
JFP 30, e29, 3 pages, 2020. c© The Author(s), 2020. Published by Cambridge University Press 1
doi:10.1017/S0956796820000258

Book Review

Review of “Algorithm Design with Haskell” by Richard Bird and Jeremy Gibbons,
Cambridge University Press, 2020.
doi:10.1017/9781108869041

I strongly suspect that Richard Bird hides a magically productive book writing apparatus
in his office. This time around, Bird pulled the machine’s levers together with Jeremy
Gibbons and out came Algorithm Design with Haskell, a book that is remarkable in
many ways.

Algorithms in their purely functional form. Books on algorithms are plenty. Many
present classical algorithms as entities carved in stone, conceived decades ago, and typeset
in framed pseudo-code boxes. Not so in the present book. Bird and Gibbons treat any algo-
rithm as a subject of calculation, to be derived systemically and elegantly starting from
an (almost) blank sheet that initially holds nothing but a functional specification. In fact,
several of these calculations start out with incantations like

solutions= filter good · candidates or algorithm= aggregate · test · generate

which can then be transformed into an efficient implementation via fusion, or more gen-
erally, equational reasoning (except when the authors cannot—see below). The equational
style also delivers the implementations’ proofs of correctness which, otherwise, you rarely
find in algorithm books.

Across the 430+ pages, I felt that deriving algorithms out of “thin air” (read: nothing
but their specification) demystified them in the best possible sense: stepwise construction
through composition of already known functions takes the place of genius algorithm engi-
neers’ Eureka! moments. In the capable hands of Bird and Gibbons, this feels empowering.
Whole families of algorithms originate in one common functional specification (much like
the two given above). While these are—quite amazingly, really—already executable, they
are too inefficient for all practical purposes. Then, (1) cracking the composed functions
open, (2) choosing their particular implementations, and (3) fusing the latter is what leads
to a specific, efficient functional algorithm. The text goes as far as to identify “ritual steps”
in algorithm calculation and, indeed, in the second half of the book recipes emerge that
readers will be able to reuse when they tackle their own constructions.

Highlights. Bird and Gibbons have divided the book into six parts, five of which focus on
particular algorithm design strategies: divide and conquer, greedy algorithms, thinning,
dynamic programming, and exhaustive search. Interestingly, you will find the generic
functional specification at the start of each part to serve as a guideline that tells whether
your problem at hand will fit the upcoming discussion. From part to part, there is definitely

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000258
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.146, on 14 Jul 2025 at 20:49:29, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0956796820000258
https://doi.org/10.1017/9781108869041
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000258
https://www.cambridge.org/core


2 Book Review

a build-up here and I think readers would be well advised to take in the text from front to
back on a first encounter. Not least I would recommend to read the book cover to cover
to make sure that you do not miss the bits of delightfully dry British humour that lurk
throughout.

Generically, a greedy algorithm at each stage selects the one partial solution can-
didate with minimum cost and then proceeds to extend and complete it (or greedy=
minWith cost · candidates, as the authors would say prior to fusion). Should multiple
equally promising candidates exist, any deterministic minWith will pick one and thus
bake the function’s implementation decisions into algorithm calculation early on. “Too
soon,” argue the authors, and introduce MinWith, the non-deterministic uppercase sib-
ling of minWith, to avoid such precommitment and instead select any of the minimum
cost candidates. The text manages to preserve its style of reasoning in the face of this
non-determinism—when required, “←” (or: is one possible result of ) takes the place
of “=”—and stays away from going fully relational. Jeremy Gibbons goes on YouTube’s
record to say that using a calculus of relations “is idealistically the right thing to do” but
that would have led to a “pretty, but pretty complicated” result (in reference to The Algebra
of Programming, Bird and de Moor, Prentice Hall, 1997). I call the present book’s lighter
weight approach to non-determinism a definite readability plus.

