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Abstract

Here we study the dimension §(m, X) of the general fibers of the m-Gaussian map of a singular n-
dimensional variety X C P¥. We show that for all integersa, b,c,dwithn <a<b<c<d<N-1
anda+d = b+ cwehaved(a, X)+8(d, X) = 8(b, X)+6(c, X). If §(X, N — 1) is very large we give
some classification results which extend to the singular case some results of Ein.
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1. Introduction

We work over an algebraically closed field K. We are mainly interested in the case
char(K) = 0. Let G(m + 1, N + 1) be the Grassmannian of all m-dimensional
projective subspaces of P¥. Let X C PV be an integral variety with dim(X) = n.
For every integer m withn < m < N — 1 the m-Gauss map y,, x of X and the
m-defect §(m, X) of X are defined in the following way. Set A'(m, X) := {(P,L) €
Xweg x G(m+1,N +1): TpX C L} and let A(m, X) be the closure of A(m, X) in
XxGm+1,N+1) CP"xG(m+1,N+1). Letm, : XxG(m+1, N+1) — X and
m: XxG(m+1, N+1) - G(m+1, N+1) be the projection on the first (respectively
second) factor. Set y. x = m]A(m, X) and call y,, x(X) = m(A(m, X)) the m-
Gauss image of X. Let §(m, X) be the dimension of the general fiber of y,, x, that is,
the dimension of the contact locus of a general m-dimensional linear subspace of PY
which is tangent to X at some smooth point. In particular, yy_, x(X) C P"* is the
dual variety X* of X and (with the identification of A’(n, X) with X ;) the morphism
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¥m. x| X reg 15 the usual Gauss map from X, to G(m + 1, N + 1). For the background
on these topics, see [16] or [13].

In Section 2 we study the finite sequence of all §(m, X),n <m < N — 1, and
prove that for all integers a, b, ¢, d withn < a < b < ¢ <d < N -1 and
a+d = b+ cwehave 8(a, X) +8(d,X) > 8§(b, X) 4+ 8(c, X) (Remark 2) and
that if §(m, X) > 8(n, X), then 6(m, X) > §(m — 1, X) (Proposition 2). We give
examples which, in our opinion, show that not much more is true. Furthermore,
we study the relations between the Gauss defects of X and the Gauss defects of the
intersection of X with a general hypersurface of degree d. In Section 3 we extend
some of the results of [3] and [2] to the singular case; roughly speaking, we have a
full extension if dim(Sing(X)) = 0 (excluding cones). In the last section we discuss
not the dimension of a general fiber of a Gaussian map, but the existence of positive
dimensional fibers of the ordinary Gauss map y, x. Of course, by Zak’s Tangency
Theorem ([16, Theorem 1.7]) the variety X cannot be smooth.

2. The sequence of Gauss defects

In this section we study the sequence §(m; X), n < m < N — 1, of all Gauss
defects of an integral n-dimensional variety X C P¥. Just by the definition of the
Gauss defects we have é(m, X) < 6(m + 1, X) for every X and every integer m
withn < m < N — 2. Something more can be said (see Remark 2, Proposition 2
and Example 1), but in our opinion, not much more even for smooth manifolds (see
Example 1, Example 2 and Example 3), without making some very strong restrictions
on the geometry of X. Then we consider the relations between the Gauss defects of X
and the Gauss defects of the intersection of X with a general hypersurface of degree
d=>1.

LEMMA 1. Let n, s and N be fixed integers withn < s < N. Let X C P be an
integral n-dimensional variety and let Z C P° be a general projection of X. X is
reflexive if and only if Z is reflexive.

PROOF. Use the Hessian criterion for reflexivity ([11, Theorem 12}, or [6, Theo-
rem 3.2 and Corollary 3.3]). O

REMARK 1. If X is reflexive (and in particular if char(K) = 0), then for any n-
dimensional X and any m the general fiber of y,, x is a linear space (see [11, page 173]
for the case m = N — 1 and reduce to this case taking a general projection into
P"*!; the general projection of a reflexive X into P™*! is reflexive by Lemma 1);
alternatively, if char(K) = 0, see [13, 5.2 (ii)].
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PROPOSITION 1. Let X C PV be an integral n-dimensional reflexive variety. Then
for all integers m withn <m < N — 3 we have

S(m+2,X)+68(m, X) >28(m+ 1, X).

