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1. Introduction. There are two families of group classes that are of particular
interest for clearing up the structure of finite soluble groups: Saturated formations and
Fitting classes. In both cases there is a unique conjugacy class of subgroups which are
maximal as members of the respective class combined with the property of being suitably
mapped by homomorphisms (in the case of saturated formations) or intersecting suitably
with normal subgroups (when considering Fitting classes). While it does not seem too
difficult, however, to determine the smallest saturated formation containing a given
group, the same problem regarding Fitting classes does not seem answered for the
dihedral group of order 6. The object of this paper is to determine the smallest Fitting
class containing one of the groups described explicitly later on; all of them are qp-groups
with cyclic commutator quotient group and only one minimal normal subgroup which in
addition coincides with the centre. Unlike the results of McCann [7], which give a
determination "up to metanilpotent groups", the description is complete in this case.
Another family of Fitting classes generated by a metanilpotent group was considered and
described completely by Hawkes (see [5, Theorem 5.5 p. 476]); it was shown later by
Brison [1, Proposition 8.7, Corollary 8.8], that these classes are in fact generated by one
finite group. The Fitting classes considered here are not contained in the Fitting class of
all nilpotent groups but every proper Fitting subclass is. They have the following
additional properties: all minimal normal subgroups are contained in the centre (this
follows in fact from Gaschiitz [4, Theorem 10, p. 64]) and the nilpotent residual is
nilpotent of class two (answering the open question on p. 482 of Hawkes [5]), while the
quotient group modulo the Fitting subgroup may be nilpotent of any class. In particular
no one of these classes consists of supersoluble groups only.

A first step in this direction was done by M. Loos [6] who did the determination for
{q,p) = (2, 3), that is for the minimal non-metabelian group of order 54. This paper
includes his result and puts it into a more general setting.

NOTATION. Unless a particular definition is given, the notation is standard and can be
found in any book on finite groups or on soluble groups such as Doerk and Hawkes [3].
All groups considered in this article are finite.

The author is indebted to the referee who suggested many very desirable
improvements.

2. Preliminaries. Here we want to collect facts which we will refer to later on and
which would disturb the main line of the arguments if proved when needed. Proofs or
sketches of proofs are added for the comfort of the reader although these facts should be
well known.

LEMMA 1. Let F be a finite field of odd prime order and let P(a ,b) = a2 + b2 + 2rab be
an irreducible polynomial over F. Then the set of all values of P(a, b), where (a,b) runs
through all ordered pairs of elements in F, is F itself.

Glasgow Math. J. 36 (1994) 185-195.

https://doi.org/10.1017/S001708950003072X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003072X


186 HERMANN HEINEKEN

Proof. We observe P(a,b) = (a + rb)2 + (1 -rz)b2. If 1- r 2 is not a square in F,
then P(a,0) runs through all squares of F while P{—rb,b) runs through all nonsquares,
and so all elements of F occur as values P(a, b). If 1 - r2 is a square, we obtain the result
since the squares in F do not constitute an additive subgroup of F and some nonsquare
occurs among the P(a, b); and therefore all of them occur.

LEMMA 2. Let F be a finite field. If M is a maximal subgroup of the additive group of
F and c is some element of F, then cM = M if and only if c belongs to the prime field of F.

Proof. Assume that cM = M, then likewise c'M = M for all i, and if F' is the smallest
subfield of F that contains c, then M may be considered as a vector space over F'. Now
the degree of F' over the prime field of F divides the ranks of M and of F and so can only
be 1, showing that F' is the prime field in this case.

COROLLARY 3. The multiplicative group of a finite field F permutes the maximal
additive subgroups of F transitively by multiplication.