Non-deterministic functions then truly are in focus in the part on thinning, a true novelty
in this book. Where greedy algorithms extend a single best candidate and exhaustive search
considers all possible options, thinning strikes a middle ground and maintains a selec-
tion of promising partial candidates. Selection is embodied by a non-deterministic ThinBy
abstraction which—only post-specification and -calculation—is refined into a concrete
thinBy implementation late in the game. The authors recast a number of classical problems
in terms of thinning, including ones like knapsack which otherwise have been tack-
led via dynamic programming for ages. These fresh—very confidently and competently
presented—takes on established material are true highlights of the text.

We also find what now appears to be a staple of a Bird book: a fire hose of exercises,
all of which come complete with solutions. Most of these exercises are derived directly
from a chapter’s ongoing exposition and thus naturally come with motivating context.
Exercises touch on core, fun, and interesting parts of the discussion and they can do so
since all answers are provided: no hole remains in the development should you fail to
solve an exercise (and you likely will struggle, since Bird and Gibbons get you to work
on everything from proofs of laws to algorithmic trickery). The sheer amount of quality
content in the chapters’ exercise postludes alone is worth the price of admission, if you ask
me. The present book and Bird’s earlier Thinking Functionally with Haskell (CUP, 2015)
are certainly on par here.

This book and Haskell. From one-line specification to few-lines implementation, all
algorithms in this book are expressed in Haskell and thus are immediately executable.
Pseudo-code notation is nowhere to be found. The resulting conciseness is remarkable but
also demanding for the reader: an essential fusion step can be presented in half a line but
may take you half an hour to fully appreciate.

Still, the dialect of Haskell spoken by Richard Bird and Jeremy Gibbons is deliberately
simple. Built-in types, “common-or-garden lists,” and purely functional arrays suffice. The

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000258
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.146, on 14 Jul 2025 at 20:49:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000258
https://www.cambridge.org/core


Book Review 3

book’s focus deliberately is on algorithms rather than the data structures they create and
manipulate. Although there is great introductory material on symmetric and random access
lists to be found in Part 1 of Algorithm Design with Haskell, Chris Okasaki’s book on
Purely Functional Datastructures (CUP, 2008) would make an ideal orthogonal compan-
ion. Bird and Gibbons are disciplined and lay out the operations they expect their data
structures to support. Okasaki-supplied replacements of these data structures should thus
readily drop in, I’d conjecture.

Haskell’s Applicative, Traversable, or Monad go unused and the authors also
abstain from the latter when it comes to the treatment of array updates or non-determinism.
Just as in Bird’s Pearls of Functional Algorithm Design (CUP, 2010), Haskell’s laziness
is ignored when the runtime of functions is discussed. What remains of Haskell, then, is its
clarity and brevity. I was repeatedly reminded of simplehaskell.org and its effort to shine
a light on the core of a language that keeps evolving rapidly. As a result, this is not a
book on learning contemporary Haskell—and it never aims or claims to be. At the same
time, Algorithm Design with Haskell is an understatement: any functional language could
take the centre stage. Given this, Thinking Functionally in Haskell indeed leads up to and
complements the present book. Should you study both, you will probably end up writing
Haskell that has Bird stamped all over your code—there definitely are worse things to
complain about, however.

There are few spots where you may experience a déjà vu if you have already read Pearls of
Functional Algorithm Design. This certainly happened to me when the planning algorithm
for the Rush Hour puzzle was developed. Often, however, what started out as a seemingly
well-known story took an unexpected but welcome turn in Algorithm Design with Haskell
(maximum segment sum viewed as a thinning problem tastes considerably different than
its treatment in Pearls, for example). The intersection of both books is non-empty for sure,
but where Pearls dives deeper into specific problems or puzzles, the new text represents
a more ambitious and principled approach to algorithm design. I’d rather have both books
on my shelf.

All in all: replicate 5 ‘*’. I guess we may rest assured that both authors continue to keep
the Oxford book machine well oiled. I certainly do look forward to what comes out next.

TORSTEN GRUST
Universität Tübingen
E-mail: torsten.grust@uni-tuebingen.de

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796820000258
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.146, on 14 Jul 2025 at 20:49:29, subject to the Cambridge Core terms of use, available at

https://simplehaskell.org
mailto:torsten.grust@uni-tuebingen.de
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796820000258
https://www.cambridge.org/core

	Book Review

