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Abstract
Normal matrices, or matrices which commute with their adjoints, are of fundamental importance in pure and
applied mathematics. In this paper, we study a natural functional on the space of square complex matrices whose
global minimizers are normal matrices. We show that this functional, which we refer to as the non-normal energy,
has incredibly well-behaved gradient descent dynamics: despite it being nonconvex, we show that the only critical
points of the non-normal energy are the normal matrices, and that its gradient descent trajectories fix matrix spectra
and preserve the subset of real matrices. We also show that, even when restricted to the subset of unit Frobenius
norm matrices, the gradient flow of the non-normal energy retains many of these useful properties. This is applied
to prove that low-dimensional homotopy groups of spaces of unit norm normal matrices vanish; for example, we
show that the space of 𝑑 × 𝑑 complex unit norm normal matrices is simply connected for all 𝑑 ≥ 2. Finally, we
consider the related problem of balancing a weighted directed graph – that is, readjusting its edge weights so that
the weighted in-degree and out-degree are the same at each node. We adapt the non-normal energy to define another
natural functional whose global minima are balanced graphs and show that gradient descent of this functional
always converges to a balanced graph, while preserving graph spectra and realness of the weights. Our results were
inspired by concepts from symplectic geometry and Geometric Invariant Theory, but we mostly avoid invoking this
machinery and our proofs are generally self-contained.

1. Introduction

A matrix A is called normal if it commutes with its conjugate transpose: 𝐴𝐴∗ = 𝐴∗𝐴. The set of 𝑑 × 𝑑
complex normal matrices, which we denote as N𝑑 ⊂ C𝑑×𝑑 , is a fundamental object in linear algebra;
for example, the Spectral Theorem characterizes N𝑑 as the set of unitarily diagonalizable matrices:

N𝑑 = {𝑈𝐷𝑈∗ | 𝐷 ∈ D𝑑 , 𝑈 ∈ U(𝑑)},

where D𝑑 ⊂ C𝑑×𝑑 is the set of diagonal matrices and U(𝑑) is the group of unitary matrices. Moreover,
normal matrices are especially well-behaved from a numerical analysis perspective. Indeed, the Bauer–
Fike Theorem [5] implies that the eigenvalues of a normal matrix are Lipschitz stable under perturbations,
which motivates the approximation of transfer matrices by normal matrices in classical control theory
[15, 16]. In the literature on dynamics on complex networks, it has also been observed that directed
networks whose weighted adjacency matrices are not normal exhibit distinctive dynamical features
which can confound classical spectral methods [2, 3, 45]. Based on these considerations, the closest
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2 T. Needham and C. Shonkwiler

normal matrix problem – that is, the problem of finding a closest point in N𝑑 to an arbitrary matrix in
C
𝑑×𝑑 – has been thoroughly studied [22, 25, 50, 52].

This paper studies N𝑑 from a geometric perspective, with a view toward optimization tasks such as
the closest normal matrix problem. Our results are largely derived from the simple observation that N𝑑

is the set of global minima of the function

E : C𝑑×𝑑 → R, defined by E(𝐴) = ‖𝐴𝐴∗ − 𝐴∗𝐴‖2, (1.1)

where ‖ · ‖ is the Frobenius norm; that is,

‖𝐵‖2 =
𝑑∑

𝑖, 𝑗=1
𝑏2
𝑖 𝑗 , for 𝐵 =

(
𝑏𝑖 𝑗

)𝑑
𝑖, 𝑗=1 ∈ C𝑑×𝑑 .

Despite the fact that the function E, which we refer to as the non-normal energy, is not quasiconvex (see
Remark 2.5), it is surprisingly well-behaved from an optimization perspective: we prove in Theorem 2.3
that the only critical points of E are normal matrices, hence gradient descent along E gives an approximate
solution to the closest normal matrix problem. We derive several related results, which are described in
more detail below in Section 1.1; in short, we show that gradient descent preserves interesting features of
the initializing matrix, such as its spectrum or the realness of its entries. We also consider the restriction
of non-normal energy to the space of matrices with unit Frobenius norm and show that its gradient flow
is also quite well-behaved. This has immediate topological implications, as we explain in more detail in
Section 1.1.

The properties of the non-normal energy which we exploit in this paper are predictable from a high-
level perspective: E is the squared norm of a momentum map associated to a Hamiltonian action of
SU(𝑑) on C𝑑×𝑑 (see Proposition 2.2). This terminology comes from the field of symplectic geometry,
where the behavior of functions of this form is well-understood [37, 40]. Our work in this paper is
heavily inspired by Mumford’s Geometric Invariant Theory (GIT) [44] (see [55] for a nice introduction
or [43] for applications to similar matrix optimization problems) and Kirwan’s work relating GIT and
symplectic geometry [37]; there are also strong connections to Ness’s paper [49]. One of our goals in
writing this paper was to make our arguments – especially the fundamentally elementary ones – as
accessible as possible, so we have mostly avoided explicitly invoking GIT in what follows, but it was
very much on our minds as we were working on this paper. Connections to GIT and symplectic ideas are
explained throughout.

As our results on N𝑑 are rooted in powerful general theory, it should not be surprising that our
techniques are more broadly applicable. Indeed, we also apply our geometric approach to the graph
balancing problem: given a weighted, directed graph G, one wishes to determine a new set of edge
weights which balances the graph in the sense that the weighted in-degree is the same as the weighted
out-degree at each node. If the latter condition is met, we say that the graph is balanced. An example
of our gradient flow-based approached to graph balancing, as is described below, is shown in Figure 1.
This problem is natural from an applications perspective; for example, in the case that the underlying
graph represents a road network and that the weights are roadway capacities, that the graph is balanced
corresponds to the feasibility of traffic flow through all intersections. As such, the graph balancing
problem is well-studied in the operations research literature [26, 33, 51].

Representing a graph G on d nodes by a matrix 𝐴 ∈ C𝑑×𝑑 containing the square roots of the entries
of the weighted adjacency matrix of G, the balanced graphs are exactly the global minima of the
unbalanced energy function,

B : C𝑑×𝑑 → R, defined by 𝐴 ↦→ ‖ diag(𝐴𝐴∗ − 𝐴∗𝐴)‖2, (1.2)

where diag is the linear map which zeros out all off-diagonal entries. The unbalanced energy is similar
in structure to the non-normal energy – in fact, it is also the squared norm of a momentum map – and
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Figure 1. Balancing a graph, starting at top left with a random weighted, directed multigraph with 6
vertices and 15 edges and ending with a balanced graph with the same edges and vertices on the bottom
right. The thickness of each edge is proportional to its weight and the time parameter is logarithmic
in the number of iterations of gradient descent. Two features of interest: different edges have activity
in different timeframes (compare the two edges connecting the bottom-right vertex to the top-center
vertex), and the weight of an edge can be nonmonotone as a function of time (e.g., the left-most edge or
the edge connecting the top-right vertex to the central vertex).

we derive similar results regarding its gradient flow. We show in Theorem 4.1 that the critical points of
B are exactly the balanced matrices and refine this result to show that gradient flow preserves geometric
features of the underlying graph. We describe these results more precisely in the following subsection.

1.1. Main contributions and outline

We now summarize our main results in more detail.

◦ Gradient flow of non-normal energy: Section 2 considers properties of the non-normal energy (1.1),
with a focus on properties of its gradient descent dynamics in relation to normal matrices. Although
the non-normal energy is not convex (Remark 2.5), we show in Theorem 2.3 that the only critical
points of E are normal matrices; that is, its global minima. It follows easily that its gradient descent
has a well-defined limiting normal matrix for every choice of initial conditions; we additionally show
in Theorem 2.6 that the gradient descent trajectories of the non-normal entries preserve spectra and
realness of matrix entries. We derive estimates of the distance traveled under gradient flow, which give
new interpretations of concepts in the literature on the closest normal matrix problem (Corollary 2.9
and Proposition 2.11).

