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Abstract

Here we study the dimension S(m, X) of the general fibers of the m-Gaussian map of a singular n-
dimensional variety X c P " . We show that for all integers a, b, c, d with n<a<b<c<d<N— 1
and a + d = b + c we have<5(a, X) + S(d, X) > S(b, X) + 8(c, X). If^(X, N - 1) is very large we give
some classification results which extend to the singular case some results of Ein.

2000 Mathematics subject classification: primary 14N05, 14M15, 14B05.
Keywords and phrases: Gauss map, projective variety, Grassmannian, Gauss map for singular varieties,
tangency, contact locus, dual variety, adjunction mapping.

1. Introduction

We work over an algebraically closed field K. We are mainly interested in the case
char(K) — 0. Let G(m + 1, N + 1) be the Grassmannian of all m-dimensional
projective subspaces of P^. Let X c P " b e an integral variety with dim(X) = n.
For every integer m with n < m < N — 1 the m -Gauss map ymtX of X and the
w-defect S(m, X) of X are defined in the following way. Set A'(m, X) := {(P, L) e
XKg x G(m + \,N + \): TPX c L) and let A(m, X) be the closure of A(m, X) in
XxG(m + l,N + l) cPNxG(m + l,N + l). Letjr, : Xx G(m + l, N + l) -* X and
7T2 : X x G(m+1, N+1) -> G(m+1, N+1) be the projection on the first (respectively
second) factor. Set ymX '•= n2\A{m, X) and call ym,x(X) = n2(A(m, X)) the m-
Gauss image of X. Let 8(m, X) be the dimension of the general fiber of ym,x, that is,
the dimension of the contact locus of a general m -dimensional linear subspace of PN

which is tangent to X at some smooth point. In particular, yN-\,x(X) C PN* is the
dual variety X* of X and (with the identification of A'{n, X) with XK$) the morphism
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120 E. Ballico [2]

Vm.x\XKg is the usual Gauss map from Zr e g to G(m + I, N + I). For the background

on these topics, see [16] or [13].

In Section 2 we study the finite sequence of all S (m, X), n < m < N — 1, and

prove that for all integers a, b, c, d with n < a < b < c < d < N — 1 and

a + d = b + cwe have 8(a, X) + S(d, X) > S(b, X) + S(c, X) (Remark 2) and
that if 8(m, X) > S(n, X), then <5(m, X) > S(m - 1, X) (Proposition 2). We give
examples which, in our opinion, show that not much more is true. Furthermore,
we study the relations between the Gauss defects of X and the Gauss defects of the
intersection of X with a general hypersurface of degree d. In Section 3 we extend
some of the results of [3] and [2] to the singular case; roughly speaking, we have a
full extension if dim(Sing(X)) = 0 (excluding cones). In the last section we discuss
not the dimension of a general fiber of a Gaussian map, but the existence of positive
dimensional fibers of the ordinary Gauss map ynX. Of course, by Zak's Tangency
Theorem ([16, Theorem 1.7]) the variety X cannot be smooth.

2. The sequence of Gauss defects

In this section we study the sequence <5(ra, X), n < m < N — 1, of all Gauss
defects of an integral n-dimensional variety X C PN • Just by the definition of the
Gauss defects we have S(m, X) < S(m + 1, X) for every X and every integer m
with n < m < N — 2. Something more can be said (see Remark 2, Proposition 2
and Example 1), but in our opinion, not much more even for smooth manifolds (see
Example 1, Example 2 and Example 3), without making some very strong restrictions
on the geometry of X. Then we consider the relations between the Gauss defects of X
and the Gauss defects of the intersection of X with a general hypersurface of degree
d>\.

LEMMA 1. Let n, s and N be fixed integers with n < s < N. Let X c PN be an
integral n-dimensional variety and let Z C PJ be a general projection of X. X is
reflexive if and only if Z is reflexive.