LEMMA 4. Assume that x is an element of prime power order q operating irreducibly
and faithfully on an elementary abelian p-group A and that rank(>l) is odd. Choose an
isomorphic copy{xuA\) of (x,A) such that the isomorphism maps x onto JC,. The free
nilpotent class two product F = (A * A^)I(A * At)3 of A and /I, admits an automorphism x
operating on A like conjugation by JC"1 and on Ax like conjugation by xx. The commutator
subgroup F' = (A *A])'/(A * A^^ is a direct product of elementary abelian subgroups
which are invariant under x, and if Wt is among the minimal ones on which r operates
nontrivially, these subgroups Wj can be numbered such that (x, A) is isomorphic to
(x, WJ) by an isomorphism mapping x]+p' onto x. The order F'/[r,F'] is equal to the
order of A.

LEMMA 5. Assume that x is an element of prime power order q operating irreducibly
and faithfully on an elementary abelian p-group Y such that p is odd and rank(F) = 2m is
even. Consider the free {nilpotent class two and exponent p) group F on 2m generators.
Then FIF' is isomorphic to Y and there is an automorphism x of order q of F that induces
an automorphism on F/F' such that (x, Y) is isomorphic to (x,F/F'), where the
isomorphism maps x onto x. The commutator subgroup F' is a direct product of minimal
x-invariant subgroups Wh and if Wj is not fixed elementwise by x, then (x, Y) is
isomorphic to (x,Wj), where the isomorphism maps xl+pl onto x, for suitable ; # 0 .
Furthermore, the order of F'/[F', x] is pm.

LEMMA 6. Assume that q is a prime and that m-2n is minimal such that q divides
2"' - 1. Let V be the free group on m generators. We consider F = V/{V\V)2[V, V']) and
choose a basis bu b2,. . . , bm of F. The quotient group F/F2 possesses an automorphism a
of order q. Every mapping fi of the basis such that /3(6,)F2 = a(bjF2) can be extended to an
automorphism of F (which we call again /?), and its q-th power fixes F/F2 and F2

elementwise. Now /32 is an automorphism of F, and F2/[F2, /32] has order 2".

The reader should note that there is no restriction to the prime p in Lemma 4; the
faithful operation yields that q and p are prime to each other. Lemmata 5 and 6
correspond to each other with respect to p being odd or equal to 2.

Proofs of Lemmata 4 to 6. The arguments in the nilpotent groups are transformed to
the corresponding Lie algebras (first described by Zassenhaus in [9]) and one forms the
tensor product with a suitable splitting field.
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3. Some monolithic groups. In this section we formulate the construction of the
extension of an extraspecial p-group by a cyclic group of order a prime power t. We want
to achieve the additional properties that every subgroup of p-power index is metabelian
and that the centre is the only minimal normal subgroup and of order p. We distinguish
three cases.

Case 1: Let k be minimal such that t divides pk — 1 and suppose that k is odd.
We denote the field of order pk by F. The group U of all upper unitriangular 3 x 3

matrices with entries in Fis normalized by all 3 x 3 diagonal matrices. Choose an element
a of F of multiplicative order (exactly) t, the diagonal matrix sd:au = a33 = 1, aT1 = a
therefore normalizes U, it also centralizes U' = Z{U). If 38 is a matrix belonging to
{sd)U, if further 38* is the inverse of its transpose and 26 is the matrix with
*i3 = xzi = ""-•*3i = 1; xij — 0 otherwise, then the mapping

is an automorphism of (sd)U which inverts sd and fixes every element of U'. Let d be any
non-zero element of F and % the diagonal matrix with cu = c22 = 1, c33 = d. To every pair
R,R* of maximal subgroups of U' there is an element d such that the matrix <# conjugates
one of them into the other (for this see Lemma 2 and the following Corollary). So there is
only one isomorphism class of quotient groups {s4)UlR, and this is the group we are
interested in. Notice that the automorphism induced by <p fixes the elements of U'/R
and inverts the /^-complement.

Case 2: Let n be minimal such that t divides p" — 1 and suppose that n is even; then
n = 2k and / divides pk + 1.

