
ANZIAMJ. 44(2002), 21-32

WHAT IS THE DISCRETE ANALOGUE OF THE PAINLEVE
PROPERTY?

A. RAMANI1 and B. GRAMMATICOS2

(Received 29 February, 2000; revised 6 July, 2000)

Abstract

We analyse the various integrability criteria which have been proposed for discrete systems,
focusing on the singularity confinement method. We present the exact procedure used for
the derivation of discrete Painleve equations based on the deautonomisation of integrable
autonomous mappings. This procedure is then examined in the light of more recent criteria
based on the notion of the complexity of the mapping.- We show that the low-growth
requirements lead, in the case of the discrete Painleve equations, to exactly the same results
as singularity confinement. The analysis of linearisable mappings shows that they have
special growth properties which can be used in order to identify them. A working strategy
for the study of discrete integrability based on singularity confinement and low-growth
considerations is also proposed.

1. In the beginning, Painleve created . . .

The Painleve approach [16] is one of the most successful methods for the prediction
of integrability of nonlinear differential systems. The main difficulty in integrating
the latter, that is, properly defining a function through the solution of the differential
equation, was the existence of movable (initial condition dependent) critical singulari-
ties. The Painleve approach consisted of looking for those of the nonlinear differential
equations whose solutions were free from movable critical singularities. The Painleve
property has since been used with great success in the detection of integrability [19].
We must stress one important point here. The Painleve property as introduced by
Painleve is not just a predictor of integrability but practically a definition of integra-
bility. As such it becomes a tautology rather than a criterion. It is thus crucial to make
the distinction between the Painleve property and the algorithm for its investigation.
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22 A. Ramani and B. Grammaticos [2]

The latter can only search for the absence of the Painleve property within certain
assumptions [1]. The search can thus lead to a conclusion with questionable validity:
if we find that the system passes what is usually referred to as the Painleve test (in one
of its several variants) this does not necessarily mean that the system possesses the
Painleve property. Thus at least as far as its usual practical application is concerned,
the Painleve test may not be sufficient for integrability.

Given the success of the Painleve approach one can wonder whether these tech-
niques could be transposed mutatis mutandis to the study of discrete systems. It is
clear that rational mappings have singularities which could play some role in connec-
tion with integrability. However, any argument based on singularities in the discrete
domain can only bear a superficial resemblance to the situation in the continuous case
[14]. One cannot hope to relate directly the singularities of mappings to those of
ODEs for the simple reason that there exist discrete systems which do not have any
nontrivial continuous limit.

With these arguments in mind we are ready to embark upon a review of the detectors
of discrete integrability.

2. The genesis of singularity confinement

While in the introduction we presented a pessimistic view concerning the singular-
ities of discrete systems and their relations to those of continuous systems, we shall
here qualify this statement. While a direct relation is elusive the notions of singularity
and singlevaluedness can be transposed from the continuum to the discrete setting.
In the continuous case, a singularity that introduces multivaluedness is considered in-
compatible with integrability. The analogous idea in the discrete case was introduced
by N. Joshi [13] through the notion of orbits with pole-like behaviour. Starting from
finite values of the mapping variable one reaches infinity in a finite number of steps
and the orbit can be continued in a single-valued manner beyond the point at infinity
to finite values again. Joshi conjectured that for integrability a discrete system should
have orbits with pole-like behaviour. However, the criterion of pole-like behaving or-
bits was not proposed as a discrete integrability detector. This was due to a difficulty
which appeared during the first exploratory studies. While studying the mapping •

(1)

Joshi observed that it had only orbits with pole-like behaviour while being noninte-
grable. However as we have explained in various works of our own, this nonintegra-
bility of (1) is due to some other defect of the mapping. While the forward iteration
is well-defined, the backward one is not. Thus a given point has an exponentially
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increasing number of preimages. This proliferation of preimages is incompatible with
integrability.

Still, singularities were to play an important role in the study of the integrability of
discrete systems. This was done through the introduction of singularity confinement
[10] which is essentially the same as the requirement of the existence of orbits with
pole-like behaviour. Singularity confinement was discovered (independently of the
results of N. Joshi) in our study of integrable mappings. Let us illustrate this by an
example. Consider the mapping

a 1
xn+\ + - * n - l = 1 T • (2)

X" * ,

Obviously, a singularity appears whenever the value of x becomes 0. Iterating this
value, one obtains the sequence {0, oo, 0} and then the indeterminate form oo — oo.
As Kruskal points out the real problem lies in the latter, while the occurrence of a
simple infinity is something that can easily be dealt with by going to projective space.
The way to treat this difficulty is to use an argument of continuity with respect to
the initial conditions and introduce a small parameter e. In this case, if we assume
that xn = € we obtain for the first values of x: xn+l «s 1/e2, xn+2 « —e, and when
we carefully compute the next value of x we find that not only is it finite but it also
contains the memory of the initial condition *„_]. The singularity has disappeared.