PROOF. Use the Hessian criterion for reflexivity ([11, Theorem 12], or [6, Theo-
rem 3.2 and Corollary 3.3]). •

REMARK 1. If X is reflexive (and in particular if char(K) = 0), then for any n-
dimensional X and any m the general fiber of ym:X is a linear space (see [11, page 173]
for the case m = N — 1 and reduce to this case taking a general projection into
pm+i. m e g e n e r a ] projection of a reflexive X into Pm+1 is reflexive by Lemma 1);
alternatively, if char(K) = 0, see [13, 5.2 (ii)].
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[3] On the Gauss maps of singular projective varieties 121

PROPOSITION 1. Let X c P^ be an integral n-dimensional reflexive variety. Then
for all integers m with n<m<N — 3we have

8{m + 2, X) + 8{m, X) > 2S(m + 1, X).

PROOF. Fix a general fiber F of ym,x and two general fibers F', F" of ym+i,x with
F c F' and F c F". Thus for dimensional reasons we have F = F' D F". Set
G := (F'U F"). Hence G (respectively F' and F") is a sufficiently general fiber
of ym+2,x (respectively ym+\,x)- Let T (T, T", R respectively) be the contact locus
of F ( F \ F", G respectively). By the reflexivity of X the sets T, V, T" and fl are
linear spaces with dimension respectively 8(m + 2,X), 8(m + 1, X), 8(m + l,X)
and <5(wi, X) (Remark 1). Since T = T D 7" and T U 7" c /?, we conclude the
proof. •

REMARK 2. Proposition 1 is a convexity result. Indeed, it implies that for all
integers a, b, c and d with n<a<b<c<d<N — 1 and a + d = b + cwe have

«(a, X) + $(</, X) > 8(b, X) + 8(c, X).

PROPOSITION 2. For fixed integers n, m and N with 0 < n < m < N, let X be an
integral n-dimensional subvariety ofPN with 8(m, X) > 8(n, X). Then 8(m, X) >

PROOF. Fix a general P e XKg and a general m -dimensional linear space M with
dim(M) = m and TPX c M. Let C (respectively C ) be the contact locus of M
(respectively TPX). Since dim(C) = 8(m, X) > 8(n, X) = dim(C'), there is a
hyperplane A of M containing TPX but no irreducible component of C, that is, with
contact locus, C", of dimension at most dim(C) — 1. Hence we conclude the proof by
the generality of P, M and A. •

The following example shows that in general in the statement of Proposition 2 we
cannot replace the assumption 8(m, X) > 8(n, X) with the assumption 8{m, X) > 0.

EXAMPLE 1. Let X c P^ be the n-dimensional cone over an (n — 1)-dimensional
variety Y c P"~' with 8{n, Y) = 0. Then S(n + 1, X) = 8(n, X) = 1.

PROPOSITION 3. Let X be an integral n-dimensional reflexive subvariety ofPN with
S'mg(X) finite. X is a cone if and only if8(n, X) > 0.

PROOF. If X is a cone we have 8(n, X) > 0. Assume 8{n, X) > 0. Since X is
reflexive, the general contact locus of an n-dimensional tangent space is a positive
dimensional linear subspace (Remark 1). Since Sing(X) is finite, either X is a cone
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with Sing(X) as a vertex or the general contact locus is contained in Xreg. The latter
case is excluded by Zak's Theorem of Tangency ([16, Theorem 1.7]). •

In our opinion the following two examples show that if we do not make some
restrictive assumptions the finite sequence of all Gauss defects of a smooth manifold
does not satisfy restrictions much stronger that the ones given by Remark 2 and
Proposition 2. However, since smooth manifolds with 'bad' Gauss maps are very
particular, it should be possible to make reasonable assumptions and obtain better
results. For instance, if 3« < 2N all smooth n-dimensional manifolds X c P " with
dim(X) = dim(X*) are classified ([3, Theorem 4.5]).

EXAMPLE 2. Let X c PN be a smooth n-fold which is a P""1 -bundle over a
smooth curve C. Call n : X —• C the projection. For every P e X, we have
7T-l(n(P)) = Pn-land7t-l(n(P)) C TPX. IfX is reflexive, then 8 (N-1, X) = n-2
([10, page 360]). For the reverse when X is reflexive, see [2, Theorem 3.1], or, if
char(K) = 0, [3, Theorem 3.2]. Furthermore, for general P e X and H,R € X*
with TPX C H D R, the contact loci, LH and LR, of H and R are hyperplanes of
7T"'(7r(P)). Since LH n LR is the contact locus of H D R, we obtain that either
8(N -2,X) = S(N-l, X) or 8(N -2,X) = 8(N - 1, X) - 1. By Lemma 2 we
must have 8(N — 2, X) = 8(N - 1, X) — 1. Hence, using Proposition 1, we obtain
S(m, X) = max{0, n — I — N + m] for every integer m > 0.