PROOF. Fix a general fiber F of y,, x and two general fibers F', F” of y,,41.x with
F c F'and F C F”. Thus for dimensional reasons we have F = F' N F”, Set
G := (F'U F"). Hence G (respectively F’ and F”) is a sufficiently general fiber
Of Ymya.x (respectively y,41.x). Let T (T', T”, R respectively) be the contact locus
of F (F', F", G respectively). By the reflexivity of X the sets T, 7', T” and R are
linear spaces with dimension respectively d(m + 2, X), 6(m + 1,X), é(m + 1, X)
and §(m, X) (Remark 1). Since T = T'NT" and T"U T” C R, we conclude the
proof. O

REMARK 2. Proposition 1 is a convexity result. Indeed, it implies that for all
integers a, b,candd withn <a<b<c<d <N —1landa+d = b+ c we have

3a, X)+48(d, X) =6, X)+6(c, X).

PROPOSITION 2. For fixed integers n, m and N withO < n <m < N, let X be an
integral n-dimensional subvariety of PN with §(m, X) > &8(n, X). Then §(m, X) >
dm -1, X). -~

PROOF. Fix a general P € X, and a general m-dimensional linear space M with
dim(M) = m and TpX C M. Let C (respectively C’) be the contact locus of M
(respectively TpX). Since dim(C) = é(m, X) > §(n, X) = dim(C’), there is a
hyperplane A of M containing T X but no irreducible component of C, that is, with
contact locus, C”, of dimension at most dim(C) — 1. Hence we conclude the proof by
the generality of P, M and A. O

The following example shows that in general in the statement of Proposition 2 we
cannot replace the assumption §(m, X) > 8(n, X) with the assumption §(m, X) > 0.

EXAMPLE 1. Let X C P¥ be the n-dimensional cone over an (n — 1)-dimensional
variety Y C P¥~' with 8(n, Y) =0. Thend(n+ 1, X) =86(n, X) = 1.

PROPOSITION 3. Let X be an integral n-dimensional reflexive subvariety of PV with
Sing(X) finite. X is a cone if and only if §(n, X) > 0.

PROCF. If X is a cone we have §(n, X) > 0. Assume 8(n, X) > 0. Since X is

reflexive, the general contact locus of an n-dimensional tangent space is a positive
dimensional linear subspace (Remark 1). Since Sing(X) is finite, either X is a cone
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with Sing(X) as a vertex or the general contact locus is contained in X ... The latter
case is excluded by Zak’s Theorem of Tangency ([16, Theorem 1.7]). O

In our opinion the following two examples show that if we do not make some
restrictive assumptions the finite sequence of all Gauss defects of a smooth manifold
does not satisfy restrictions much stronger that the ones given by Remark 2 and
Proposition 2. However, since smooth manifolds with ‘bad’ Gauss maps are very
particular, it should be possible to make reasonable assumptions and obtain better
results. For instance, if 3n < 2N all smooth n-dimensional manifolds X C PV with
dim(X) = dim(X*) are classified ([3, Theorem 4.5]).

EXAMPLE 2. Let X C P be a smooth n-fold which is a P"~!'-bundle over a
smooth curve C. Call r : X — C the projection. For every P € X, we have
a ' (P)) 2P land w1 (m(P)) C TpX. If X isreflexive, then§(N—1, X) = n-2
([10, page 360]). For the reverse when X is reflexive, see [2, Theorem 3.1], or, if
char(K) = 0, [3, Theorem 3.2]. Furthermore, for general P € X and H, R € X*
with T,X C H N R, the contact loci, Ly and Lz, of H and R are hyperplanes of
a~'(r(P)). Since Ly N Ly is the contact locus of H N R, we obtain that either
S(N—-2,X)=86(N—-1,X)or6(N—-2,X) =56(N—-1,X)— 1. By Lemma 2 we
must have §(N — 2, X) = §(N — 1, X) — 1. Hence, using Proposition 1, we obtain
8(m, X) = max{0,n — 1 — N + m]} for every integer m > 0.