This is the property that we have dubbed singularity confinement and after having
analysed a host of discrete systems we concluded that it was characteristic of those
which were integrable. Through a bold move, singularity confinement has been
elevated to the rank of integrability criterion. In what follows, we shall comment on
its necessary and sufficient character.

Several questions had to be answered for singularity confinement to be really
operative. The first, that we encountered above, was the one related to the fact that
the iteration of a mapping may not be defined uniquely in both directions. Thus we
proposed the criterion of preimage non-proliferation [11], which had the advantage
of eliminating en masse all polynomial nonlinear mappings. The second point is that
the notion of 'singularity' had to be refined. Clearly the simple appearance of an
infinity in the iteration of a mapping is not really a problem. What is crucial is that
a mapping may at some point "lose a degree of freedom". In a mapping of the form
*n+i = f (*n, *n-i) this means simply that dxn+l/dxn_t = 0 and the memory of the
initial condition *„_, disappears from the iteration. What does "confinement" mean
in this case? Clearly, the mapping must recover the lost degree of freedom and the
only way to do this is through the appearance of an indeterminate form 0/0, oo — oo,
etc., in the subsequent iterations.

Once these basic questions were answered, singularity confinement became a most
efficient tool for the derivation of new integrable discrete systems. (This is a point
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that we wish to stress here. In our opinion, it is important to forge a tool and then use
it in some useful way despite the fact that it may be far from perfect. Once one has in
mind the possible shortcomings of the tool, one can use it perfectly. This we believe
is much more constructive than spending all one's energy testing the tool on trivial
examples and/or trying to either perfect it or prove its flawed character.)

The most successful application of the singularity confinement method has been the
derivation of the discrete analogues of the Painleve equations [6]. Let us illustrate our
approach here. Our starting point is an autonomous integrable mapping and as such we
have always used the QRT mapping [18], in its symmetric or asymmetric form. This
choice was motivated by the fact that the solutions of the QRT mapping are samplings
of elliptic functions. Since the Painleve equations are nonautonomous extensions of
elliptic functions, it makes sense, in the discrete case, to try to construct the discrete
Painleve equations by deautonomising the QRT mapping. The way to apply singularity
confinement for deautonomisation is to start from the (confined) singularity pattern of
an autonomous (integrable) mapping and ask for the nonautonomous extension with
exactly the same singularity pattern. The example (2) above will help us make things
clearer. As we have seen, the singularity pattern is {0, oo, 0}. Now we assume that
a is not a constant anymore but may depend on n. The singularity analysis can be
performed in a straightforward way. Assuming that xn = e, we obtain xn+\ » 1/e2,
xn+2 ̂  —€ and requiring xn+i to be finite we obtain the constraint an+2—2an+l+an = 0,
that is, an is of the form an — an+fi. Thus the nonautonomous form of (2), compatible
with the confinement property, is

an + P 1
*„+, + *„_! = h — . (3)

Mapping (3) is presumably integrable and it turns out that indeed it is. As we have
shown in [17], it possesses a Lax pair. Moreover it is the contiguity relation of the
solutions of the one-parameter Pm equation [22]. Its continuous limit is Pt so (3) can
be considered as its discrete analogue.

Using the procedure presented above, we have derived discrete analogues for
all Painleve equations (IP's). Along the way we have discovered those genuinely
discrete entities, the ^-discrete IP's [20]. The domain of discrete IP's has a much
more complicated structure than its continuous counterpart. Our findings have made
it possible to explore it, chart it and, with the help of the most recent developments
based on affine Weyl groups, provide the basis for the classification of the discrete
Painleve equations [23]. But this is a story for grown-ups.

3. Singularity confinement: Examine me and prove me (Psalms 26)

The words of caution we used in the previous section apply as well to the singularity
confinement property used as integrability criterion. In this section we shall examine
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it critically and present its weaknesses. Talking about an integrability criterion one
must make clear what one means by integrability. (Let us recall that our approach
concerns rational explicit mappings.) Following the analogy with the continuous case,
we can introduce various types of integrability:

a) Systems which possess a sufficient number of constants of motion. The QRT
family of mappings is a nice example of such a system.

b) Systems which can be reduced to linear mappings.
c) Systems which can be obtained as the compatibility condition for some linear

system, that is, systems that possess a Lax pair. (Nice examples of such systems are
the discrete Painleve equations.) Given the Lax pair one can reduce the integration of
the nonlinear mapping to the solution of an isomonodromy problem.