◦ Restriction to unit norm matrices and topological consequences: In Section 3, we consider the
restriction of the non-normal energy to the space of matrices with unit Frobenius norm. We prove
in Theorem 3.1 that if gradient descent is initialized at a non-nilpotent unit norm matrix, then it
converges to a normal matrix, and that if the initialization has real entries then so does its limit. As an
application, we show that the low-dimension homotopy groups of the spaces of complex and real unit
norm normal matrices vanish in Theorem 3.9 and Theorem 3.13, respectively. In particular, the space
of 𝑑 × 𝑑 unit norm complex normal matrices is connected for all d and simply connected for 𝑑 ≥ 2,
whereas the space of unit norm real normal matrices is connected for 𝑑 ≥ 2 and simply connected
for 𝑑 ≥ 3.

https://doi.org/10.1017/fms.2025.10105 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10105


4 T. Needham and C. Shonkwiler

◦ Graph balancing via unbalanced energy: The unbalanced energy (1.2) and its applications to graph
balancing are studied in Section 4. Theorem 4.1 shows that the only critical points of the unbalanced
energy are its global minima; that is, matrices representing balanced digraphs. Gradient descent
converges to a balanced digraph representation, and we show in Theorem 4.3 that it preserves spectra
and realness of entries. Moreover, this theorem shows that if the entries of a real matrix are positive
then this property is also preserved, and that if an entry in the initial matrix is zero then it stays zero
along the gradient descent path – in terms of graphs, gradient descent does not create any edges that
were not present at initialization. We also consider the restriction of the unbalanced energy to unit
norm matrices (which represent digraphs with a fixed total edge capacity) and derive similar useful
properties of its gradient flow in Theorem 4.5. Finally, we observe in Theorem 4.10 that the spaces of
complex and real balanced unit norm matrices are homotopy equivalent to spaces of real and complex
normal matrices, respectively.

2. Normal matrices and optimization

Recall from the introduction that the non-normal energy E : C𝑑×𝑑 → R is the function

E(𝐴) = ‖𝐴𝐴∗ − 𝐴∗𝐴‖2 = ‖[𝐴, 𝐴∗]‖2.

Throughout this paper we use [·, ·] to denote the matrix commutator: [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴.
The goal of this section is to derive properties of the gradient descent dynamics of E. In particular,

we will show that we can normalize any square matrix by sending it to its limit under the negative
gradient flow of E.

2.1. Background

The map E has a long history in the problem of finding the closest normal matrix to a given matrix,
going back at least to Henrici [30], who proved the following:
Proposition 2.1 (Henrici [30]). For any 𝐴 ∈ C𝑑×𝑑 ,

inf
𝑀 ∈N𝑑

‖𝐴 − 𝑀 ‖ ≤

(
𝑑3 − 𝑑

12
E(𝐴)

)1/4

.

In other words, the distance from A to N𝑑 is bounded above by a quantity proportional to E(𝐴)1/4.
One virtue of this estimate is that E(𝐴) is relatively easy to compute.

We now give an interpretation of E in terms of symplectic geometry, where we consider C𝑑×𝑑 ≈ C𝑑
2

as a symplectic manifold with its standard symplectic structure. This interpretation is not necessary for
most of the paper, and is mainly included for context. As such, we give a somewhat informal treatment
and avoid explicit definitions of any of the standard terminology from symplectic geometry. In our
previous papers, we give short and elementary overviews of the necessary concepts from symplectic
geometry, with a view toward understanding similar spaces of structured matrices (e.g., spaces consisting
of unit norm tight frames); we refer the reader to [46, Section 2] and [47, Section 2.1] for more in-depth
exposition.

Consider the action of the unitary group SU(𝑑) on C𝑑×𝑑 by conjugation. Let 𝔰𝔲(𝑑) denote the Lie
algebra of SU(𝑑) – that is, the traceless, skew-Hermitian 𝑑× 𝑑 matrices – and let 𝔰𝔲(𝑑)∗ denote its dual.
It will be convenient to identify 𝔰𝔲(𝑑)∗ with the space ℋ0(𝑑) of 𝑑 × 𝑑 traceless Hermitian matrices via
the isomorphism

ℋ0(𝑑) → 𝔰𝔲(𝑑)∗

𝑌 ↦→
(
𝑋 ↦→

𝑖

2
Tr(𝑋𝑌 )

)
.

Then we have the following interpretation of E.
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Proposition 2.2. The conjugation action of SU(𝑑) on C𝑑×𝑑 is Hamiltonian, with momentum map

𝜇 : C𝑑×𝑑 → ℋ0(𝑑) ≈ 𝔰𝔲(𝑑)∗ (2.1)

𝐴 ↦→ [𝐴, 𝐴∗] . (2.2)

The non-normal energy E is therefore the squared norm of a momentum map.

We omit the proof of Proposition 2.2, which is a straightforward calculation. In light of this result, one
should expect the non-normal energy to have nice properties – see, for example, work of Kirwan [37]
and Lerman [40]. However, the specific properties of E (and related functions) that we derive below do
not follow directly from the general theory.

2.2. Critical points of non-normal energy

Obviously, the global minima of the non-normal energy E are exactly the normal matrices. In fact, we
now show that these are the only critical points. Throughout the paper, we use 〈·, ·〉 to denote the real
part of the Frobenius inner product on C𝑑×𝑑 ,

〈𝐴, 𝐵〉 ≔ Re tr(𝐵∗𝐴),

and we use 𝐷F(𝐴) to denote the derivative of a map F : C𝑑×𝑑 → R at 𝐴 ∈ C𝑑×𝑑 .

Theorem 2.3. The only critical points of E are the global minima; that is, the normal matrices.

Proof. We claim that

∇E(𝐴) = −4[𝐴, [𝐴, 𝐴∗]] . (2.3)

Indeed, since E is the square of a momentum map (Proposition 2.2), this follows by general principles
of symplectic geometry – see, for example, [37, Lemma 6.6] or [49, Lemma 6.1]. Let us additionally
give an elementary derivation of this fact. Writing E = 𝑁 ◦ 𝜇, where 𝜇 is the momentum map (2.1) and
𝑁 : C𝑑×𝑑 → R is the norm-squared map 𝑁 (𝐴) = ‖𝐴‖2, we have, for any 𝐴, 𝐵 ∈ C𝑑×𝑑 ,

〈∇E(𝐴), 𝐵〉 = 𝐷 E(𝐴) (𝐵) = 𝐷𝑁 (𝜇(𝐴)) ◦ 𝐷𝜇(𝐴) (𝐵)

= 〈∇𝑁 (𝜇(𝐴)), 𝐷𝜇(𝐴) (𝐵)〉 = 〈𝐷𝜇(𝐴)∨∇𝑁 (𝜇(𝐴)), 𝐵〉,

where we use 𝐷𝜇(𝐴)∨ to denote the adjoint of 𝐷𝜇(𝐴) with respect to the inner product 〈·, ·〉. It follows
that

∇E(𝐴) = 𝐷𝜇(𝐴)∨∇𝑁 (𝜇(𝐴)).

A straightforward calculation then shows that the adjoint is given by the formula

𝐷𝜇(𝐴)∨(𝐶) = [𝐶 + 𝐶∗, 𝐴] . (2.4)

It is also easy to show that ∇𝑁 (𝐶) = 2𝐶, so we conclude that

∇E(𝐴) = [2𝜇(𝐴) + 2𝜇(𝐴)∗, 𝐴] = −4[𝐴, [𝐴, 𝐴∗]] .

Therefore, we have a critical point of E exactly when

0 = [𝐴, [𝐴, 𝐴∗]];
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Figure 2. The graph of E restricted to the collection of real matrices of the form
[
0 𝑥
𝑦 0

]
.

that is, when A and [𝐴, 𝐴∗] commute. By Jacobson’s Lemma (stated below as Lemma 2.4), this implies
that [𝐴, 𝐴∗] is nilpotent. But [𝐴, 𝐴∗] is Hermitian, so it is nilpotent if and only if it is the zero matrix,
which happens precisely when A is normal.1 �

Lemma 2.4 (Jacobson [34]; see also [36]). If A and B are 𝑑 × 𝑑 matrices over a field of characteristic
0 and A commutes with [𝐴, 𝐵], then [𝐴, 𝐵] is nilpotent.

Remark 2.5. Theorem 2.3 might lead one to suspect that E is convex, but it is not. To see this, consider
the normal matrices

𝐴0 =

[
0 1
−1 0

]
and 𝐴1 =

[
0 1
1 0

]
.

Since they are normal, E(𝐴0) = 0 = E(𝐴1). However,

E((1 − 𝑡)𝐴0 + 𝑡𝐴1) = 32𝑡2(1 − 𝑡)2 > 0

for all 0 < 𝑡 < 1, so the interior of the line segment connecting 𝐴0 and 𝐴1 consists entirely of non-
normal matrices, and hence E is not even quasiconvex, let alone convex. See Figure 2. Of course, we
can pad 𝐴0 and 𝐴1 by zeros to get an analogous example for any 𝑑 > 2.

On the other hand, Theorem 2.3 shows that E is an invex function. Recall that, as first defined by
Hanson [27] (later named by Craven [13]), a function 𝑓 : R𝑛 → R is invex if there exists a function
𝜂 : R𝑛 × R𝑛 → R𝑛 such that

𝑓 (𝑥) − 𝑓 (𝑢) ≥ 〈𝜂(𝑥, 𝑢),∇ 𝑓 (𝑢)〉 𝑥, 𝑢 ∈ R𝑛.