The following example shows a trivial way to obtain singular non-normal varieties,
X, which have large S(N - 1, X).

EXAMPLE 3. Let Y c PN+i be a smooth Pm~'-bundle over a smooth curve (Ex-
ample 2). Fix general P ' , P" € K and take a general point F on the line ( P \ P">
spanned by P' and P". L e t / : PN+i \ {P} - • P " be the projection from P. Set
X := / (JO. Since <P', P"> n K = [P't P") for large A ,̂ Y is the normalization of X.
By construction X has a non-normal point / (P') = / (P") and for large TV (for fixed
n) this is usually the only singular point of X. If Y is reflexive, then X is reflexive.
Hence by [10, page 360], we have 8(N — 1, X) > n — 2 and (except again trivial
cases like N = 3 and Y a smooth quadric surface) we have 8(N — 1,X) = n — 2.
But we have similar 'non-normal scrolls', X', whose normalization g : Y' - • X' has
/t°(X\ £*(^rO)) ) = Af + 1, that is, the map Y' ->• PN corresponds to a complete lin-
ear system; even in these cases [10, page 360], shows that 8(Y', N — 1) > n — 2 if Y' is
reflexive. More generally, if the n-dimensional reflexive variety Z C P^ is uniruled by
/-dimensional linear spaces we have 8 (N — l, Z) > t—\. If W = [f (x0,... ,xN) — 0}
is a hypersurface of PN, there is a necessary and sufficient condition (at least if
char(K) = 0) to have 8 (N — 1, W) > 0: a certain projective Hessian matrix must
be divisible by / (for the case N = 3 this is an old theorem of Schlafli, see [5,
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page 23]). Hence there are non-normal reflexive surfaces W C P3 uniruled by lines
with 8(2, W) > 0 .

Example 2 shows why in the statements of Proposition 7 and Proposition 8 we only
classified the normalization of X and why in the statement of Theorem 1 we have to
assume that X is normal.

Now we study the relation between the Gauss defects of X and the Gauss defects
of the intersection of X with a general hypersurface of degree d > 1.

LEMMA 2. Fix integers n, m and N with 2 < n < m < N. Let X C PN be
an integral n-dimensional variety and Y a general hyperplane section of X. Then
8(m- 1, Y) >8(m,X)-\.

PROOF. We may assume 8(m, X) > 2. Fix a general P e X and a general m-
dimensional linear subspace M of P^ with TPX c M. Let C be the contact locus
of M. Take a general hyperplane H containing P and set Y := X fl H. By the
generality of P, Y is a general hyperplane section of X. By the generality of H, we
have dim(M fl H) = m — 1 and dim(C n H) = dim(C) — 1. Furthermore, fixing
H and varying P in Y we see that P may be considered a general point of Y. Since
C n H is contained in the contact locus of M D H with Y, we obtain the lemma. •

REMARK 3. Assume char(K) ^ 2* Let X c P" be an integral variety with
dim(X) > 2. For a general hyperplane H of PN, we have 8(N - 2, X <1 H) =
max{0, 8(N -l,X)-l] ([6, Theorem 5.9]).

PROPOSITION 4. F/JC integers n, m and N with 2 < n < m < N. Let X C PN be an
integral n-dimensional variety and Y a general hyperplane section ofX. Then

8(m-l,Y) = max{<5(m, X) - 1, 0}.

PROOF. The case m — N — 1 of the result was proved in [6, 5.9 and 5.12]. Use
Lemma 1 to reduce the general statement to the case m = N — \. •

REMARK 4. Fix integers d, n and N with 2 < n < N and d > 2. Let X c P" be an
integral n-dimensional variety and Y the intersection of X with a general hypersurface
of degree d. By [6, Theorem 5.6], if either char(K) ^ 2 or n is even, then Y is
reflexive and 8 (N - 1, Y) = 0. It is easy to check directly that 8(N - 1, Y) — 0 even
in the remaining case char(K) = 2 and n odd using a Bertini type argument. Hence
for every integer m with n < m < N we have 8(m, Y) = 0.