We have to distinguish here:

Case 2a: p is odd. We consider the field F of order p" with element a of
multiplicative order t. It is well known that F possesses an automorphism of order 2,
namely a:jt—»jc(pt). By construction, ao(a) = 1. We consider the subgroup V of upper
unitriangular 3 x 3 matrices 3f with hl2 = o(h2^). By the special choice of a, this subgroup
V is normalized by the diagonal matrix M constructed from a as in Case 1, and, as in Case
1, sd centralizes Z(V) = V'xS, where 5 is the subgroup of all unitriangular matrices 5̂
with st2

 = s23 = 0, si3 = o(sl3). Surely o*, replacing every position in the matrix by its
image under a, is an automorphism of (sd)V which fixes every element of 5. Now choose
an element / of F which is of order 2(pk + 1), so that fa{f) = - 1 , and form the diagonal
matrix 98 with bu = / , b22 = 1, b33 = o(f~l). Then the mapping

induces an automorphism on (sd)V/S which inverts sd and fixes Z(V)/S elementwise. If
R/S is any maximal subgroup of Z(V)/S, then (A)V/R = {(sd)V/S)/(R/S) is the final
result of our construction. Again, this is unique up to isomorphism; we see this by
conjugating with a suitable diagonal matrix "3/ in which yu = d, y21 = 1, y-^ = o(d~l), since
the set of elements do(d) with d in F is the subfield of order pk in F, and we again make
use of Lemma 2. Furthermore, the quotient group {sd)V/R possesses an automorphism
fixing the elements of the centre and inverting the p-complement: the automorphism
induced by cp does this.
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Case 2b: p = 2.
Compared with Case la, the following alterations are made: We choose an element g

such that g ¥= 1 = go(g). The matrices $f are chosen unitriangular with h23 = go(hn), and
38 is taken with 6,3 = b22 = 631 = 1. The remainder is left unchanged.

Case 3: t = T.

Here we want to consider the case k = 1 only; in this case the p-gwup in question is
the free (class two exponent p) group with two generators v, w, say. It seems easier to
consider these generators and their images directly.

Case 3a: t = 2.

In this case we form the extension of (v,w) by an element x with x2 = {xv)2 =
(xw)2 = 1. It follows that x centralizes ([v, w]).

Case 3b: t = 2 > 2 and t divides p - 1.

Choose a number d which is of multiplicative order t modulo p, and let c be its
inverse modulo p. Then the extension of (v, w) by x such that

x' = l; x~lvx = vd\ x~lwx = wc

is a construction of the desired form. The prescription

defines an automorphism of (v, w) which fixes every element of ([v, w]).

Case 3c: t = 2s>2 and t divides p + 1.

There is an integer r such that the mapping

£:w-»w, wi-*v~iw2r[v, w]a

is of order t for suitable a. We form the extension of (v, w) by x with x' = 1; x~lvx = w;
x~lwx = v~lw2r[v, w]a. The polynomial P(a,b) = a2 + b2 + 2rab is by construction ir-
reducible modulo p. By Lemma 1 there are c, d such that c2 + d2 + 2rcrf = — 1, and there
is an automorphism defined by

q? :jt—»£"'; v>-^vcwd~2rc[v,w]ti; w*-+vdw~c[v, w]Y

with suitable /3, y. This automorphism fixes every element of ([v, w]).
The groups we have constructed here will be called Mon(t,p) from now on, and

Fit(q,p) is the smallest Fitting class containing Mon(q,p). Comparing the orders of the
groups of matrices constructed with those constructed in the previous section, we see that
the groups Mon(^,p) are the unique examples G with the following properties:

(i) G" is the unique minimal normal subgroup of G, and G" = Z(G).
(ii) all proper quotient groups of G are metabelian,
(iii) all proper subgroups U of G satisfying UG' - G are metabelian,
(iv) GIG' is cyclic of order q and C is a p-group.

4. Central products. In the context of this paper a central product is a product of
normal subgroups At such that any of them centralizes the product of the remaining ones.
Therefore Air\Ajc.Z{Ai) for ii=-j. In particular, direct products are central products,
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and also extraspecial groups are central products of extraspecial groups of order p3. These
are the two extremes of the wide range of possibilities.