A theorem of Craven and Glover [14] (see also [6]) says that a function is invex if and only if its critical
points are all global minima; hence, E is invex.

2.3. Gradient flow of non-normal energy

Consider the negative gradient flow F : C𝑑×𝑑 × [0,∞) → C𝑑×𝑑 defined by

F (𝐴0, 0) = 𝐴0,
𝑑

𝑑𝑡
F (𝐴0, 𝑡) = −∇E(F (𝐴0, 𝑡)). (2.5)

We pause here to note that there is a substantial history of applying flows like (2.5) to problems
in numerical linear algebra, going back at least to Rutishauer’s work on the LU decomposition [53,
Section 11]. See Chu’s survey [12] for an introduction to this circle of ideas.

1The equivalence of A being normal and A commuting with [𝐴, 𝐴∗ ] appears as #73 in Elsner and Ikramov’s list [19]; they
attribute it to [42, 4.28.5].
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Since E is a real polynomial function on the real vector space C𝑑×𝑑 , the gradient flow cannot have
limit cycles or other bad behavior [41], so Theorem 2.3 implies that, for any 𝐴0 ∈ C𝑑×𝑑 , the limit
𝐴∞ ≔ lim𝑡→∞ F (𝐴0, 𝑡) of the gradient flow is well-defined and normal.

From (2.3), we see that

∇E(𝐴) = −4[𝐴, [𝐴, 𝐴∗]] = −4(𝐴[𝐴, 𝐴∗] − [𝐴, 𝐴∗]𝐴)

= 4
(

𝑑

𝑑𝜖

				𝜖=0𝑒𝜖 [𝐴,𝐴∗ ] 𝐴𝑒−𝜖 [𝐴,𝐴
∗ ]

)
= 4

(
𝑑

𝑑𝜖

				𝜖=0𝑒𝜖 [𝐴,𝐴∗ ] · 𝐴

)
. (2.6)

Since [𝐴, 𝐴∗] is traceless, 𝑒𝜖 [𝐴,𝐴∗ ] ∈ SL𝑑 (C) for any 𝜖 , so the negative gradient flow lines F (𝐴0, 𝑡)
produced by any 𝐴0 stay within the conjugation orbit of 𝐴0. In particular, 𝐴∞ must have the same
eigenvalues as 𝐴0. Since real matrices are invariant under gradient flow, we have thus proved:

Theorem 2.6. For any 𝐴0 ∈ C𝑑×𝑑 , the matrix 𝐴∞ = lim
𝑡→∞

F (𝐴0, 𝑡) exists, is normal, and has the same
eigenvalues as 𝐴0. Moreover, if 𝐴0 is real, then so is 𝐴∞.

Remark 2.7. This theorem implies that the gradient flow (2.5) is an isospectral flow [17, 56, 57, 58].
While it does not quite fit into the classical framework of isospectral flows except in the trivial case
that 𝐴0 is Hermitian, we caution readers interested in implementing (2.5) that standard numerical ODE
methods fail in the classical case [10], and there is no reason to think that our flow won’t pose similar
numerical issues.

If 𝐴0 and 𝐴∞ are as in Theorem 2.6 and 𝜆1, . . . , 𝜆𝑑 are their common eigenvalues, then the normality
of 𝐴∞ implies that

‖𝐴∞‖2 =
𝑑∑
𝑖=1

|𝜆𝑖 |
2.

This immediately implies the following corollary.

Corollary 2.8. If 𝐴0 is non-nilpotent, then its gradient flow (2.5) is bounded away from zero. On the
other hand, if 𝐴0 is nilpotent, then the limit of gradient flow 𝐴∞ is the zero matrix.

A widely used statistic for describing the extent to which a matrix is non-normal is the Henrici
departure from normality [30]. For a matrix 𝐴 ∈ C𝑑×𝑑 with eigenvalues 𝜆𝑖 , this is the quantity2

Hen(𝐴) = ‖𝐴‖2 −

𝑑∑
𝑖=1

|𝜆𝑖 |
2.

Corollary 2.9. Let 𝐴0 ∈ C𝑑×𝑑 and let 𝐴∞ be its limit under the gradient flow (2.5). The change in scale
along gradient flow is equal to Henrici departure from normality,

‖𝐴0‖
2 − ‖𝐴∞‖2 = Hen(𝐴0).

2.4. Bound on the distance to the limit of gradient flow

We now show that 𝐴∞ is not too much further from 𝐴0 than the closest normal matrix, despite the fact
that 𝐴∞ preserves features (spectrum, realness) that the closest normal matrix may not. We do so by a
standard argument starting from a Łojasiewicz inequality.

2Note that some authors, including Henrici, define the departure from normality to be the square root of this quantity.
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8 T. Needham and C. Shonkwiler

Since E is the squared norm of a momentum map (Proposition 2.2), a result of Fisher [20] gives us
the desired inequality3:
Proposition 2.10 (Fisher [20, Theorem 4.7]). There exist constants 𝜖, 𝑐 > 0 so that for all 𝐴 ∈ C𝑑×𝑑

with E(𝐴) < 𝜖 ,

‖∇E(𝐴)‖ ≥ 𝑐 E(𝐴)3/4.

Now we follow a standard argument (see, e.g., Lerman [40]) to get bounds on the distance from 𝐴0
to 𝐴∞. Certainly this distance is no larger than the length of the gradient flow path:

‖𝐴0 − 𝐴∞‖ ≤

∫ ∞

0

���� 𝑑

𝑑𝑡
F (𝐴0, 𝑡)

����𝑑𝑡 =
∫ ∞

0
‖∇E(F (𝐴0, 𝑡))‖𝑑𝑡. (2.7)

So long as E(F (𝐴0, 𝑡)) < 𝜖 ,

−
𝑑

𝑑𝑡
(E(F (𝐴0, 𝑡)))1/4 = −

1
4

E(F (𝐴0, 𝑡))−3/4𝐷 E(F (𝐴0, 𝑡))) (−∇E(F (𝐴0, 𝑡)))

=
1
4

E(F (𝐴0, 𝑡))−3/4‖∇E(F (𝐴0, 𝑡))‖2 ≥
𝑐

4
‖∇E(F (𝐴0, 𝑡))‖,

where the last inequality follows since Proposition 2.10 implies E(F (𝐴0, 𝑡))−3/4‖∇E(F (𝐴0, 𝑡))‖ ≥ 𝑐.
Combining this with (2.7) yields:

‖𝐴0 − 𝐴∞‖ ≤

∫ ∞

0
‖∇E(F (𝐴0, 𝑡))‖𝑑𝑡 ≤ −

4
𝑐

∫ ∞

0

𝑑

𝑑𝑡
(E(F (𝐴0, 𝑡)))1/4𝑑𝑡 =

4
𝑐

E(𝐴0)
1/4.

Therefore, we have proved:
Proposition 2.11. There exist constants 𝜖, 𝑐 > 0 so that, if E(𝐴0) < 𝜖 , then

‖𝐴0 − 𝐴∞‖ ≤
4
𝑐

E(𝐴0)
1/4.

Comparing to the Henrici estimate (Proposition 2.1), we see that, at least when E(𝐴0) is small, the
normal matrix 𝐴∞ we get by doing gradient descent is not much further from 𝐴0 than the closest normal
matrix is, even though 𝐴∞ has the same spectrum as 𝐴0 and is real if 𝐴0 is.
Remark 2.12. The closest normal matrix to a given 𝐴0 ∈ C𝑑×𝑑 can be computed explicitly by Ruhe’s
algorithm [52],4 but the actual closest normal matrix does not have the same spectrum as 𝐴0 and may be
complex even if 𝐴0 is real (see discussion in Chu [11] and Guglielmi and Scalone [25]). This suggests
that the gradient descent approach to finding a nearby normal matrix may be useful in situations where
one is interested in preserving structural properties of the initialization. These observations are borne
out by numerical experiments, and indeed 𝐴∞ gets relatively closer to the closest normal matrix when
𝐴0 is almost normal to begin with: see Figure 3.

3. Unit norm normal matrices

We have seen in Corollary 2.9 that the gradient flow of E does not preserve the Frobenius norm. If we
want a flow that preserves the norm, we should consider the restriction of E to the space U𝑑 of 𝑑 × 𝑑
matrices with Frobenius norm 1. Geometrically,U𝑑 is just the (2𝑑2−1)-dimensional unit sphere inC𝑑×𝑑 .