In positive characteristic it is natural to give criteria for the separability of a Gauss
map ym,x- In the case m = N — I this is exactly the reflexivity of X (see [10,
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Theorem 4]). There are at least two natural definitions for the inseparability degree
of Gaussian maps ([12, page 2]); for their coincidence if X is a curve, see [9]; for a
discussion of the general case, see [12] and the last part of the introduction of [9].

Using Lemma 1 for s = m + 1 and the corresponding result for YN-\,X ([H,
Theorem 4]) we obtain the following result.

PROPOSITION 5. Fix integers n, m and N with n < m < N. Let X c P " be an
integral n-dimensional variety. The map ymx is separable if and only if YN~\,X is
separable, that is, if and only ifX is reflexive.

3. Adjunction theory and Ein's papers

In this section we will try to follow as closely as possible [3] and [2] to obtain
results on a singular variety with 8(N — 1, X) large. Roughly speaking, we are able
to handle isolated singularities, while in the general case we need to add an additive
factor dim(Sing(X)) to the assumptions of every statement. If A is a closed subvariety
of the variety B, let NA/B be the normal sheaf of A in B.

REMARK 5. Let X c PN be an n-dimensional integral reflexive variety with
8(N - 1, X) > 0. Let LH be the contact locus of a general H € X*. Since X
is reflexive, LH is a linear space of dimension 8(N — 1, X) ([11, page 173]). Hence
if Sing(Z) is finite, then either LH C XKg or X is a cone.

DEFINITION 1. Let X be an integral n-dimensional variety, n > 2, with 8(N — 1,
X) > 0. Let n be the covering family of all 8(N — 1, X)-dimensional linear spaces
which are limits of the family of all 'general' 8(N — 1, X)-dimensional contact loci.
Since X is closed in P^, every R e FI is contained in X. Since X* is irreducible, FT
is irreducible. We will say that X satisfies Condition ($) if for a general R € FI we
have R C ATreg. Let T be the covering family of lines obtained as closure of all lines
in the contact loci of general M e X*, that is, let T be the set of all lines contained
in some R e FI. We will say that X satisfies Condition (£) if for a general D € T we
have D c Xreg.

By Remark 5 Condition ($) is satisfied if Sing(X) is finite and X is not a cone.
Obviously, Condition ($) implies Condition (£).

REMARK 6. Let X c PN be an n-dimensional integral reflexive variety with 8(N -
1, X) > 0. We assume char(K) ^ 2. Here we assume that the contact locus, L,
of a general H € X* is contained in Xreg. We will follow quite closely [3] and [2]
and obtain some informations on X. In [3] and [2] the variety X was assumed to
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be smooth. Since X is reflexive, L is a linear space of dimension S(N — 1, X) ([11,
page 173]). Set k := S(N — 1, X). Since L C Xreg, the normal sheaf NL/X is locally
free of rank n — k. Since L c ^reg. ^ is reflexive and char(K) ^ 2, the proof of [3,
Theorem 2.1] works verbatim and gives [3, Theorem 2.2], that is, NL,X = N*L/X(l).
The proof of [3, Theorem 2.3] works verbatim and gives that for every line T c X
we have

NL/x\T= &?(n-k)/2 © ^ r ( l )®("- t ) / 2 ,

in particular, NL/X is a uniform vector bundle and if rank(A^z./X)< dim(L), that is, if
n < 2k, then

by a theorem of Tango on uniform vector bundles on P* valid in arbitrary characteristic
([14] and [15]). As in [3, Theorem 2.3, part (b)] we obtain the existence of an
irreducible family of dimension (n + k — 2)/2 of lines on X and that for any P € T
there is a family of dimension (n + k — 2)/2 of lines in X through P. Using the
extension of [3, Theorem 2.3], we obtain Landman's parity criterion given in [3,
Theorem 2.4], that is, we obtain that n — 8(N — 1, X) is even (of course, only under
the assumption L C XK$). For the same reason we have parts (a), (b), (c) and (d) of
[3, Theorem 2.4], but not (a priori) part (e) of [3, Theorem 4], because of dim Sing(X)
we cannot apply the part of Lefschetz theorem stating that if 2n > N + 2, then Pic(X)
is generated by the hyperplane class. "̂

PROPOSITION 6. Assume char(K) ^ 2. Let X C PN be a two-dimensional integral
reflexive variety with 8(N — 1, X) > 0 and Sing(X) finite and not empty. Then X is
a cone.

