 1

s •
« = 1

IT (zr-z.)

«••=!

1n- (*,-
r = 1

OJ2r(2n)

r+2n - 2 ( z l ) + 2n -

(29)

If we take ojr(zK)» = | o>ir{zx), ... w2r + 2n _ 2(zB) | / I 2° , ^ ' • • • z^ " 2 '
then (28) and (29) give expressions for Xr(zx)" in terms of X2«(2A)

 an<i
^(zOi a =r to r + n — 1, A = 1 to n. We note that if in addition to
I < n, we have in < n, then I and m may be interchanged in (28)
and (29) yielding an identity between two forms of the numerator

The confluent case of (28) — (29) in its general form is complicated,
but particular cases may be obtained from first principles. Thus if
zx = z2 = Zj, j^n, then the limiting form appears by letting
z2 -> Zj, z3~>zs, Zj -> zx in succession, and subtracting appropriate
columns. The complication arises from the fact that ft{x) and fm{x)
may be functions of zx, A = 1 to n.

4.0 We shall now consider generalised continued fraction ex-

pansions for F (z1( z2, . . zn) of four kinds, namely

(i) convergent increasing sequences,

(ii) convergent decreasing sequences,

(iii) convergent sequences,

(iv) convergent sequences involving an arbitrary parameter.
In the main we shall confine our attention to second order C.F.'s for
F(zlt z2). We assume that ift{x) is the unique solution of a S.M.P.
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4.1 Increasing sequences. In (29) take / / = / m = l ,
fn(x) = {x + Zi) (x + z2) > 0, 2j =f=z2 (z2 = zx if zx is complex) so that

= lim —

x + Zl) (x + z2)

0

1

I

where the expansion, in view of (22), is an increasing sequence.
By (12) this may be written

+

^(z1)z,) = l.i.s..

• + 2r + 1

) | + 2 II £
L

6 ' (30)
(Zj — Z2) I CO2r(z2), W2r + zfej) I

where we use the abbreviation l.i.s. for limit of the increasing sequence.1

If in particular zt = z2 — z then by letting z? -> z, in (30) we have

Jo (Z + X) r _ > . I W2r(2)tCO,
(31)

z>0.

The general formula of this type is found similarly from (28) and

giveB

n!
[ ]

z > 0.

1 As a particular example suppose that by using (4) and an equivalence trans-
formation we find the convergent expansion

lim Xr(z) _ bx b2 b3 bi

~*w ^r(z) z + 1 + z + r + . . . .
3! _ 5! 7 j _ 9!

~ z z2 z3 z4 +

Then by (30) with .-, = i i = - a4, t > 0, we have a convergent expansion for
xe--/xdx^ 3! 7! , 11! 15! .

f°° -a-iI exp elf
But the Stieltjes C.F for F (i t, - i t) = \ J ^ + ^ IJ diverges by oscillation.
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There are of course other forms of increasing sequences for
F{zlt

 zi); f° r example we could use ft = x, fm = x, fn=x* (x + Zy){x + z2)
in (28). But (30) seems to be the simplest of this type.

4. 2 Decreasing sequences. When the roots Zj, z2 are distinct and
(x + zi) (x + z2) = a;2 + 2px -j- g, # — p* > 0, then we use the relation

r
Taking in (29) /, = fm = x + p, fn = (x + «t) (x + zt), ^(z.) = - 6,,

we have

(q — p2) F (z1( z2) = 6j — l.i.s.

and after using (12) this leads to 1

+ 2r+l
1̂) | ~ 2 Ft 6,
-, L ^ L _ . (34)

l) I V
^ 1 . 2) .d n ,

r-s-oo (Zx - Z 2 ) I W , ^ ) , «J2r+2(Zl) I

When g — p2 > 0 it will be seen that the difference between
corresponding convergents of (30) and (34) is

5r+l

- 4 n (35)

and this exceeds the absolute error in either of them.
Again, taking/J=/m=(a;4-2))8

)/n = (x+z j (a; + z8)
in (28) (taking the limiting form with z3 = zt = p), we find

F(zlt z2) = l.d.s.
r—^ « Z, — Z,

Z, — Z,

Z, Z.,

(36)

1 l.d.s. means Jimit of the decreasing sequence.
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In particular if p=0, q>0, then after using (12) and (13) we find

+
2 ) + 5 ' tr+&(G) | —2gu>',,r+3 (0) n b,

__ ] J s « = 1

^ ( ) I () () (0) | (37)

Another interesting possibility is to use the expression

where p > 0, (x + ZI)(B+Z2) = x* + 2px + q, taking fl=fm = x{x + 2p),
/„ = x(x + 2p)(x2 + 2px + q) in (29) with zx, z2, z3 = 2p, z4 = 0 and

I x(z*)M- z.)
ZJ - J == — o 1 (_

1 n' (Zr-Zf)
 8 = 1 n' (zr-zt)

 z* z*
r = 1 r = 1

Using (12) and (13) we find after some simplification
+ + ir-V-l
\ — 2qa)2r+3( 2p) Yl b,

1

-
" ~~ (z2-z1)\o)2r+1{z1),cj2r+3(z2),oJir+&(2p)\ (39)-

By setting z2 = zt + h, h-> 0, we have

Jo (T
_

0. (40)

4.3 Convergent sequences. The approximations considered in
4.1 and 4.2 provide lower and upper bounds, but there are other
approximations which merely converge. We shall briefly consider
four simple types, derived from (28) — (29).
(i) fi=x,fm=l,fn = x(x + z1){x + zi), Zi*zt, zlt zt, >O.