3Similar results appear in Neeman [48, Theorem A.1], Woodward [60, Lemma B.0.6], and Lerman [40]; both Woodward
and Lerman credit Duistermaat with proving a version of this result in unpublished work, as do Mumford, Fogarty, and Kirwan
[44, p. 166, footnote 58].

4Note that, as Higham points out [31], there is a missing minus sign before the determinant in the definition of 𝜃 in step 2 of
the published version of Ruhe’s Algorithm J.
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Figure 3. Left: We generated 10,000 initial matrices 𝐴0 ∈ C20×20 by letting the real and imaginary parts
of each entry be drawn from a standard Gaussian and then normalizing so that 𝐴0 has Frobenius norm 1.
We computed the closest normal matrix 𝐴 using Ruhe’s algorithm [52] and 𝐴∞ = lim

𝑡→∞
F (𝐴0, 𝑡) using a

very simple gradient descent with fixed step sizes, and then plotted the point (‖𝐴 − 𝐴0‖
2, ‖𝐴∞ − 𝐴0‖

2).
The ratios ‖𝐴∞−𝐴0 ‖

2

‖𝐴−𝐴0 ‖2 were all in the interval [1.028, 1.161]. Center: The same computations and

visualization, except the initial matrices 𝐴0 were all 20 × 20 real matrices. In this case the ‖𝐴∞−𝐴0 ‖
2

‖𝐴−𝐴0 ‖2

were all in the interval [1.023, 1.196]. Right: The same computations and visualization, but with nearly
normal initial matrices 𝐴0 ∈ C20×20. More precisely, we generated 𝐵 ∈ C20×20 by normalizing a matrix
of standard complex Gaussians, found the closest normal matrix 𝐵, then added anN (0, 0.0075) random
variate to the real and complex parts of each entry of 𝐵, and let 𝐴0 be the normalization of this matrix,
so that 𝐴0 has Frobenius norm 1 and is already close to being normal. In this case the ‖𝐴∞−𝐴0 ‖

2

‖𝐴−𝐴0 ‖2 were
all in the interval [1.009, 1.036]. In all three plots, the solid line has slope 1 and the dashed line has
slope 1.3. Code for these experiments is available on GitHub [54].

Let E : U𝑑 → R be the restriction of E to U𝑑 and let F : U𝑑 × [0,∞) → U𝑑 be the associated gradient
flow; that is,

F (𝐴0, 0) = 𝐴0
𝑑

𝑑𝑡
F (𝐴0, 𝑡) = − grad E(F (𝐴0, 𝑡)),

where grad is the Riemannian gradient on U𝑑 .

3.1. Gradient flow of restricted non-normal energy

The normal matrices in U𝑑 are exactly the global minima of E; the goal is to show that almost every
matrix in U𝑑 flows to a normal matrix under the gradient flow:

Theorem 3.1. For any non-nilpotent 𝐴0 ∈ U𝑑 , the matrix 𝐴∞ ≔ lim
𝑡→∞

F (𝐴0, 𝑡) exists, is normal, and
has Frobenius norm 1. Moreover, if 𝐴0 is real, then so is 𝐴∞.

Remark 3.2. In GIT terms, we are looking at (a linearization of) the projective adjoint action of SL(𝑑)
on P(𝔰𝔩(𝑑)∗), and the fact that we have to assume 𝐴0 is non-nilpotent in Theorem 3.1 is equivalent to
the fact that the non-nilpotent matrices are exactly the semistable points with respect to this action [38]
(see [44, Proposition 4.4]).

Since E is a polynomial function defined on a real-analytic submanifold of Euclidean space, it will
have a Łojasiewicz exponent (cf. [7, Corollary 4.2]), and hence the gradient flow will have a single limit
point [41], proving the existence of 𝐴∞.

Since the non-nilpotent matrices form an open, dense subset of U𝑑 , Theorem 3.1 implies that almost
every member of any neighborhood of a nonminimizing critical point will flow to a normal matrix; that
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is, a global minimum of E. Hence, the nonminimizing critical points of E cannot be basins of attraction.
Since E has a Łojasiewicz exponent, an argument analogous to [1, Theorem 3] shows that all local
minima must be basins of attraction. Hence we have the following corollary.

Corollary 3.3. Every local minimum of E must be a global minimum; that is, a normal matrix.

We have already shown that the gradient flow of E converges to a single limit point 𝐴∞. The remainder
of this subsection will be devoted to proving the remaining statements of Theorem 3.1 through several
supporting results. The strategy for proving the rest of the first sentence of Theorem 3.1 is to show that
the gradient flow preserves non-nilpotency and that all nonminimizing critical points must be nilpotent.
As with Theorem 2.6, the last sentence will follow because the real submanifold of U𝑑 is invariant under
the gradient flow.

Proposition 3.4. The intrinsic gradient of E on U𝑑 is

grad E(𝐴) = −4([𝐴, [𝐴, 𝐴∗]] + E(𝐴)𝐴).

Proof. Geometrically, grad E(𝐴) is the projection of the Euclidean gradient ∇E(𝐴) onto the tangent
space 𝑇𝐴U𝑑 = span({𝐴})⊥:

grad E(𝐴) = ∇E(𝐴) − 〈∇E(𝐴), 𝐴〉𝐴.

We know from (2.3) that ∇E(𝐴) = −4[𝐴, [𝐴, 𝐴∗]], so the fact that [𝐴, 𝐴∗] is Hermitian implies

〈∇E(𝐴), 𝐴〉 = −4Re tr([𝐴, [𝐴, 𝐴∗]]∗𝐴) = −4Re tr([𝐴, 𝐴∗]𝐴∗𝐴 − 𝐴∗ [𝐴, 𝐴∗]𝐴)

= 4Re tr([𝐴, 𝐴∗] [𝐴, 𝐴∗]) = 4‖[𝐴, 𝐴∗]‖2 = 4E(𝐴) (3.1)

by the linearity and cyclic invariance of trace, and the result follows. �

Since [𝐴, 𝐴∗] is traceless, notice that

grad E(𝐴) = 4
𝑑

𝑑𝑡

				𝑡=0𝑒−𝑡E(𝐴)𝑒𝑡 [𝐴,𝐴
∗ ] 𝐴𝑒−𝑡 [𝐴,𝐴

∗ ] = 4
𝑑

𝑑𝑡

				𝑡=0 (𝑒
𝑡 [𝐴,𝐴∗ ] , 𝑒−𝑡E(𝐴) ) · 𝐴

is tangent to the SL𝑑 (C) × C
×-orbit of A, where the action of SL𝑑 (C) × C

× on C𝑑×𝑑 is defined by
(𝑔, 𝑧) · 𝐴 ≔ 𝑧𝑔𝐴𝑔−1.

We could use this to show that the negative gradient flow preserves non-nilpotency, but extending to
the limit poses challenges, so we adopt a different approach. For 𝐴 ∈ C𝑑×𝑑 , define

𝑠(𝐴) ≔
𝑑∑
𝑖=1

|𝜆𝑖 |
2,

where 𝜆1, . . . , 𝜆𝑑 are the eigenvalues of A. The nilpotent matrices are precisely the vanishing locus of s.

Lemma 3.5. For any 𝐴 ∈ U𝑑 ,

〈− grad E(𝐴), grad 𝑠(𝐴)〉 = 8𝑠(𝐴)E(𝐴),

where grad 𝑠(𝐴) is the intrinsic gradient of s in U𝑑 .
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Proof. Note, first of all, that 〈𝐴, grad 𝑠(𝐴)〉 = 0, since grad 𝑠(𝐴) ∈ 𝑇𝐴U𝑑 = span({𝐴})⊥. Therefore,

〈− grad E(𝐴), grad 𝑠(𝐴)〉 = 〈−∇E(𝐴) + 4E(𝐴)𝐴, grad 𝑠(𝐴)〉

= 〈−∇E(𝐴), grad 𝑠(𝐴)〉

= 〈−∇E(𝐴),∇𝑠(𝐴) − 〈∇𝑠(𝐴), 𝐴〉𝐴〉

= −〈∇E(𝐴),∇𝑠(𝐴)〉 + 〈∇𝑠(𝐴), 𝐴〉〈∇E(𝐴), 𝐴〉

= −〈∇E(𝐴),∇𝑠(𝐴)〉 + 4〈∇𝑠(𝐴), 𝐴〉E(𝐴),

using (3.1) in the first and last equalities.
We know from (2.6) and the following sentence that ∇E(𝐴) lies in the conjugation orbit of A. But this

means that ∇E(𝐴) must be tangent to the level set of s passing through A, since conjugation preserves
eigenvalues, and hence fixes s. Therefore, 〈∇E(𝐴),∇𝑠(𝐴)〉 = 0 and we have shown that

〈− grad E(𝐴), grad 𝑠(𝐴)〉 = 4〈∇𝑠(𝐴), 𝐴〉E(𝐴).