We will make frequent use of the following fact: If the group G is a central product
of normal subgroups At and r is an automorphism of A-, which fixes every element of
Z(Ai), then we can define an automorphism of G by the following prescription: All
elements of At are left fixed for all j ¥=i, all elements y of A, are mapped onto r(y). The
automorphisms constructed in Section 3 in all three cases considered will be seen to be
helpful for our reduction argument which we come to now.

LEMMA 7. Assume that G is a non-nilpotent extension of a central product of
extraspecial p-groups by a cyclic group of order a prime q with q^p', and assume further
that the centre of this extension is the product of the centres of all the extraspecial p-groups
just mentioned. Then the smallest Fitting class containing G contains Mon(q,p).

Proof. The normal Sylow /?-subgroup P of G possesses an extraspecial central factor
K. Denote by L the product of all those central factors of P the commutator subgroups of
which coincide with K'. In this way P can be rearranged as a central product of
extraspecial groups with pairwise different commutator subgroups, and each of these
factors is (A:)-invariant, where x is an element of order q in G. We consider one of these
factors L; without loss of generality we may assume [x, L) = L. Our first step in the proof
will be to show that L is the central product of two (J:)-invariant groups D and C such
that {x, D) is isomorphic to Mon{q,p). The second step, to show why this group belongs
to the same Fitting class, requires different treatment depending on whether q is 2 or odd.

The element x induces by conjugation a linear mapping of order q on the quotient
group L/L' considered as a vector space over the prime field F of order p. Let L' = (z);
the mapping (y^L',y2L')^>k whenever [y\,yi\ = zk is known to be an antisymmetric
bilinear form of L/L', and, by construction, conjugation by x leaves this form invariant.

Let AIL' be a minimal (x)-invariant subgroup of L/L'. If A is nonabelian, then P is
the central product of A and CP(A). Now P is the central product of the two
{x)-invariant subgroups A = D and CP(A) = C, also (x, D) is isomorphic to Mon(q,p).
If A is abelian and rank(/l/L') is odd, then there is an (x)-invariant complement B/L' of
CL(A)/L'. Now P is a central product of AB = D and CP(AB) = C; and (x,D) is
isomorphic to Mon(q,p). If finally A is abelian and Tank(A/L') is even, we construct a
complement B/L' as before and consider AB. We choose a pair of noncentral elements
a eA, b e B such that a commutes with xbx~l but not with x~~lbx (here q must be odd, so
this situation can always be arranged). Now

= [a,x~lbx]x~[[xbx~\a]x

= [a,x~lbx]¥=l.

So P is a central product of [x, (x, ab)] = D and CP(D) = C, and (JC, D) is isomorphic to
Uon{q,p).

We will now show that (x,D) belongs to the smallest Fitting class containing G.
First we treat the case q=£2. We may extend G by an element y such that / ' = 1;
y~ldy =x~ldx for all deD; [x,y] = 1 and [y,C] = l. This extension (y,G) is a central
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product of (D,y) and (C,xy~l), and there is an automorphism rp of (G,y) which fixes
(C,xy~l) and maps (D,y) as q> defined in Section 3 does. In particular,

and (G,y) = Gyj(G) belongs to the Fitting class of G. Now the normal subgroup (D,y)
of (G,y) also belongs to this Fitting class and is isomorphic to {D,x).

The second step is more intricate for q = 2. In this case we may put D = {a,b), and
we extend G first by elements u, v such that [u, G] = [v, G] = up = v1' = 1; [u, v] = [a, b\.
This extension is extended in turn by y and z such that

y~xcy = 2~'cz = Jt~'c;t for all c e C;

[y, *] = 1; zxz = _y; zaz = u; 262 = v;