Then F(zlt zt) =

+ + 2r+2
| Xlr+l(Zl), W2r+3(22) I + | Xlr+l^t), Uir+Z&l) I ~ ( 2 1 + Z2) II 6, — (Zj-Zj)(w2 r + 2(3i) — OJ

lim . . I o
»-*"» (21 - 22) | CO2r+1(z2), ^2r+3(2l) | (41)
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In particular if zi = z2l using (12) we find
+

F(z, z) = lim * ««•+! ' " «r+s z bi3
+1 (42)

(ii) g - p 8 > 0. In (33) take fm = (a; •+ p)1, / , = 1, /„ = x* + 2px + g»
and we find an expression which is exactly the same as (30). This
brings to light an interesting identity, for we have the two expansions

4- 2px

- l i m !»i — i(«i — 2s)

+ 2r + 1
| - 2 II 6,

1

!) , a>2r+2(z2)

+2

q — p* > 0 or 2,, z2 > 0, [zx 4= z2).

The difference between corresponding convergents of the two
2r+l

expansions in (43) is therefore (z1 — 2,) IT bj | <02r(2i), w2r+2(z2) I
In terms of the persymmetric determinants1 mentioned in Part 3, 3 (a)
this comes to

0 ,u>

Mo Mi

Mi M2

,(D

Mr+l

fJ.r

0 Mf
M<0) Mo Mi

Mi M* Mr+l

Mr Mr+l • • • M2r

r + 1
"2 (44)

where

/* 50O

'21 = = [ ( * + pf
' J o
- 2 28 + 1

t = n tr

= Jo (a;
= f q)x>dtP(x)

and x2 + 2px -\- q is non-negative for 0 ;S x < co .

(43)

1 There is a similar identity for the diagonal determinants given in Part 3, 3 (b).
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(iii) If we use (38) with fi = x.fm = x + 2p, /„ = (x + zt) (x + z2) there
follows the expansion

+ + 2'-+1
| X2r(Zl). ">2r+2(22) | + | X2r(Z2), a>2r+2(Z,) | + (z1Zi)~

1(z^ + z\) H 6,.

F(zlt z2) = lira -. ~, —r r - r i — (45)
,-»» (2i - 2a) I w2r(z,), a^ofo) |

z,, z2>0, Zi 4= z2 or #— p->0,
and in particular

I »'» <*>. x'2r+>)+l + 2-
2 ' n V

.F(z, z) = lira r—r-r- j-r-, — . (46)
r _ > 0= | W 2r(z), W

2 r + 2 ( Z ) I

( iv ) ' U s i n g (38) wi th f, = x,fm = x(x + 2p), / „ = x (x* + 2px + q) w e
find

+ + ir+2
)» <"2 r + 3(z2) | + | X2r+l(22)> W Ft

F(Z,, Z») = li ; ;—j ; ; ; :—| I ATi

(z, - z2) | wjr+1(z,), a.2r+3(z,) | (47)
a;2 + 2 â; + g > 0 for x ̂  0

and in particular

( 4 8 )

4.4 Expansions with arbitrary parameters. An unusual type of
expansion appears if in (29) we take fi=fm = x+p,fn = (x+z)(x+p)i

where we assume z > 0, and p real. Then

F(Z) - f
J

J.l.S.
o z + x ,._>„ I aj2r(z), w2r+2(p), w'2r+i(p) I

for all real p * z .
If p = z then

+

r"~>°° | ">2r(2)> c o ' ,(Z)> "'"o ( 2 ) I

Similarly from /, = fm = x (x + p), /„ = a;(x + z) (x + p)2 we find

I X « r + i ( ) X + p 2 r + 5 (p ) | ^ ( 2 r + 3 ( p ) 2 2 r + 3 ( 2 ) ) n 6S
= l .d .s . . . . i _ _ (51)

' - > : o | a>2r+1(z), a>2r+3(p), w ' 2 r + 5 (P) I

z > 0, p =# 0, p 4= z.
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In particular if p = 0 then for z > 0

u lx.r+i(«)-Xi,+i(0
= 1.0.8.

+ 2r+2
' (0), ao" (0) I — 2z-1lzw' (0) — aj2r,3(z)) IT b,

and if 2> = z > 0 then

6,

(53)

Calling the rth convergents of (49) and (51) gr (z, p) and gr (z, p)
respectively, we may consider t h e sequences {max gr(z, p)} and

v
{min gr(z, p)} as approximations t o F(z), assuming that stationary

p
values exist. That Buch values do exist is seen from the following
asymptotic expansions:

2r+l

M 2 I 1 b<

^ *)=S^-^w + 0[p^as'Pl "* °° (54)

2r+2
, s «> n 4,

gr(z> p) = .X iu^ ) + - - 3 - 1 + od*"1) as f p | -^ co . (55)
^2r+l(2) ^ ^ + 1 («)

I t is evident from (54) that for p large and negative gr (z, p) is a

closer approximation to .F(z) than X2r(z)/^2r(z)', similarly for gr(z, p).
We shall return to a consideration of these approximations in a
later part.

I am indebted to a referee for several useful comments on Parts
3 and 4.
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