The following example shows a trivial way to obtain singular non-normal varieties,
X, which have large §(N — 1, X).

EXAMPLE 3. Let Y C P¥*! be a smooth P"~!-bundle over a smooth curve (Ex-
ample 2). Fix general P’, P” € Y and take a general point P on the line {(P’, P")
spanned by P’ and P”. Let f : P¥*'\ {P} — P" be the projection from P. Set
X := f(Y). Since {P’, P")NY = {P’, P"} for large N, Y is the normalization of X.
By construction X has a non-normal point f (P’) = f (P”) and for large N (for fixed
n) this is usually the only singular point of X. If Y is reflexive, then X is reflexive.
Hence by [10, page 360], we have §(N — 1, X) > n — 2 and (except again trivial
cases like N = 3 and Y a smooth quadric surface) we have §(N — 1,X) = n — 2.
But we have similar ‘non-normal scrolls’, X', whose normalization g : Y’ — X' has
(X', g*(Oy(1))) = N + 1, that is, the map ¥’ — P* corresponds to a complete lin-
ear system; even in these cases [10, page 360], shows that §(Y', N —1) > n—-2if Y'is
reflexive. More generally, if the n-dimensional reflexive variety Z C P is uniruled by
t-dimensional linear spaces wehave §(N—1,Z) = t—1. If W = {f (x¢, ..., xy) = 0}
is a hypersurface of PV, there is a necessary and sufficient condition (at least if
char(K) = 0) to have 6(N — 1, W) > 0: a certain projective Hessian matrix must
be divisible by f (for the case N = 3 this is an old theorem of Schlifli, see [S5,
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page 23]). Hence there are non-normal reflexive surfaces W C P? uniruled by lines
with §(2, W) > 0.

Example 2 shows why in the statements of Proposition 7 and Proposition 8 we only
classified the normalization of X and why in the statement of Theorem 1 we have to
assume that X is normal.

Now we study the relation between the Gauss defects of X and the Gauss defects
of the intersection of X with a general hypersurface of degree d > 1.

LEMMA 2. Fix integers n, m and N with2 < n <m < N. Let X C PV be
an integral n-dimensional variety and Y a general hyperplane section of X. Then
dm—-1,V>6(m X)—1.

PROOF. We may assume 8§(m, X) > 2. Fix a general P € X and a general m-
dimensional linear subspace M of PV with TpX C M. Let C be the contact locus
of M. Take a general hyperplane H containing P and set Y := X N H. By the
generality of P, Y is a general hyperplane section of X. By the generality of H, we
have dim(M N H) = m — 1 and dim(C N H) = dim(C) — 1. Furthermore, fixing
H and varying P in Y we see that P may be considered a general point of Y. Since
C N H is contained in the contact locus of M N H with Y, we obtain the lemma. O

REMARK 3. Assume char(K) # 2. Let X C P" be an integral variety with
dim(X) > 2. For a general hyperplane H of P¥, we have §(N — 2, X N H) =
max{0, §(N — 1, X) — 1} ([6, Theorem 5.9]).

PROPOSITION 4. Fix integersn, mand N with2 <n <m < N. Let X C P" be an
integral n-dimensional variety and Y a general hyperplane section of X. Then

d(m—1,Y) =max{é(m, X) — 1,0}.

PROOF. The case m = N — 1 of the result was proved in [6, 5.9 and 5.12]. Use
Lemma 1 to reduce the general statement to the case m = N — 1. O

REMARK 4. Fixintegersd,nand N with2 <n < Nandd > 2. Let X C P" bean
integral n-dimensional variety and Y the intersection of X with a general hypersurface
of degree d. By [6, Theorem 5.6], if either char(K) # 2 or n is even, then Y is
reflexive and (N — 1, ¥) = 0. It is easy to check directly that (N — 1, Y) = 0 even
in the remaining case char(K) = 2 and »n odd using a Bertini type argument. Hence
for every integer m withn <m < N we have 6(m, Y) = 0.