By definition of the gradient, the inner product is a directional derivative,

〈∇𝑠(𝐴), 𝐴〉 = 𝐷𝑠(𝐴) (𝐴) = lim
𝑡→0

𝑠(𝐴 + 𝑡𝐴) − 𝑠(𝐴)

𝑡
= lim

𝑡→0

(1 + 𝑡)2𝑠(𝐴) − 𝑠(𝐴)

𝑡
= 2𝑠(𝐴),

completing the proof. �

Proposition 3.6. If 𝐴0 ∈ U𝑑 is non-nilpotent, then so is 𝐴𝑡 ≔ F (𝐴0, 𝑡) for all 𝑡 ∈ [0,∞) and so is
𝐴∞ ≔ lim

𝑡→∞
F (𝐴0, 𝑡).

Proof. For any 𝐴 ∈ U𝑑 , Lemma 3.5 implies that

〈− grad E(𝐴), grad 𝑠(𝐴)〉 = 8𝑠(𝐴)E(𝐴) ≥ 0.

Therefore, 𝑠(𝐴) must be nondecreasing along the negative gradient flow lines of E, so 𝑠(𝐴𝑡 ) ≥ 𝑠(𝐴0) > 0
for all 𝑡 ∈ [0,∞), and in the limit we also have 𝑠(𝐴∞) ≥ 𝑠(𝐴0) > 0. Hence, 𝐴𝑡 and 𝐴∞ must be non-
nilpotent. �

In other words, gradient flow preserves non-nilpotency, including in the limit, so we have completed
the first step in our strategy for proving Theorem 3.1. We now proceed with the second step.

Proposition 3.7. All nonminimizing critical points of E are nilpotent.

Proof. By Proposition 3.4, A is a critical point of E if and only if

0 = [𝐴, [𝐴, 𝐴∗]] + E(𝐴)𝐴.

If A is a nonminimizing critical point, then A is not normal, so E(𝐴) ≠ 0 and

𝐴 = −
1

E(𝐴)
[𝐴, [𝐴, 𝐴∗]] .

In other words, 𝐴 = [𝐴, 𝐵] with 𝐵 = − 1
E(𝐴)

[𝐴, 𝐴∗]. But then A certainly commutes with [𝐴, 𝐵], so
Jacobson’s Lemma (Lemma 2.4) implies that [𝐴, 𝐵] is nilpotent. Since 𝐴 = [𝐴, 𝐵], we conclude that A
is nilpotent. �

Proof of Theorem 3.1. If 𝐴0 ∈ U𝑑 is not nilpotent, then the limit 𝐴∞ = lim
𝑡→∞

F (𝐴0, 𝑡) exists and, by

Proposition 3.6, is not nilpotent. 𝐴∞ must be a critical point of E and, by Proposition 3.7, must be a
global minimum, and hence normal. �
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Figure 4. This is the same experimental setup as in Figure 3, except that now 𝐴∞ = lim
𝑡→∞

F (𝐴0, 𝑡).

Left: 𝐴0 ∈ C20×20; all ‖𝐴∞−𝐴0 ‖
2

‖𝐴−𝐴0 ‖2 ∈ [1.060, 1.198]. Center: 𝐴0 ∈ R20×20; all ‖𝐴∞−𝐴0 ‖
2

‖𝐴−𝐴0 ‖2 ∈ [1.046, 1.253].

Right: 𝐴0 ∈ C20×20 is a small perturbation of a normal matrix; all ‖𝐴∞−𝐴0 ‖
2

‖𝐴−𝐴0 ‖2 ∈ [1.010, 1.031]. In all
three plots, the solid line has slope 1 and the dashed line has slope 1.3. Code for these experiments is
available on GitHub [54].

It is possible to prove an analogous statement to Proposition 2.11 in this setting as well, so gradient
descent of E, even though it preserves norms and (when applicable) realness, produces a limiting normal
matrix 𝐴∞ which is not much further from 𝐴0 than the closest normal matrix. Again, this conclusion is
supported by numerical experiments: see Figure 4.

3.2. Topology of unit norm normal matrices

The space of normal matrices N𝑑 is a cone in C𝑑×𝑑 and hence topologically trivial. However, the space
UN𝑑 can potentially have interesting topology. Friedland [21] argues that UN𝑑 is irreducible and the
quasi-variety of its smooth points is connected. However, this is not quite enough to imply that UN𝑑

is connected, since irreducible real varieties can have connected components consisting entirely of
nonsmooth points (see, e.g., [9, Figure 2]). In this subsection, we show that UN𝑑 is connected and, in
fact, that many of its low-dimensional homotopy groups vanish.

The key fact that we use when studying the topology of UN𝑑 is that it is closely related to the
topology of the space of all non-nilpotent matrices in C𝑑×𝑑 . For the rest of this subsection, we use P𝑑 to
denote the space of nilpotent matrices in C𝑑×𝑑 and we let M𝑑 = C𝑑×𝑑 \ P𝑑 . The relationship between
the topologies of UN𝑑 and M𝑑 is made precise by the following result.

Corollary 3.8. The space UN𝑑 is a strong deformation retract of M𝑑 .

Proof. As the function 𝜇 : 𝐴 ↦→ ‖[𝐴, 𝐴∗]‖2 is the norm squared of a momentum map (Proposition 2.2),
with set of critical points exactly equal to N𝑑 (Theorem 2.3), it follows by a more general result of
Duistermaat (see the expository work of Lerman [40]) that gradient descent gives a strong deformation
retract of C𝑑×𝑑 onto N𝑑 . One can also deduce this from the work above: by Theorem 2.6, we have a
well-defined function F : C𝑑×𝑑 × [0,∞] → N𝑑 induced by gradient descent, which obviously fixes
N𝑑 , and the arguments in [40] show that the map is continuous. Moreover, this restricts to a strong
deformation retract M𝑑 × [0,∞] → N𝑑 \ {0}, by Corollary 2.8. As N𝑑 \ {0} is a cone over UN𝑑 ,
the former also strong deformation retracts onto the latter. Concatenating these two strong deformation
retracts gives a strong deformation retract M𝑑 → UN𝑑 . �

In particular, UN𝑑 is homotopy equivalent to M𝑑 , so our goal of characterizing the topology of the
former space reduces to understanding that of the latter space. From such an understanding, we will
deduce the main theorem of this subsection, stated below. In the following, we use 𝜋𝑘 (X , 𝑥0) to denote
the kth homotopy group of a space X with respect to a basepoint 𝑥0 ∈ X , and write 𝜋𝑘 (X ) in the case
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that X is path connected (in which case the result is independent of basepoint, up to isomorphism) – we
refer the reader to [28, Chapter 4] for basic terminology and properties. We say that X is k-connected
if 𝜋𝑘 (X , 𝑥0) is the trivial group.
Theorem 3.9. The space UN𝑑 is k-connected for all 𝑘 ≤ 2𝑑 − 2.
Remark 3.10. In particular, UN𝑑 is connected for all d. Moreover, UN𝑑 is simply connected (i.e.,
𝜋1 (UN𝑑) is also trivial) for all 𝑑 ≥ 2.

The proof will use two auxiliary topological results. The first follows from more general results on
nilpotent cones, which are classical. We use [35] as a general reference and explain how to deduce this
particular result from the general results therein.
Lemma 3.11. The spaceP𝑑 of nilpotent matrices inC𝑑×𝑑 is an irreducible variety of complex dimension
𝑑 (𝑑 − 1).
Proof. We apply the general nilpotent cone theory to the Lie group of invertible matrices GL𝑑 (C),
in which case the nilpotent cone is exactly P𝑑 . Then the fact that P𝑑 is an irreducible variety is [35,
Lemma 6.2]. By [35, Theorem 6.4], the dimension ofP𝑑 is twice the dimension of the maximal unipotent
subalgebra of the Lie algebra C𝑑×𝑑 , namely the subalgebra of strictly upper triangular matrices (i.e.,
with zeros on the diagonal). This subalgebra has complex dimension 1+2+· · ·+ (𝑑−1) = 1

2 𝑑 (𝑑−1). �

The following is a standard application of transversality (see [39, Chapter 6] and [32, Chapter 3]).
Special cases of the result appear in, for example, [23, Theorem 2.3] and [18, Theorem 1.1.4]. We give
a proof sketch here for the sake of convenience.
Lemma 3.12. Let X be a connected smooth manifold and let Y ⊂ X be a union of smooth submanifolds,
Y = Y1 ∪ · · · ∪Yℓ , such that each Y 𝑗 has codimension greater than or equal to m in X . Then 𝜋𝑘 (X \Y)

is isomorphic to 𝜋𝑘 (X ) for all 𝑘 ≤ 𝑚 − 2.
Proof. We will show that the inclusion map 𝜄 : X \ Y ↩→ X induces a bijection between homotopy
groups.