PROOF. We have 0 < (5(N - 1, X) < 2. If the contact locus of a general H e X*
intersects Sing(X), X is a cone by Remark 5. If the contact locus of a general H € X*
does not intersect Sing(X), then 2 — S(N — 1, X) is even by Landman's parity criterion
extended in Remark 5, contradiction. •

PROPOSITION 7. Assume char(K) ^ 2. Let X c P", N > 5, be a reflexive integral
variety with dim(X) = 3, Sing(X) finite and 8(N - 1, X) > 0. Let g : Z -+ X be the
normalization. Then either X is a cone or Z is a smooth scroll, say n : Z —*• C, over
a smooth curve C and g sends every fiber ofn isomorphically onto a plane contained
inX.

PROOF. By [2, Corollary 3.2 (a)] we may assume Sing(X) £ 0. Since X is
reflexive, the generic contact locus is a linear space. Assume that X is not a cone.
Hence there is an irreducible covering family T of lines such that for a general L € T
we have L C Xreg, L is a contact locus and NL/X = <?z.(l) © &• Fix a general L € T
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and a general P € L. Hence P may be considered as a general point of X. Since X
is not a cone and Sing(Z) is finite, no line containing P intersects Sing(X). Hence
by the deformation theory there is an irreducible one-dimensional family T(P) C T
formed by the lines containing P. Since hl(L, NL/X(—P)) = 0, T(P) is smooth
at L. Set F(P) := {Q € X : Q e D for some D e T(P)}. Since two distinct lines
through P intersect only at P, F(P) is a two-dimensional subvariety of X. We have
F{P) n Sing(X) = 0 for general P. F(P) is a cone with vertex P and hence 7>X
contains F(P).

First assume that for general P the variety F(/>) is not a plane. Let R c PN

be a general hyperplane containing P. Set K := X n #. Since P is general, K
may be considered as a general hyperplane section of X. Thus <5(N — 2, K) =
<5(N - 1, X) - 1 = 0 (Remark 3). Hence TPY n Y has P as a unique singular point
and this singularity is an ordinary quadratic singularity ([6, Theorem 3.5], or [11,
Theorem 17, page 179]). Thus R D F(P) has at most two irreducible components,
thatis, F(P)isaquadraticcone. Since N > 5andF(P) C TPX, for a general H e X*
with TPX c H the scheme H DX contains at least two irreducible components, one
of them (that is, F(P)) being singular. Hence YDH = XDH DR does not have an
ordinary quadratic singularity as a unique singular point, contradiction.

Now assume that F(P) is a plane. Since F(P) D F(P') = 0 for general P,P' e X,
we have NF(P)/X = @F(P- Since the Grassmannian G(2, N +1) is complete, for every
Q e Sing(X), there is at least a plane V(Q) € T with Q 6 V(Q). Fix any such
V(Q) and a plane F e T with F D Sing(Z) = 0. First assume F n V(Q) £ 0.
Since F D Sing(X) = 0 and both F and V ( 0 are planes, D := F n V(Q) is a line.
For every P e £>, we have F U V ( g ) c 7>.Y. Hence TPX is the 3-dimensional
linear space M spanned by F U V(Q), that is, M is tangent along D to X. Since
D C F C Xreg, this contradicts Zak's Tangency Theorem ([16, Theorem 1.7]). Hence
V(Q) n F = 0 for every F e T with F D Sing(X) = 0. For the same reason,
if Q € Sing(X) and Q' i V(Q), then V{Q) n V(g') = 0 for any V(Q') with
<2 £ V(<2')- By construction we have a smooth affine curve A parametrizing an open
subset of planes in X, an open subset £2 of XKg and a morphism n' : £2 -*• A with
fibers as planes of T not intersecting Sing(X). Fix B € XKg. For a general hyperplane
R through B, the surface X n R is smooth and it is a P1-bundle nR : X OR -> CR over
a smooth curve CR. If char(K) = 0 and Z is assumed to have only locally complete
intersection singularities, then Z is a P2-bundle over CR by a theorem of Badescu ([1,
Theorem 5.5.3]); in the general case we need to work more. Using n' we see that
CR = CR' for any R, R' and that in this way we define a fibration nK% : XKg -*• CR