In positive characteristic it is natural to give criteria for the separability of a Gauss
map VYmx. In the case m = N — 1 this is exactly the reflexivity of X (see [10,
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Theorem 4]). There are at least two natural definitions for the inseparability degree
of Gaussian maps ([12, page 2]); for their coincidence if X is a curve, see [9]; for a
discussion of the general case, see [12] and the last part of the introduction of [9].

Using Lemma 1 for s = m + 1 and the corresponding result for yy_, x ([11,
Theorem 4]) we obtain the following result.

PROPOSITION 5. Fix integers n, m and N withn < m < N. Let X C P" be an
integral n-dimensional variety. The map Y. x is separable if and only if yy_,x is
separable, that is, if and only if X is reflexive.

3. Adjunction theory and Ein’s papers

In this section we will try to follow as closely as possible [3] and [2] to obtain
results on a singular variety with §(N¥N — 1, X) large. Roughly speaking, we are able
to handle isolated singularities, while in the general case we need to add an additive
factor dim(Sing(X)) to the assumptions of every statement. If A is a closed subvariety
of the variety B, let N4, be the normal sheaf of A in B.

~.

REMARK 5. Let X C P" be an n-dimensional integral reflexive variety with
(N —1,X) > 0. Let Ly be the contact locus of a general H € X*. Since X
is reflexive, Ly is a linear space of dimension §(N¥N — 1, X) ([11, page 173]). Hence
if Sing(X) is finite, then either L, C X, or X is a cone.

DEFINITION 1. Let X be an integral n-dimensional variety, n > 2, with §(N — 1,
X) > 0. Let IT be the covering family of all §(N — 1, X)-dimensional linear spaces
which are limits of the family of all ‘general’ §(N — 1, X)-dimensional contact loci.
Since X is closed in PV, every R € Il is contained in X. Since X* is irreducible, IT
is irreducible. We will say that X satisfies Condition ($) if for a general R € IT we
have R C X,,. Let T be the covering family of lines obtained as closure of all lines
in the contact loci of general M € X*, that is, let T be the set of all lines contained
in some R € I1. We will say that X satisfies Condition (£) if for a general D € T we
have D C Xie.

By Remark 5 Condition ($) is satisfied if Sing(X) is finite and X is not a cone.
Obviously, Condition ($) implies Condition (£).

REMARK 6. Let X C P" be an n-dimensional integral reflexive variety with §(N —
1, X) > 0. We assume char(K) # 2. Here we assume that the contact locus, L,
of a general H € X* is contained in X.,. We will follow quite closely [3] and [2]
and obtain some informations on X. In [3]} and [2] the variety X was assumed to
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be smooth. Since X is reflexive, L is a linear space of dimension §(N — 1, X) ([11,
page 173]). Setk := §(N — 1, X). Since L C X, the normal sheaf N x is locally
free of rank n — k. Since L C X, X is reflexive and char(K) # 2, the proof of [3,
Theorem 2.1] works verbatim and gives [3, Theorem 2.2], that is, Ny ,;x = N; /x( D).
The proof of [3, Theorem 2.3] works verbatim and gives that for every line T € X
we have

NuxIT 2 077702 @ 6:(1)°0 0",

in particular, N, ,x is a uniform vector bundle and if rank(N,/X)< dim(L), that is, if
n < 2k, then

NL/X o~ ﬁz)(n—k)/Z ® 0L(1)$(n—k)/2

by a theorem of Tango on uniform vector bundles on P* valid in arbitrary characteristic
([14] and [15]). As in [3, Theorem 2.3, part (b)] we obtain the existence of an
irreducible family of dimension (n + k& — 2)/2 of lines on X and that forany P € T
there is a family of dimension (n + k — 2)/2 of lines in X through P. Using the
extension of [3, Theorem 2.3], we obtain Landman’s parity criterion given in [3,
Theorem 2.4], that is, we obtain that n — §(N¥N — 1, X) is even (of course, only under
the assumption L C X,,). For the same reason we have parts (a), (b), (c) and (d) of
(3, Theorem 2.4], but not (a priori) part (e) of [3, Theorem 4], because of dim Sing(X)
we cannot apply the part of Lefschetz theorem stating that if 2n > N + 2, then Pic(X)
is generated by the hyperplane class. ™

PROPOSITION 6. Assume char(K) # 2. Let X C PV be a two-dimensional integral
reflexive variety with §(N — 1, X) > 0 and Sing(X) finite and not empty. Then X is
a cone.