To establish surjectivity, we will show that any map 𝑓 : 𝑆𝑘 → X is homotopic to a map 𝑆𝑘 → X \Y .
To do so, we apply the Whitney Approximation Theorem [39, Theorem 6.26] to homotope f to a
smooth map. By the version of the corollary of the Transversality Theorem given in [32, Theorem 2.5],
together with the argument in the proof of the Transversality Homotopy Theorem [39, Theorem 6.36],
the resulting map is then homotopic to a map 𝑆𝑘 → X which is transverse to each submanifold Y 𝑗 . By
the codimensionality constraint, this is only possible if the image of 𝑆𝑘 is disjoint from each Y 𝑗 . This
shows that f is homotopic to a map whose image is disjoint from Y .

Next, we show that the map induced by 𝜄 is injective. That is, if maps 𝑓0, 𝑓1 : 𝑆𝑘 → X are homotopic,
and, without loss of generality (by the above), 𝑓0(𝑆

𝑘 ) ∩Y = 𝑓1 (𝑆
𝑘 ) ∩Y = ∅, then they are homotopic in

X \ Y . This is done by applying similar arguments to the above to the homotopy 𝑓 : 𝑆𝑘 × [0, 1] → X ;
in particular, this map may be homotoped without destroying transversality at the boundary 𝑆𝑘 × {0, 1}
[32, Ch. 3, Theorem 2.1]. �

Proof of Theorem 3.9. By Corollary 3.8, it suffices to show that M𝑑 is k-connected for all 2𝑑 − 2. By a
theorem of Whitney, the algebraic variety P𝑑 can be expressed as a disjoint union of smooth manifolds
[59, Theorem 2], and, by Lemma 3.11, each of these has real codimension at least

dim(C𝑑×𝑑) − dim(P𝑑) = 2𝑑2 − 2𝑑 (𝑑 − 1) = 2𝑑.

The theorem then follows from Lemma 3.12, since C𝑑×𝑑 is k-connected for all k. �

3.3. Topology of real unit norm normal matrices

Let UN R𝑑 denote the space of real, normal 𝑑 × 𝑑 matrices with Frobenius norm equal to one (so
UN R𝑑 ⊂ UN𝑑). Adapting the arguments from the previous subsection, we will show the following.
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Figure 5. Consider the space UR2 of 2 × 2 real matrices with Frobenius norm 1. Since UR2 is a copy of
the 3-sphere, we can stereographically project to R3. The image under this projection of the unit-norm
nilpotent matrices is shown in blue, and the image of UN R2 is shown in pink. Specifically, the pink plane
(which is the 𝑦 = 𝑧 plane) is the image of the symmetric matrices and the pink loop is the image of the

normal matrices of the form
[

𝑎 𝑏
−𝑏 𝑎

]
.

Theorem 3.13. The space UN R𝑑 is k-connected for all 𝑘 ≤ 𝑑 − 2.

Remark 3.14. It follows from the theorem that UN R𝑑 is path connected for 𝑑 ≥ 2 and simply connected
for 𝑑 ≥ 3. These results are tight:

◦ UN R1 ≈ {±1} is not path connected.
◦ UN R2 is not simply connected. This is illustrated in Figure 5.

The proof of the theorem follows the same general steps as that of Theorem 3.9. Let PR𝑑 denote the
𝑑 × 𝑑 real nilpotent matrices, and let MR

𝑑 = R𝑑×𝑑 \PR𝑑 denote the set of non-nilpotent matrices. By the
same arguments used in the previous subsection, MR

𝑑 deformation retracts onto UN R𝑑 , so it suffices to
prove that MR

𝑑 is k-connected for all 𝑘 ≤ 𝑑 − 2.
The main difference in the real case is that an analogue of Lemma 3.11 does not follow from general

facts of nilpotent cones described in [35], as the results therein are valid over algebraically closed fields.
We obtain a decomposition of PR𝑑 in analogy with the Whitney decomposition used in the proof of
Theorem 3.9 from results of [29] and [8].

Lemma 3.15. The set of nilpotent matrices PR𝑑 is a union of smooth submanifolds of R𝑑×𝑑 , each of
which has codimension at least d.

Proof. It follows from a general theory of real reductive Lie group actions developed in [29] that
R
𝑑×𝑑 \ {0} decomposes as a union of GL𝑑 (R)-invariant (with respect to the conjugation action) smooth

submanifolds 𝑆0 ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑘 , where 𝑆0 is exactly the open submanifold MR

𝑑 – see also [8, Section 1]
for a short exposition of these ideas. It is shown in [8, Section 1.2] that (for the specific example of the
conjugation action onR𝑑×𝑑) the remaining submanifolds 𝑆𝑖 , 𝑖 > 0, are parameterized by Jordan canonical
forms of nilpotent matrices. That is, fixing such a Jordan matrix J, we consider the corresponding set
of nilpotent matrices as the homogeneous space GL𝑑 (R)/stab(𝐽), where stab(𝐽) is the stabilizer of J
under the conjugation action. To complete the proof, it suffices to show that the dimension of such a
homogeneous space is at most 𝑑2 − 𝑑, that is, to show that the stabilizer of any such Jordan matrix is at
least of dimension d.
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Let us now establish the claim made above. A nilpotent Jordan matrix J necessarily has all zeros
on its diagonal, and is therefore characterized by the pattern of ones in the super diagonal (i.e., by
the size of its Jordan blocks). An invertible real matrix 𝐴 = (𝑎𝑖 𝑗 )

𝑑
𝑖, 𝑗=1 lies in the stabilizer of J if and

only if 𝐴𝐽 = 𝐽𝐴. This matrix equation gives several constraints in the entries of A, and the number of
independent constraints determines the dimension of the stabilizer.

In particular, since we aim to determine a lower bound on codimension, it suffices to consider the
Jordan matrix which produces the largest number of constraints: that is, when J is the matrix whose
superdiagonal consists of all ones (i.e., it has a single Jordan block). It is a standard fact (see, e.g.,
[24, Theorem 9.1.1]) that, for this J, solutions of the equation 𝐴𝐽 = 𝐽𝐴 must be upper triangular
Toeplitz matrices. In other words, elements of stab(𝐽) are of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎2 𝑎3 · · · 𝑎𝑑−1 𝑎𝑑

0 𝑎1 𝑎2 · · · 𝑎𝑑−2 𝑎𝑑−1
0 0 𝑎1 · · · 𝑎𝑑−3 𝑎𝑑−2
...

...
...

. . .
...

...
0 0 0 · · · 𝑎1 𝑎2
0 0 0 · · · 0 𝑎1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, then, dim(stab(𝐽)) = 𝑑. This implies that the codimension of the associated submanifold is d.
Since this is the submanifold of smallest codimension, this completes the proof. �

Proof of Theorem 3.13. By the discussion above, it suffices to prove that MR

𝑑 is k-connected for all
𝑘 ≤ 𝑑 − 2. In light of Lemma 3.15, the same transversality argument as was used in the proof of
Theorem 3.9 can be used here. �

4. Balanced matrices and weighted digraphs

As was described in the introduction, the techniques and results that we have developed for normal
matrices can be adapted to the setting of weighted digraphs. The naturality of such an application
follows from the following observation. Notice that the diagonal entries of 𝜇(𝐴) = [𝐴, 𝐴∗] are of the
form ‖𝐴𝑖 ‖

2−‖𝐴𝑖 ‖2, where 𝐴𝑖 is the ith row of A and 𝐴𝑖 is the ith column. Hence, if 𝐴 ∈ C𝑑×𝑑 is normal,
then ‖𝐴𝑖 ‖

2 = ‖𝐴𝑖 ‖2 for all 𝑖 = 1, . . . , 𝑑. This suggests a certain balancing condition, as we expand on
below.