Here we assumed (xa)2 = (xb)2 = 1; we may without loss of generality. Now the central
product (u,v,G) is contained in the Fitting class of G, and (y,z,u,v,G) is generated
by the isomorphic subnormal subgroups (u, v, G) = (u, v,x, a, b, P), (a, b,y, u, v, P)
and {au, {vb)r, z,au~\ (v~lb)r, P), where 2 r = l modulo p. We derive (xz)2 = xy, and
the subnormal subgroup (xz, a,b,u,v) of (u,v,G) belongs to the smallest Fitting class
containing G. But (a,b,u,v) is a central product of the (xz)-invariant extraspecial
groups {av,bu~x) and {av~\bu). We extend H = (xz,a,b,u,v) by w such that
[w, av] = [w, bu~l] = [w, xz] = w4 = 1; w~xuw = (xz)~lu(xz) for all u € {av~\ bu). Now
(H,w) is a central product of (w,av~l,bu) and (xzw~',au, bu~l). We construct an
automorphism 1/; of (H, w) which fixes the elements of the second factor and maps the
elements of the first like the automorphism cp defined in Case 3b or Case 3c in Section 3.
So (xz,a,b,u,v) = H and (xzw~2, a, b, u,v) are isomorphic normal subgroups of
(H,w) generating (H,w2). Here we find the subnormal subgroup ((xzw'1)2, av, bu~')
which is the desired group.

REMARK 8. The groups mentioned in Lemma 7 are normal subgroups of central
products of p-groups and groups Mon(g,p). We see therefore that the smallest Fitting
class containing a group mentioned in Lemma 7 coincides with

5. Nilpotent residuals. We recall that the nilpotent residual G* of a group G is the
unique normal subgroup N which is minimal with respect to having nilpotent quotient
group G/N. For normal subgroups A,B of a group G we have (AB)* = A*B*. We will
now define classes of groups and show that they are Fitting classes.

LEMMA 9. Denote by H the class of groups G satisfying the following conditions:
(i) G is a qp-group, where q and p are different primes,

(ii) G* is a central product of extraspecial p-groups,
(iii) [Q, Z(G*)] = 1 for every Sylow q-subgroup Q of G.

Then S is a Fitting class.
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Proof. We will show first that normal subgroups of G satisfy the conditions (i)-(iii).
Choose a normal subgroup M of C, then M fl Q = R is a Sylow ^-subgroup of M and
M* = [M*, R] = [G*, /?]. By hypothesis, G* is a central product of extraspecial p-groups;
by combining those factors with coinciding commutator subgroup we can make it a central
product of extraspecial groups with pairwise different commutator subgroups. If T is
one such factor, then TZ(G*) = [TZ(G*), Q\Z(G*), and we may replace T by the
Q-invariant factor [TZ(G*),Q]. We assume now that this replacement is done for all
factors. Now M* = [R, G*] is the product of the groups [/?, T], and so is the product of
extraspecial groups, proving the validity of (ii). From Z(M*)cZ(G*) we deduce
[R, Z(M*)] = 1, which is (iii), and it is clear that (i) is true.

In our second step we will show that conditions (i)-(iii) are inherited by normal
products. Choose two normal subgroups H and K satisfying (i)-(iii). Clearly HK satisfies
(i). If Q is a Sylow ^-subgroup of HK, then QDH = R and Q D K = S are Sylow
^-subgroups of H, K, respectively. We assume that H* is a central product of R-invariant
extraspecial factors 7J with pairwise different commutator subgroups (7])'. To derive a
contradiction we assume the existence of an element x e K of odd prime power order such
that x~xTjX # Ti\ we obtain

By definition we know that

(r,)' n JC-'(7;)'JC = (T,y n i ( r , ) ' * - ' = x-\Tiyx r u c ^ y * - ' = 1,

and the three conjugates of 7} have pairwise trivial intersection and hence centralize each
other. Take two elements y,z of T{ such that [ y , z ] # l . Now [x,y] and [JC~',Z] are
contained in K* since x is contained in K and since y and z are p-elements. Now [[jc,y],
[x~\z\] e (K*)' and [[[x,y], [x~\ z]],x] = 1; on the other hand, [[x,y], [x~l, z)] = [y, z],
the other three commutators of the expansion are contained in trivial intersections of
different conjuates of 7J. By construction, [y, x] e Tt is different from 1, and [[y, z],x] =£
1. This shows that x centralizes (7))' and, more generally, Z{H*). If x belongs to 5 or
some conjugate of S, we obtain that Z(H*) is centralized by all conjugates of 5 and
therefore by SK = SK*; so Z(H*) is centralized by K*. If x belongs to K*, we obtain the
same result more directly. By symmetry in H and K we have Z(H*)Z(K*) c Z(H*K*).