PROOE. We have 0 < (N — 1, X) < 2. If the contact locus of a general H € X*
intersects Sing(X), X is a cone by Remark 5. If the contact locus of a general H € X*
does not intersect Sing(X), then 2 —§(N — 1, X) is even by Landman’s parity criterion
extended in Remark 5, contradiction. O

PROPOSITION 7. Assume char(K) # 2. Let X C P, N > 5, be a reflexive integral
variety with dim(X) = 3, Sing(X) finite and §(N — 1, X) > 0. Let g : Z — X be the
normalization. Then either X is a cone or Z is a smooth scroll, sayw : Z — C, over

a smooth curve C and g sends every fiber of  isomorphically onto a plane contained
inX.

PROOF. By [2, Corollary 3.2 (a)] we may assume Sing(X) # @. Since X is
reflexive, the generic contact locus is a linear space. Assume that X is not a cone.
Hence there is an irreducible covering family T of lines such that for a general L € T
we have L C X, L is a contact locus and Ny,;x = 0, (1) ® 0. Fixageneral L € T
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and a general P € L. Hence P may be considered as a general point of X. Since X
is not a cone and Sing(X) is finite, no line containing P intersects Sing(X). Hence
by the deformation theory there is an irreducible one-dimensional family T(P) C T
formed by the lines containing P. Since h'(L, Ny ,x(—P)) = 0, T(P) is smooth
at L. Set F(P):={Q € X : Q € D forsome D € T(P)}. Since two distinct lines
through P intersect only at P, F(P) is a two-dimensional subvariety of X. We have
F(P) N Sing(X) = @ for general P. F(P) is a cone with vertex P and hence TpX
contains F(P).

First assume that for general P the variety F(P) is not a plane. Let R c P¥
be a general hyperplane containing P. Set Y := X N R. Since P is general, Y
may be considered as a general hyperplane section of X. Thus §(N —2,Y) =
8(N —1,X) — 1 = 0 (Remark 3). Hence TpY N Y has P as a unique singular point
and this singularity is an ordinary quadratic singularity ([6, Theorem 3.5], or [11,
Theorem 17, page 179]). Thus R N F(P) has at most two irreducible components,
thatis, F(P)isaquadraticcone. Since N > 5and F(P) C TpX,forageneral H € X*
with TpX C H the scheme H N X contains at least two irreducible components, one
of them (that is, F(P)) being singular. Hence Y N H = X N H N R does not have an
ordinary quadratic singularity as a unique singular point, contradiction.

Now assume that F(P) is a plane. Since F(P)N F(P’) = @ for general P, P’ € X,
we have Nrpy;x = Orp. Since the Grassmannian G(2, N 4 1) is complete, for every
Q € Sing(X), there is at least a plane V(Q) € T with @ € V(Q). Fix any such
V(Q) and a plane F € T with F N Sing(X) = @. First assume F N V(Q) # B.
Since F N Sing(X) = @ and both F and V(Q) are planes, D := F N V(Q) is a line.
For every P € D, we have F U V(Q) C TrX. Hence TpX is the 3-dimensional
linear space M spanned by F U V(Q), that is, M is tangent along D to X. Since
D C F C X, this contradicts Zak’s Tangency Theorem ([16, Theorem 1.7]). Hence
V(QIN F = B for every F € T with F N Sing(X) = @. For the same reason,
if @' € Sing(X) and Q' ¢ V(Q), then V(Q) N V(Q) = & for any V(Q') with
Q ¢ V(Q'). By construction we have a smooth affine curve A parametrizing an open
subset of planes in X, an open subset Q of X, and a morphism 7’ :  — A with
fibers as planes of T not intersecting Sing(X). Fix B € X,,. For a general hyperplane
R through B, the surface X N R is smooth and it is a P!-bundle 77z : XN R — Cg over
a smooth curve Cg. If char(K) = 0 and Z is assumed to have only locally complete
intersection singularities, then Z is a P?-bundle over Cy by a theorem of Badescu ([1,
Theorem 5.5.3]); in the general case we need to work more. Using m’ we see that
Cr = Cg forany R, R’ and that in this way we define a fibration 7,y : X =& Cg
such that m,/ U = 7’. Set C := Cg. Varying the hyperplane R we obtain that for
every plane V € T we have Card(V\V N Sing(X)) =1. LetF C X x GB, N+ 1)
be the closure of the restriction to the fibers of 7’ of the incidence correspondence and
let ® be the normalization of I". Since Card(V\V N Sing(X)) = 1 for every plane
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V € T, we obtain a morphism 7" : ® — C. The projection ® — X factors through
a birational morphism & : & — Z. Since dim(X) = 3 and X is not a cone, for every
Q € Sing(X) there are only finitely many planes containing O and contained in X.
Hence « is finite. Since Z is normal, « is an isomorphism and hence Z is a P>-bundle
over the smooth curve C. In particular, Z is smooth. a