It is clear that the integration of a given integrable discrete system may proceed
along any of the lines sketched above. One can, for example, perform a first integration
using a constant of motion whereupon the system becomes linearisable and so on.

The first question one can ask is whether singularity confinement is necessary
for integrability. The answer is no. There exist systems which are integrable while
possessing nonconfining singularities. The typical case of nonconfined singularities in
an integrable system is that of the discrete derivative of a (discrete) Riccati equation, a
case we first encountered in [7]. It is easy to understand the reason for this nonconfined
singularity by following the analogy to continuous systems. The ODE which is the
derivative of a continuous Riccati corresponds to the limit n -*• oo of the Gambier
equation. Since, as we have shown, the analogue of n in the discrete case is the
number N of steps needed for confinement, an infinite number of steps is tantamount
to a nonconfined singularity. A most simple equation which exhibits a nonconfined
singularity while being trivially integrable through linearisation is

x2

xn-\
anxn. (4)

\ixn happens to be zero, which may well occur for nonzero xn-\, then xn+i is also zero
and loses the memory of xn-\ and this is true of all subsequent iterations, which can
never recover this lost degree of freedom. The linearisation of (4) is straightforward.
Introducing yn = xn/xn-\ we have vn+i = yn + an. Thus at least for a subclass of
linearisable systems the singularity confinement condition is violated.

The second question is whether singularity confinement is sufficient for integra-
bility. The answer is again no, as was shown by Hietarinta and Viallet [12]. They
examined the mapping

Xn+i +*„_! =Xn + — (5)
X

which has a confined singularity pattern {0, oo, oo, 0} and showed that it behaves
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chaotically. Moreover they pointed out that one can construct whole families of
nonintegrable mappings which satisfy the confinement criterion.

Thus one wonders what is left from confinement. The answer is clear. We know
of a whole domain of mappings for which the confinement property is satisfied: they
are those that are integrable through 1ST methods. The discrete Painleve equations
are most prominent among these. The explanation of this can be sought in the bilinear
formalism. Just as in the continuous case, the IST-integrable discrete systems can be
described in a bilinear setting, through a dependent variable transformation involving
a finite number of T-functions. The latter can only have zeros and an expression in
terms of a finite number of r 's leads necessarily to confined singularities. In the case
of the mapping (3), the transformation reads

xn = —-r- (6)
n

and this explains the singularity pattern (0, oo2, 0}. Of course, a transformation such
as (6) does not mean anything if the r's are not really entire functions. In the case
of the discrete Painleve equations it can be shown, in the framework of our "Grand
Scheme" [23], that this is indeed the case, since the T'S are solutions of a system
of compatible Hirota-Miwa equations. The same argument applies to the other IST-
integrable systems.

Given the shortcomings of the confinement method that we presented above, one
may wonder whether this criterion can be used as an integrability detector. We intend
to answer (by a qualified affirmative) this question in the final section. For the time
being let us adopt the most cautious attitude and wonder whether we can still find a
discrete integrability criterion, along lines different from those explored above. The
approach we shall follow here is based on the relation of discrete integrability and
the complexity of the evolution introduced by Arnold and Veselov. According to
Arnold [2] the complexity (in the case of mappings of the plane) is the number of
intersection points of a fixed curve with the image of a second curve obtained under
the mapping at hand. While the complexity grows exponentially with the iteration for
generic mappings, it can be shown [25] to grow only polynomially for a large class of
integrable mappings. As Veselov points out, "integrability has an essential correlation
with the weak growth of certain characteristics". Veselov himself has used the slow-
growth arguments in his study of the integrability of mappings and correspondences.
In particular, he has studied the integrability of polynomial mappings and has shown,
for example, that the mapping xn+i — 2xn + xn_i = / (xn) is integrable only if/ (xn)
is linear in xn.

The notion of complexity was further extended in the works of Viallet and collab-
orators who focused on rational mappings [3, 5]. They introduced what they called
algebraic entropy, which is a global index of the complexity of the mapping. The
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main idea is that there exists a link between the dynamical complexity of a mapping
and the degree of its iterates. If we consider a mapping of degree d (a notion to
be made clearer in the examples below) then the n-th iterate will have a degree d",
unless common factors lead to simplifications. It turns out that when the mapping
is integrable such simplifications occur in a massive way leading to a degree growth
which is polynomial in n, instead of exponential. Thus while the generic, noninte-
grable, mapping has exponential degree growth, a polynomial growth is an indication
of integrability.