To derive the opposite inclusion, we state first that K* = [K*,R]K+, where
K+ = C(R) n K*; this follows from the fact that the orders of R and K* are relatively
prime. Now H*K* = H*[K*,R]K+ = H*K+ since ficH and so [K*,R]^H*. Choose
any element / of Z(H*K*); there are elements /, e H* and f2 e K+ such that / =/,/2. If h
is any element of H*, we have

1 = [/, h] = [/,/2, h] = / ! ' [ / „ h]f2[f2, h] = [fuh][f2, h]

and [/,, h'1] = [f2, h]. Now [/,, h] e (//*)' = Z(H*) and [Z(H*), R] = 1. Therefore

and l = [f2,[H*,R]] = [f2,H*]. Now we have / =ftf2eZ(H*K*) and/2eC(H*), and
/, eZ(//*) follows. Consequently /, e C(K*) and also f2eZ(K*). This shows
Z(H*)Z(K*) 2 Z{H*K*) and finally

K*). (1)

https://doi.org/10.1017/S001708950003072X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003072X


192 HERMANN HEINEKEN

Certainly SK* is a characteristic subgroup of K and therefore a normal subgroup of
HK. We obtain [S, Z(H*K*)]cZ(H*K*)n K* = Z(K*) and therefore
[5,[5,Z(//*/C*)]] = l. Since 5 and Z(H*K*) = Z have coprime order, we obtain
[5, Z] = 1, and, by symmetry in H and K,

[G,Z] = 1 (2)

and we have shown (iii). The Sylow p-subgroup R of H is a normal subgroup of Q, and
7̂  = [T(Z, R] = [T/Z, R] = [TiZ, Q] by coprime orders of Q and 7j-Z. We see that the
factors 7] are even Q-invariant. By symmetry we have that K* is a central product of
(3-invariant extraspecial groups Uj with pairwise different commutator subgroups. The
intersection TjC\K* is Q-invariant but not necessarily /C*-invariant. Since H* and K* are
of orders coprime to that of Q, there are Q-invariant quotients A/Z, BIZ, C/Z such that

H*IZ = A/Z X C/Z; K*/Z = B/Z x C/Z; C = (H*D K*)Z.

It follows that s~]asZ = aZ for all a e A and 5 e 5, r~xbrZ = bZ, for all b e B and r e / ? ;
furthermore

[R,A]Z = A; [S,B]Z = B; [R
Since H*K*IZ is a normal product of two abelian groups, it is nilpotent of class two, and
all commutators of length four are trivial. It follows that all commutators of length three
commute with QH*K*. We will use this to show that all commutators of length three are
trivial. For this it suffices to have the entries of the commutator belonging to A, B, or C;
we will call the entries then a,-, bh ck, respectively.

Since [c,b]eZ, we have

By symmetry,
[[c, a] , / /**•] = 1,

and so

[[a,b],c] = [[c,b],a][[c,a],b]-l = l,

[[a,, a2], H*K*\ = [[bx, b2], H*K*\ = [[c,, c2], H*K* = 1.

For any element s e S we obtain

[[b, a , ] , a2] = s~l[[b, a , ] , a2]s = [[s~lbs, a , ] , a2]

and so [[[s, b], a,], a2] = 1; so 1 = [[[5, fl],/!],/!] = [[B,A], A] and again [[ft, a,], a2] = 1.
By analogy, substituting (fl,/l,/?) for the triple (A,B,S), we find [[a,fc,],fe2] = !•

This completes the argument to show that H*K* is nilpotent of class two. Having
achieved this, we find [a, b] = r~l[a,b]r and [[R,A],B] = [A,B] = \; also p , C ] , B ] =
[C, B] = 1 and [[5, C], A] = [C, A] = 1. Now H*K* is a central product of A, B and C
which in turn are central products of (Z and) the intersections T,r\A, TjdC, UjC\C,
Uj fl B. Each of these are extraspecial groups. This shows (ii).