Suppose that G is a weighted, directed graph and 𝐴 is its associated adjacency matrix; that is, the
(𝑖, 𝑗) entry of 𝐴 is the (non-negative) weight of the directed edge from vertex i to vertex j if such an edge
exists, and zero if there is no such edge. In particular, the entries of 𝐴 are non-negative real numbers. If
A is the matrix whose entries are the square roots of the entries of 𝐴, then ‖𝐴𝑖 ‖

2 = ‖𝐴𝑖 ‖2 says that the
ith vertex 𝑣𝑖 of G is balanced: the sum of the weights of the edges coming into 𝑣𝑖 equals the sum of the
weights of the edges leaving 𝑣𝑖 . In other words, every real normal matrix A corresponds to a balanced,
weighted, directed (multi-)graph5 G by interpreting the component-wise square of A as the adjacency
matrix of G. Moreover, the gradient descent procedures described in the previous sections give ways of
balancing a given weighted, directed graph.

However, balancing a graph by gradient descent of E or E has some undesirable features. First, the
condition that A is normal is stronger than the condition that G is balanced;6 second, the gradient flow is
not guaranteed to ensure that a zero entry in the adjacency matrix will stay zero, so the limiting balanced
graph may have sprouted new edges (and even loop edges) not present in the initial graph.

5If A has nonzero entries on its diagonal, the resulting graph will have loop edges at the corresponding vertices.
6For example, in the case when all weights are 1, normality of A implies that every pair of vertices (not necessarily distinct)

has the same number of common out-neighbors as common in-neighbors.
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For applications to balancing graphs, then, the natural energy to consider is not the non-normal
energy E, but rather the unbalanced energy B : C𝑑×𝑑 → R defined by

B(𝐴) = ‖ diag(𝐴𝐴∗ − 𝐴∗𝐴)‖2 =
𝑑∑
𝑖=1

(
‖𝐴𝑖 ‖

2 − ‖𝐴𝑖 ‖2
)2

,

where we use 𝐴𝑖 for the ith row of A and 𝐴𝑖 for the ith column. We will say that A is balanced if B(𝐴) = 0.
We now describe this function from the perspective of symplectic geometry and GIT. Following a

general theme of the paper, these observations are not really essential in what follows, but they provided
inspiration, especially in light of Kirwan’s fundamental work [37]. Let DSU(𝑑) be the subgroup of SU(𝑑)
consisting of diagonal matrices. Then DSU(𝑑) ≈ U(1)𝑑−1 is the standard maximal torus of SU(𝑑).
The restriction of the conjugation action of SU(𝑑) on C𝑑×𝑑 gives a Hamiltonian action of DSU(𝑑) on
C
𝑑×𝑑 with momentum map 𝜇Δ : C𝑑×𝑑 → R𝑑 given by composing the momentum map 𝜇 of the SU(𝑑)

action with orthogonal projection to 𝔡𝔰𝔲(𝑑)∗ ⊂ 𝔰𝔲(𝑑)∗ (see, e.g., [4, Proposition III.1.10]). Under the
identification of 𝔰𝔲(𝑑)∗ with the traceless Hermitian matrices, 𝔡𝔰𝔲(𝑑)∗ corresponds to the traceless,
diagonal, real matrices, so we have

𝜇Δ (𝐴) = diag(𝜇(𝐴)) = diag([𝐴, 𝐴∗])

and B(𝐴) = ‖𝜇Δ (𝐴)‖
2. The GIT version of the foregoing is that the diagonal subgroup DSL𝑑 (C) ⊂

SL𝑑 (C) has an algebraic action by conjugation on C𝑑×𝑑 (or, in Section 4.2, on P(C𝑑×𝑑)).

4.1. Balancing matrices by gradient descent

As in the case of E, all critical points of B are global minima:

Theorem 4.1. The only critical points of B are the global minima; that is, the balanced matrices.

Proof. We first show that the gradient of the balanced energy is given by

∇B(𝐴) = −4[𝐴, diag([𝐴, 𝐴∗])] . (4.1)

We write B = 𝑁 ◦ diag ◦ 𝜇, where 𝜇 is the momentum map (2.1), we consider the diagonalization
operator as a linear map diag : C𝑑×𝑑 → C

𝑑×𝑑 , and N is the norm-squared map, as in the proof of
Theorem 2.3. Following the logic of that proof, we then have that

∇B(𝐴) = 𝐷𝜇(𝐴)∨diag∨∇𝑁 (diag ◦ 𝜇(𝐴)),

where the superscripts once again denote adjoints with respect to 〈·, ·〉. It is not hard to show that the
map diag is self-adjoint and idempotent. Then

∇B(𝐴) = 𝐷𝜇(𝐴)∨diag(2 · diag ◦ 𝜇(𝐴)) = 2𝐷𝜇(𝐴)∨diag(𝜇(𝐴))
= 2[diag(𝜇(𝐴)) + diag(𝜇(𝐴))∗, 𝐴] = −4[𝐴, diag([𝐴, 𝐴∗])] .

The above shows that we have a critical point of B exactly when

0 = [𝐴, diag([𝐴, 𝐴∗])] .

Since the entries of [𝐴, diag([𝐴, 𝐴∗])] are of the form

𝑎𝑖 𝑗

(
(‖𝐴𝑖 ‖

2 − ‖𝐴𝑖 ‖2) − (‖𝐴 𝑗 ‖
2 − ‖𝐴 𝑗 ‖2)

)
, (4.2)

this means that ‖𝐴𝑖 ‖
2 − ‖𝐴𝑖 ‖2 = ‖𝐴 𝑗 ‖

2 − ‖𝐴 𝑗 ‖2 for all i and j such that 𝑎𝑖 𝑗 ≠ 0.
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In other words, A is a critical point of B if and only if ‖𝐴𝑖 ‖
2 − ‖𝐴𝑖 ‖2 is independent of i. However,

since

𝑑∑
𝑖=1

(
‖𝐴𝑖 ‖

2 − ‖𝐴𝑖 ‖2
)
=

𝑑∑
𝑖=1

‖𝐴𝑖 ‖
2 −

𝑑∑
𝑖=1

‖𝐴𝑖 ‖2 = ‖𝐴‖2 − ‖𝐴‖2 = 0,

this can only happen if all ‖𝐴𝑖 ‖
2 − ‖𝐴𝑖 ‖2 = 0; that is, if A is balanced. �

Remark 4.2. Theorem 4.1 shows that B is an invex function, but it is not quasiconvex. To see this,
consider the matrices

𝐴0 =

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎦ and 𝐴1 =

⎡⎢⎢⎢⎢⎣
0 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎦ ,
which are the (entrywise square roots of the) adjacency matrices of the balanced graphs

1

2 3
and

1

2 3
,

respectively. Then B(𝐴0) = 0 = B(𝐴1), but B((1 − 𝑡)𝐴0 + 𝑡𝐴1) = 8𝑡2(1 − 𝑡)2 > 0 for all 0 < 𝑡 < 1.

As in the case of E, we can find global minima of B by gradient descent. Specifically, let
ℱ : C𝑑×𝑑 × [0,∞) → C𝑑×𝑑 be the negative gradient flow of B:

ℱ(𝐴0, 0) = 𝐴0
𝑑

𝑑𝑡
ℱ(𝐴0, 𝑡) = −∇B(ℱ(𝐴0, 𝑡)).

Since B is a real polynomial function on C𝑑×𝑑 , Theorem 4.1 implies that lim𝑡→∞ ℱ(𝐴0, 𝑡) is always
well-defined and normal. Since the real matrices stay real under gradient flow, this limit will be real
whenever 𝐴0 is.

Moreover,

∇B(𝐴) = −4[𝐴, diag([𝐴, 𝐴∗])] = 4
(

𝑑

𝑑𝜖

				𝜖=0𝑒𝜖 diag( [𝐴,𝐴∗ ]) · 𝐴

)
(4.3)

is tangent to the orbit of the diagonal subgroup DSL𝑑 (C) ≤ SL𝑑 (C) acting by conjugation on C𝑑×𝑑 .
In particular, flowing 𝐴0 by the gradient flow of B preserves not just the eigenvalues of 𝐴0, but also all
principal minors of 𝐴0, including the diagonal entries of 𝐴0.

From the expression (4.2) for the entries of − 1
4∇B(𝐴) we see that, if there is 𝑡0 ≥ 0 so that the (𝑖, 𝑗)

entry in ℱ(𝐴0, 𝑡0) vanishes, then the (𝑖, 𝑗) entry of ℱ(𝐴0, 𝑡) will vanish for all 𝑡 ≥ 𝑡0. In graph terms,
the gradient flow of B cannot sprout new edges in the graph. This also means that if 𝐴0 is real, its entries
cannot change sign under gradient descent of B. Thus, we have proved:

Theorem 4.3. For any 𝐴0 ∈ C𝑑×𝑑 , the matrix 𝐴∞ ≔ lim
𝑡→∞

ℱ(𝐴0, 𝑡) exists, is balanced, has the same
eigenvalues and principal minors as 𝐴0, and has zero entries wherever 𝐴0 does. If 𝐴0 is real, then so is
𝐴∞, and if 𝐴0 has all non-negative entries, then so does 𝐴∞.