PROPOSITION 8. Let X C P¥, N > 6, be an integral variety with dim(X) = 4,
Sing(X) finite and §(N — 1,X) > 0. Let g : Z — X be the normalization. Then
either X is a cone or Z is a smooth scroll over a smooth curve, sayn : Z — C,and g
sends every fiber of w isomorphically onto a 3-dimensional linear subspace contained
inX.

PROOF. By [2, Corollary 3.3 (b)], we may assume Sing(X) # 8. By Remark 5
either X is a cone or Condition ($) is satisfied and in particular dim(X) —§(N — 1, X)
is even (Remark 6). Hence, §(N — 1, X) = 2. Fix Q € X and let Z be a general
hyperplane section of X containing Q. By Bertini’s theorem we have Sing(Z) € { Q).
We have §(N —2, Z) > §(N — 1, X) — 1 = 1. Hence we may apply Proposition 7 to
Z and then apply the same proof taking Z instead of X N R. a

THEOREM 1. Assume char(K) # 2. Let X C PV be an irreducible normal re-
flexive n-dimensional variety with Sing(X) # @ and (N — 1,X) > 0. Assume
26(N — 1, X) > n + dim(Sing(X)). Then Sing(X) is a linear space and X is a cone
with Sing(X) as its vertex.

PROOF. Set k := §(N — 1, X). Using Remark 3 and the preservation of reflexivity
for general hyperplane sections ([10, Theorem 22 (i)], or [6, 5.9 and 5.12]), we reduce
the general case to the case in which Sing(X) is finite; it is quite subtle (but true
in arbitrary characteristic) that if a general hyperplane section of X is a cone, then
X is a cone (see the second part titled ‘When is the general hyperplane section of
a variety a cone?’ of [7]). In order to obtain a contradiction we assume that X is
not a cone. Since Sing(X) is finite and X is not a cone we may assume Condition
($) (Proposition 2). By Remark 6 and Proposition 6 we may assume n > 5. Fix
a general P € X and a general contact locus Ly with P € L,. We will follow the
proof of [2, Theorem 4.2]. Let F(P) (or just Qy as in [2, page 903]) be the connected
component containing L, of the set of all k-dimensional linear spaces in X which
are deformations of L, and contain P; parts (a), (b) and (c) of [2, Lemma 4.2] work
verbatim by Condition ($) because these parts concern only a general element of F(P);
part (d) of [2, Lemma 4.2] works for the elements L € F(P) with [ N Sing(X) = ¢;
since Sing(X) is finite, part (d) of [2, Lemma 4.2] is true by Proposition 2. Thus
we may obtain [2, Lemma 4.3], that is, the existence of a linear space D, C X with
Ly C Dy and dim(Dg) = (n + k)/2; Dy is the union of all k-planes in the family
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F(P). Since Dy depends only on P (assumed to be general), we will set D(P) := D.
Then we conclude as in the proof of Proposition 7. O

If char(K) = O and Z is assumed to have only locally complete intersection
singularities, Theorem 1 follows from a theorem of Sommese ([1, Theorem 5.5.2]).

4. Zak’s Tangency Theorem

In this section we discuss the existence of positive dimensional fibers of the ordinary
Gauss map y, x. Of course, by Zak’s Tangency Theorem ({16, Theorem 1.7]) the
variety X cannot be smooth.