6. Central wreath products. If A and B are two finite groups, we denote their
(standard) wreath product by A \ B. This is a split extension of the direct product of \B\
many copies of A by B. The direct product is replaced by a central product with identified
centres if we consider the quotient group (A \ B)/[Z(A)B, B] instead. This is what we call
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a central wreath product and we will denote it by A \c B for short. In particular, if A is
extraspecial, A \c B is the split extension of an extraspecial group by B.

Assume that G is the extension of an extraspecial p-group P by a g-group Q such
that [Z(P), Q] = 1. Then the group of automorphisms induced by conjugation in P is
isomorphic to a subgroup of some Sylow g-subgroup of the symplectic group Sp(2n,p),
where In is the rank of P. The Sylow q -subgroups themselves are known for odd q to be
isomorphic to the direct product of suitable iterated wreath products
(. . .{{Cqr \ Cq) \ Cq). . . Cq) where qr is the highest power of q that divides a number
ps — 1 with s not divisible by q. If for instance s as denned above is minimal and even,
then the Sylow g-subgroup of Sp(sq"',p) is isomorphic to the wreath product with m
iterations. This can be found in Weir [7]. The corresponding split extension of the
extraspecial p-group of rank sqm by this Sylow ^-subgroup with the corresponding
operation by conjugation is then isomorphic to (. . .((Mon(qr,p) \c Cq) \c Cq). . . Cq)
with also m iterations. For other ranks the group is a central product with identified
centres with factors of this form.

We want to show that extensions of extraspecial p-groups P by ^-groups Q with
[Z(P), Q] = 1 belong to the Fitting class Fit(q,p). We begin with a special case.

LEMMA 10. / / q and p are different primes, q is odd and qr is the highest power of q
which divides ps — 1 where s is minimal such that q \ {ps — 1), then
(. . . .((Mon(<7r,/?) \r Cq) \c Cq). . . Cq) is contained in Fit(q,p) for any number of
iterations.

Proof. By definition, Mon(q,p) belongs to F\t(q,p). For our iteration we need the
following rule:

(+ ) If H is the extension of an extraspecial p-group by a <jr-group and H belongs to
¥\\{q,p), then so does H \c Cq.

Assume that R is the normal Sylow p -subgroup of H. Then R \c Cq belongs to
Fit(q,p) by Lemma 7 and is subnormal in H\cCq. Also the central product of the
conjugates of H belongs to Fit(g,p), and so does their product. This proves statement
( + )•

If now m is an integer smaller than r and such that Mon(<7"',/?) belongs to Fit(<7,p),
then so does Mon(q"',p)\cCq. We consider the subgroup W generated by the full
p-subgroup P and some cyclic subgroup of order qm+l. This is a subnormal subgroup, and
again belongs to Fit(g,p). Since m is smaller than r, the normal Sylow p-subgroup splits
into a central product of W-invariant extraspecial p-subgroups; let V be a minimal one
among them so that P is the central product of V and U, and let x be some element of
order q. We extend W by some element y of order q centralizing U and satisfying
y~lvy =x~1vx for all v e V. Let xy~x = z; then (W,y) is the central product
(V,y)(U,z). We have shown in Section 3 that there is an automorphism of
(V,y) =Mon(qm + l ,p) which inverts y and leaves V fixed elementwise. So W =
(V, U,yz) = {V, U,y~{z), and (W,y) belongs to Fit(<7,p) since it is a normal product
of Wand (V, U,y~l), and also (V,y) belongs to Fit(q,p). We have shown

(+ + ) If Mon(<7'",p)eFit(<7,p) and m is smaller than r, then also Mon(^m+I,p)e
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It is now obvious that the statement of the Lemma follows from ( + ) and ( + + ).