such that nKJ U = n'. Set C := CR. Varying the hyperplane R we obtain that for
every plane V € T we have Card( V\ V (1 Sing(Z)) = 1. Let T C X x G(3, N + 1)
be the closure of the restriction to the fibers of n' of the incidence correspondence and
let 0 be the normalization of T. Since Card(V\V (1 Sing(X)) = 1 for every plane
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V e T, we obtain a morphism n" : $ -*• C. The projection <J> -*• X factors through
a birational morphism a : <t> -> Z. Since dim(X) = 3 and X is not a cone, for every
Q € Sing(X) there are only finitely many planes containing Q and contained in X.
Hence a is finite. Since Z is normal, or is an isomorphism and hence Z is a P2-bundle
over the smooth curve C. In particular, Z is smooth. •

PROPOSITION 8. Let X c P", N > 6, be an integral variety with dim(X) = 4,
Sing(X) finite and 8(N — 1, X) > 0. Let g : Z -> X be the normalization. Then
either X is a cone or Z is a smooth scroll over a smooth curve, say n : Z -*• C, and g
sends every fiber of it isomorphically onto a 3-dimensional linear subspace contained
inX.

PROOF. By [2, Corollary 3.3 (b)], we may assume Sing(X) £ 0. By Remark 5
either X is a cone or Condition ($) is satisfied and in particular dim(X) — 8(N — 1, X)
is even (Remark 6). Hence, S(N - 1, X) = 2. Fix Q e X and let Z be a general
hyperplane section of X containing Q. By Bertini's theorem we have Sing(Z) c {Q}.
We have 8(N - 2, Z) > 8(N - 1, X) - 1 = 1. Hence we may apply Proposition 7 to
Z and then apply the same proof taking Z instead of X D R. •

THEOREM 1. Assume char(K) ^ 2 . Let X C PN be an irreducible normal re-
flexive n-dimensional variety with Sing(Z) ^ 0 and 8(N — I, X) > 0. Assume
28(N — 1, X) > n 4- dim(Sing(X)). Then Sing(X) is a linear space and X is a cone
with Sing(X) as its vertex.

PROOF. Set it := 8(N — 1, X). Using Remark 3 and the preservation of reflexivity
for general hyperplane sections ([10, Theorem 22 (i)], or [6,5.9 and 5.12]), we reduce
the general case to the case in which Sing(X) is finite; it is quite subtle (but true
in arbitrary characteristic) that if a general hyperplane section of X is a cone, then
X is a cone (see the second part titled 'When is the general hyperplane section of
a variety a cone?' of [7]). In order to obtain a contradiction we assume that X is
not a cone. Since Sing(X) is finite and X is not a cone we may assume Condition
($) (Proposition 2). By Remark 6 and Proposition 6 we may assume n > 5. Fix
a general P € X and a general contact locus Lo with P € Lo. We will follow the
proof of [2, Theorem 4.2]. Let F(P) (or just go as in [2, page 903]) be the connected
component containing Lo of the set of all ^-dimensional linear spaces in X which
are deformations of Lo and contain P; parts (a), (b) and (c) of [2, Lemma 4.2] work
verbatim by Condition ($) because these parts concern only a general element of F(P);
part (d) of [2, Lemma 4.2] works for the elements L € F(P) with / n Sing(X) = 0;
since Sing(X) is finite, part (d) of [2, Lemma 4.2] is true by Proposition 2. Thus
we may obtain [2, Lemma 4.3], that is, the existence of a linear space Do C X with
LQ C DO and dim(D0) = (n + k)/2; Do is the union of all fc-planes in the family
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F(P). Since Do depends only on P (assumed to be general), we will set D(P) := Do.
Then we conclude as in the proof of Proposition 7. •

If char(K) = 0 and Z is assumed to have only locally complete intersection
singularities, Theorem 1 follows from a theorem of Sommese ([1, Theorem 5.5.2]).

4. Zak's Tangency Theorem

In this section we discuss the existence of positive dimensional fibers of the ordinary
Gauss map y,,,*. Of course, by Zak's Tangency Theorem ([16, Theorem 1.7]) the
variety X cannot be smooth.