REMARK 7. Let X C PV be an integral n-dimensional variety, P € X and let
V c P be a linear space with dim(V) = n which is J-tangent to X at P in the sense
of [16, Definition 1.6). Then X must be smooth at P and V = TpX. This trivial
observation shows why in the case of the ordinary Gauss map Theorem 1.7 of [16]
covers only the case in which the contact locus is contained in X ;. This observation
was one of the motivations for this paper.

~

EXAMPLE 4. Here we make no restriction on char(K). Fix homogeneous coor-

dinates xo,...,x; of P* and set H := {xo = 0}. Fix an integer s > 1 and inte-
gers aj,...,a;,my,...,m; with a; > 1 and m; > 2 for every i. Fix an integer
d > Zf=1 a;m;. In the plane H we fix s distinct integral curves Ry, ..., R, with

deg(R;) = a;. Set R := | J;_, R;. We want to find a degree d normal surface A C P*
such that H is tangent to A at each point of R, and such that the scheme A N H
contains each curve R; with multiplicity m;. Let B be any reduced curve contained in
H with deg(B) =d — }_;_, a;m; and card(B N R) finite; if d = Y_;_, a;m; we take
B =#. Set C := BU(Ji_, miR:). Hence C is a degree d plane curve. We will show
that we may find such a normal surface A with H N A containing C (as schemes),
A smooth at every point not on H and smooth at every point of B U Sing(R). Let
W be the linear system of all degree d surfaces in P? containing C and hence either
containing H or with C as a scheme-theoretic intersection with H. By the definition
of W and Bezout theorem every A’ € W not containing H is smooth at each point
of B,. Taking reducible surfaces H U F' € W with F’ as any degree d — 1 surface
we see that the linear system W has no base point outside C and separates the tangent
vectors at each point of P*\ H. Hence by Bertini’s theorem ([8, Theorem 6.3, part 4])
general F' € W is smooth outside H. Since Sing(R) U Sing(B) is finite, we easily see
_ that general A’ € W is smooth at each point of Sing(R) U Sing(B). Let X = {f = 0}
be an irreducible degree d surface containing C. Since H = {x¢ = 0} and X contains
every irreducible component of R with multiplicity at least 2, the Euler sequence of
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TP? shows that Sing(X) N R = H N {3f /dx,}. Hence we see that such a general X
has exactly (d — 1)( Y_;_, a;) singular points, each of them on Ry, exactly (d — 1)a;
of themon R;, 1 < i < s, and that each of these singular points is an ordinary double
point. However, taking particular equations f we may find X with a smaller number
of singular points, although these singular points may be non-ordinary or with higher
multiplicity. For instance, take s = 1 and R smooth. Fix a degree d — 1 homogeneous
polynomial g(x, x,, x3) in 3 variables such that w := card(R N {g(x;, x2, x3) = 0})
is as small as possible. For deg(R) < 3, we may take w = 1. There exists a degree d
polynomial f with {f =0} N H = C and with 9f /9xo = g(x1, x2, x3) mod (xo). At
least in some cases (for instance when R is a line) for the general polynomial f with
these properties the surface {f = 0} is smooth outside R.

Now we will show that, at least for non-normal varieties, we cannot extend Zak’s
Tangency Theorem making assumptions on their birational model, for instance to be
very ample.

EXAMPLE 5. Fix an integer n > 2, a smooth n-dimensional variety Z and an
effective Cartier divisor C C Z. Let D be an effective divisor such that the line
bundle 6;(2C + D) is very ample. Consider the complete embedding ¢ of Z into
P* := P(H%(Z, 6;(2C + D))) and let H be the hyperplane of P* corresponding to
the divisor 2C + D. By construction H is tangent to ¢ (Z) along ¢ (C). Assume that
for a general linear subspace M of H with dim(M) = s — n — 2, the linear projection
of P* from M into P"*! induces a birational map of ¢(Z) and of C. Let X and C’ be
the corresponding images. Assume that X is not singular at the general point of every
irreducible component of C'. Let I be the hyperplane of P**! image of H through
the projection from M. By construction I1 is tangent to X along C’ and X is birational
to Z.
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