We will now treat the case q = 2 accordingly. Here the Sylow 2-subgroup of the
symplectic group Sp(2",p) is isomorphic to the wreath product
(. . .{(D \ C2) 1 C2). . . 1 C2), where the number of iterations is n - 1 and D is the
(generalized) quaternion group of order 2r, where r is maximal such that 2r divides p2 — 1
(see Carter and Fong [2], p. 142-3). The monolithic group which is the extension of a
nonabelian group of order p3 by D we will denote by Monf(2r,p) with a dagger t as a
reminder that the Sylow 2-subgroup is not cyclic. Now we can formulate the correspond-
ing statement.

LEMMA 11. / / 2r is the highest power of 2 dividing p2 — 1, then

(. . .((Mon'(2r,p) t C2) \c C2). . . "U C2) e Fit(2,p)

for any number of iterations.

Proof. As a first step we obtain as in Lemma 10.

(+ ) If H e Fit(2,p) is the extension of an extraspecial p-group by a 2-group, then also
A/lfC2eFit(2,p).

The proof is the same as in Lemma 10 and is therefore omitted. As a second
statement we will need

(+ + ) Mon(4,/?)eFit(2,p).

To show this we use ( + ) to see that Mon(2,p) \c C2 e Fit(2,/?). There is a subgroup
of index 2 in this central wreath product which is an extension of an extraspecial p-group
of order p5 by a cyclic group of order 4, like L = {x, a, b, c, d) satisfying the conditions

x* = a" = b" = c" = d" = [a, b][d, c] = 1,

x~'ax = b,x~xbx = a~\ x~lcx = d,

x~ldx = c~\ [u, [a,b]] = 1 for u =x, a, b, c, d.

There are integers v, w such that v2 + w2 = - 1 modulo p. The reader will find that the
extension (z, L) with

z-1az = avbw,z-lbz=awb-v,

z~lcz = d~\ z~idz = c,x2 = z2

is generated by the isomorphic normal subgroups (x,a,b,c,d) and (z,a,b,c,d) which
has the normal subgroup (xz,a,b) sMon(4,p), showing statement (+ + ) . Since the
generalized quaternion group is generated by its (cyclic) subgroups of order 4, we have
that Modf(2r,p) is generated by subnormal subgroups isomorphic to Mon(4,/?). This
shows

(+ + + ) Monf(2r,/j)eFit(2,p).

The proof now follows from ( + ) and (+ + + ) .

COROLLARY 12. Assume that K is an extension of an extraspecial p-group P by a
q-group Q where p and q are different primes and [Q, Z(P)] = 1. Then K e Fit
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For a proof denote the normal Sylow p -subgroup of K by P, and fix some Sylow
^-subgroup Q. Then K/(Q D C(P)) is isomorphic to a central product of groups
mentioned in Lemma 10 and 11 respectively, so K/(Q D C(P)) e F\t(q,p). Furthermore,
Q e F\t(q,p), and the same is true for K which is isomorphic to some subnormal
subgroup of (K/(Q n C(P))) x Q.

7. The final result.

THEOREM 13. Fit(q,p) is the class of groups satisfying the conditions (i)-(iii) of E in
Lemma 9.

Proof. The group H eZ is a normal product of its Sylow p -subgroup P and the
product H*Q, where Q is some Sylow g-subgroup. Clearly P e F'it(q,p). By (ii), H* is
the central product of (2-invariant extraspecial p-groups T/, and therefore H*Q is
isomorphic to a subnormal subgroup of a central product of factors QTj arranged in such a
way that its restriction to the Tt leads to H*. This shows that also H*Q e F\i{q,p) is true,
and so finally H e F\t(q,p).

REMARK 14. Theorem 13 and Lemma 9 taken together show that the classes S have
all their proper subclasses included in the class of nilpotent groups. In particular, we have
a description of the Fitting class generated by Mon(2,p) for odd p, which are groups of
order 2p3, and also the Fitting class generated by Mon(3, 2) = SL(2, 3) is defined.
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