When we take 𝐴0 to be the entrywise square root of the adjacency matrix of some weighted, directed
graph G0 = (V0, E0, 𝑤0), then we can sensibly interpret 𝐴∞ = lim

𝑡→∞
ℱ(𝐴0, 𝑡) as the entrywise square root
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of the adjacency matrix of some balanced, weighted, directed graph G∞ = (V∞, E∞, 𝑤∞) with V∞ = V0
and E∞ ⊆ E0. In other words, gradient descent of B balances G0 without introducing any new edges.

Remark 4.4. An important consideration in the applied literature on graph balancing is that algorithms
are local, in the sense that iterative updates are only performed based on node-level information
[51, 33, 26]. This is due both to practical constraints on data acquisition, as well as the need for
parallelizability in computation. Observe from the structure of the gradient of the unbalanced energy
that the gradient descent approach to graph balancing is not local in the sense described above, but is
semilocal in the sense that updates only depend on edge-level information. While this paper is concerned
with theory and makes no claims to efficiency or practicality of the algorithm, the useful properties of
the gradient flow of B suggest that it may be interesting to explore its viability in real-world applications.

In the case of gradient descent of E, we saw that all nilpotent matrices flowed to the zero matrix. We
see the same phenomenon here: if G0 is a weighted, directed, acyclic graph (DAG), then its adjacency
matrix is nilpotent, as is the entrywise square root 𝐴0. The gradient flow ℱ(𝐴0, 𝑡) will limit to the zero
matrix, which makes sense: the only way to balance a weighted DAG is by driving all the weights to zero.

4.2. Preserving weights

Weighted DAGs provide an extreme example of the general phenomenon that gradient descent of B
decreases the Frobenius norm. In graph terms, if 𝐴0 is the entrywise square root of the adjacency matrix
of a weighted, directed graph G0, then the squared Frobenius norm

‖𝐴0‖
2 =

∑
𝑖, 𝑗

|𝑎𝑖 𝑗 |
2 =

∑
𝑖, 𝑗

𝑎2
𝑖 𝑗

is precisely the sum of the weights in G0. If the weights correspond to, for example, mass traversing
between nodes in a network, then it may not make sense to balance the flows in the network by reducing
the total mass in the system.

In order to preserve the sum of weights on G0, we consider B : U𝑑 → R, the restriction of B to U𝑑 ,
and its gradient descent ℱ : U𝑑 × [0,∞) → U𝑑 given by

ℱ(𝐴0, 0) = 𝐴0
𝑑

𝑑𝑡
ℱ(𝐴0, 𝑡) = − grad B(ℱ(𝐴0, 𝑡)).

Theorem 4.5. For any non-nilpotent 𝐴0 ∈ U𝑑 , the matrix 𝐴∞ ≔ lim
𝑡→∞

ℱ(𝐴0, 𝑡) exists, is balanced, has
Frobenius norm 1, and has zero entries wherever 𝐴0 does. If 𝐴0 is real, so is 𝐴∞, and if 𝐴0 has all
non-negative entries, then so does 𝐴∞.

In graph terms, if 𝐴0 is the entrywise square root of an adjacency matrix for G0 with total weight 1,
then 𝐴∞ is the entrywise square root of the adjacency matrix for a balanced graph G∞ with total weight 1
whose vertices are the same as the vertices of G0 and whose edges are a subset of the edges of G0. That
is, gradient descent of B balances G0 without introducing any new edges and without losing any overall
weight.

The strategy for proving Theorem 4.5 is the same as for Theorem 3.1. The existence of a unique
limit point 𝐴∞ follows from the fact that B is a polynomial function on U𝑑 , and hence has a Łojasiewicz
exponent. The bulk of the argument is in showing that the gradient flow preserves non-nilpotency
and that the nonminimizing critical points are nilpotent. The rest of the theorem will follow from the
structure of grad B and the fact that the real submanifold of U𝑑 is invariant under gradient flow.

First, we compute the intrinsic gradient of B, which follows the same pattern as grad E:

Proposition 4.6. The intrinsic gradient of B on U𝑑 is

grad B(𝐴) = −4([𝐴, diag([𝐴, 𝐴∗])] + B(𝐴)𝐴).
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Proof. We know that

grad B(𝐴) = ∇B(𝐴) − 〈∇B(𝐴), 𝐴〉𝐴,

so the key is to use (4.1) and the fact that the diagonal of [𝐴, 𝐴∗] is real to compute

〈∇B(𝐴), 𝐴〉 = −4Re tr([𝐴, diag([𝐴, 𝐴∗])]∗𝐴)

= −4Re tr(diag([𝐴, 𝐴∗])𝐴∗𝐴 − 𝐴∗ diag([𝐴, 𝐴∗])𝐴)

= 4Re tr(diag([𝐴, 𝐴∗]) [𝐴, 𝐴∗])

= 4Re tr(diag([𝐴, 𝐴∗]) diag([𝐴, 𝐴∗]))

= 4‖ diag([𝐴, 𝐴∗])‖2

= 4B(𝐴)

using the linearity and cyclic invariance of trace. �

Each entry of grad B(𝐴) is a scalar multiple of the corresponding entry of A, so the fact that the
negative gradient flow ℱ preserves zero entries and cannot change the sign of real entries follows
immediately.

Next, we prove an analog of Lemma 3.5. Recall that 𝑠(𝐴) =
∑

|𝜆𝑖 |
2 is the sum of the squares of the

absolute values of the eigenvalues of A.

Lemma 4.7. For any 𝐴 ∈ U𝑑 ,

〈− grad B(𝐴), grad 𝑠(𝐴)〉 = 8𝑠(𝐴)B(𝐴).

Proof. The proof exactly parallels the proof of Lemma 3.5 by substituting B, B, and (4.3) for E, E, and
(2.6), respectively. �

Since 〈− grad B(𝐴), grad 𝑠(𝐴)〉 = 8𝑠(𝐴)B(𝐴) ≥ 0, 𝑠(𝐴) must be nondecreasing along the negative
gradient flow lines of B, so we have proved:

Proposition 4.8. If 𝐴0 ∈ U𝑑 is non-nilpotent, then so is 𝐴𝑡 ≔ ℱ(𝐴0, 𝑡) and so is 𝐴∞ ≔ lim
𝑡→∞

ℱ(𝐴0, 𝑡).

We know the balanced matrices are exactly the global minima of B. Proposition 4.6 implies that A is
a critical point of B if and only if

0 = [𝐴, diag([𝐴, 𝐴∗])] + B(𝐴)𝐴.

When A is a non-minimizing critical point, B(𝐴) ≠ 0 and the same Jacobson’s Lemma argument as in
Proposition 3.7 shows that A is nilpotent, proving:

Proposition 4.9. All non-minimizing critical points of B are nilpotent.

This completes the proof of Theorem 4.5.
Figure 1 shows an application of this approach to balancing graphs, and Figure 6 shows a much larger

example. In both cases, up to an overall normalization to ensure ‖𝐴0‖ = 1, the non-zero entries in the
starting matrix 𝐴0 were populated by the absolute values of standard Gaussians.

4.3. Topology of unit norm balanced graphs

Let UB𝑑 denote the space of balanced 𝑑 × 𝑑 matrices of unit Frobenius norm, and let UBR𝑑 denote the
subspace of balanced matrices with real entries. The topology of these spaces is tied to the topology of
the relevant spaces of normal matrices, as we record in the following theorem.
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Figure 6. Balancing a larger graph by the flow ℱ, with 𝐴0 on the left and 𝐴∞ = lim
𝑡→∞

ℱ(𝐴0, 𝑡) on the
right. The thickness of each edge is proportional to its weight. The underlying graph is a random planar
graph with 100 vertices and 284 edges, constructed as the 1-skeleton of the Delaunay triangulation
of 100 random points in the square; to make the visualization more comprehensible, the graph that is
shown is a spring embedding, so the vertices are not at the locations of the original random points in
the square.

Theorem 4.10. The spaces UN𝑑 and UB𝑑 are homotopy equivalent. Similarly, the spaces UN R𝑑 and
UBR𝑑 are homotopy equivalent.

Proof. By Theorem 3.1 and Theorem 4.5, respectively, UN𝑑 and UB𝑑 are both deformation retracts of
the space of non-nilpotent unit norm matrices. The same theorems give the result in the real case. �
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