REMARK 7. Let X c PN be an integral n-dimensional variety, P e X and let
V C P^ be a linear space with dim( V) = n which is ./-tangent to X at P in the sense
of [16, Definition 1.6]. Then X must be smooth at P and V — TPX. This trivial
observation shows why in the case of the ordinary Gauss map Theorem 1.7 of [16]
covers only the case in which the contact locus is contained in Xn$. This observation
was one of the motivations for this paper.

EXAMPLE 4. Here we make no restriction on char(K). Fix homogeneous coor-
dinates xo,...,X3 of P3 and set H := {x0 = 0). Fix an integer s > 1 and inte-
gers au ..., as, m\,..., ms with a, > 1 and m, > 2 for every i. Fix an integer
d > J2'i=i a'mi- In lhe plane H we fix * distinct integral curves Rx,... ,RS with
deg(fl,) = a,-. Set R := U!=1 Ri- We want to find a degree d normal surface A c P3

such that H is tangent to A at each point of Rng and such that the scheme A C\ H
contains each curve Rt with multiplicity /n,. Let B be any reduced curve contained in
H with deg(S) = d - £*=1 a.-m,- and card(fi n R) finite; if d = £*=1 a;/n; we take
B = 0. Set C := B U (\Js

i=l «,-/?,•). Hence C is a degree d plane curve. We will show
that we may find such a normal surface A with H 0 A containing C (as schemes),
A smooth at every point not on H and smooth at every point of B U Sing(/?). Let
W be the linear system of all degree d surfaces in P3 containing C and hence either
containing H or with C as a scheme-theoretic intersection with H. By the definition
of W and Bezout theorem every A' e W not containing H is smooth at each point
of fireg. Taking reducible surfaces W U F ' e W with F' as any degree d — 1 surface
we see that the linear system W has no base point outside C and separates the tangent
vectors at each point of P 3 \ / / . Hence by Bertini's theorem ([8, Theorem 6.3, part 4])
general F € W is smooth outside H. Since Sing(/?) U Sing(fl) is finite, we easily see
that general A' e Wis smooth at each point of Sing(#) U Sing(fl). Let X = [f =0}
be an irreducible degree d surface containing C. Since H = {x0 = 0} and X contains
every irreducible component of R with multiplicity at least 2, the Euler sequence of
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TP3 shows that Sing(X) n R = H n {df/dx0}. Hence we see that such a general X
has exactly (d — 1)( £*=1 a,) singular points, each of them on RKg, exactly (d — l)a,
of them on Rj,l < i < s, and that each of these singular points is an ordinary double
point. However, taking particular equations / we may find X with a smaller number
of singular points, although these singular points may be non-ordinary or with higher
multiplicity. For instance, take s = 1 and R smooth. Fix a degree d—\ homogeneous
polynomial g(x{, x2, *3) in 3 variables such that w := card(/? D [g(xux2, x3) = 0})
is as small as possible. For deg(/?) < 3, we may take w = 1. There exists a degree d
polynomial/ with {/ =0}(~) H = C and with df/dx0 = g(x{, x2, x3) mod (xQ). At
least in some cases (for instance when R is a line) for the general polynomial / with
these properties the surface {/ = 0} is smooth outside R.

Now we will show that, at least for non-normal varieties, we cannot extend Zak's
Tangency Theorem making assumptions on their birational model, for instance to be
very ample.

EXAMPLE 5. Fix an integer n > 2, a smooth n-dimensional variety Z and an
effective Cartier divisor C C Z. Let D be an effective divisor such that the line
bundle &2(2C + D) is very ample. Consider the complete embedding 0 of Z into
P* := P(//°(Z, OZQ.C + £>))) and let H be the hyperplane of P1 corresponding to
the divisor 2C + D. By construction H is tangent to <p(Z) along </>(C). Assume that
for a general linear subspace M of H with dim(M) = s — n — 2, the linear projection
of Ps from M into P"+1 induces a birational map of <j>(Z) and of C. Let X and C be
the corresponding images. Assume that X is not singular at the general point of every
irreducible component of C". Let Fl be the hyperplane of P"+1 image of H through
the projection from M. By construction n is tangent to X along C and X is birational
toZ.
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