Let us illustrate this approach by a practical application to a mapping that we have
already encountered,

a 1
Xn+i +*„_! = h — . (7)

Xn Xn

In order to compute the degree of the iterates, we introduce the homogeneous co-
ordinates by taking x0 = p, X\ = q/r, assigning to p the degree zero, and com-
puting the degree of homogeneity in q and r at every iteration. We could have,
of course, introduced a different choice for x0 but it turns out that the choice of a
zero-degree x0 considerably simplifies the calculations. We obtain thus the degrees:
0,1, 2, 5, 8, 13, 18, 25, 32,41 Clearly the degree growth is polynomial. We
have dim = 2m2 and d2m+i = 2m2 + 2m + 1. This is in perfect agreement with the
fact that the mapping (7) is integrable (in terms of elliptic functions), being a member
of the QRT family of integrable mappings. (A remark is necessary at this point. In
order to obtain a closed-form expression for the degrees of the iterates, we start by
computing a sufficient number of them. Once the expression of the degree has been
heuristically established we compute the next few and check that they agree with the
analytical expression predicted.) As a matter of fact, the precise values of the degrees
are not important: they are not invariant under coordinate changes. However, the type
of growth is invariant and can be used as an indication of the integrable or nointegrable
character of the mapping.

Let us show what happens in the case of a nonintegrable mapping. We choose one
among those examined in [9],

xn+x = a + ^ i . (8)

Again we take x0 = p, X\ = q/r, and compute the degree of homogeneity in q and r.
We find the sequence of degrees dn : 0, 1, 1, 2, 3, 5, 8, 13, 21 This is clearly a
Fibonacci sequence obeying the recursion dn+l = dn + dn-\ and thus leading to an
exponential growth with asymptotic ratio (l + \/5)/2. As a consequence the mapping
(8) is not expected to be integrable, which is in agreement with the findings of [9].
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4. Is there life after singularity confinement?

Since there exists a considerable body of results concerning integrable discrete
systems derived using the singularity confinement criterion, it is indispensable to
reexamine these systems, in particular if their integrability has not been confirmed
through an independent approach. The most important result of the application of
singularity confinement is the derivation of discrete Painleve equations. As we have
already explained the derivation of the discrete Painleve equations was based on
the deautonomisation of the QRT mapping which is known to be integrable. The
deautonomisation procedure consists of finding the dependence of the coefficients
of the parameters of the QRT mapping with respect to the independent variable
n, which is compatible with the singularity confinement property. Namely, the n-
dependence is obtained by asking that the singularities be indeed confined. The
reason why this procedure can be justified is the following. Since the autonomous
starting point is integrable, it is expected that the growth of the degree of the iterates
is polynomial. Now it turns out that the application of the singularity confinement
deautonomisation corresponds to the requirement that the nonautonomous mappings
lead to the same factorizations and subsequent simplifications and have precisely the
same growth properties as the autonomous ones. These considerations will be made
more transparent thanks to the examples we present in what follows.

Let us start with the mapping we have studied already,

xn+1 + xn-i = I- — (9)
Xn Xn

where now a depends on n. The singularity confinement result is that a must satisfy
the conditions an+1 — 1an + an-\ = 0, that is, a be linear in n. Assuming now that a
is an arbitrary function of n we compute the iterates of (9). We obtain the sequence

r2 + axqr-pq2 qQ4

q2 ' r(r2 + atqr-pq2)2'
aiqr-pq2)Q7 qQ4Qn

where the Qk's are homogeneous polynomials in q, r of degree k. The computation of
the degrees of xn leads to 0, 1, 2, 5, 9, 17,30, 54, 9 5 , . . . . The growth is exponential
with ratio of the order of 1.76, a clear indication that the mapping is not integrable
in general. The simplifications that do occur are insufficient to curb the exponential
growth. As a matter of fact, if we follow a particular factor we can check that
it keeps appearing either in the numerator or the denominator (where its degree
is alternatively 1 and 2). This corresponds to the unconfined singularity pattern
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(0, oo2,0, oo, 0, oo2,0, oo, . . . }• Already at the fourth iteration the degrees differ in
the autonomous and nonautonomous cases. Our approach consists of requiring that the
degree in the nonautonomous case be identical to the one obtained in the autonomous
one. If we implement the requirement that d4 be 8 instead of 9 we find the condition
an+i — 2an + an-\ = 0, that is, precisely the condition obtained through singularity
confinement. Here this condition means that q divides Q1 exactly. Moreover, once
this condition is satisfied, the subsequent degrees of the nonautonomous case coincide
with those of the autonomous one. For example both q and r2 +aiqr—pq2 divide Qn
exactly, leading to d5 = 13 instead of 17 etc. Thus the mapping leads to polynomial
growth in agreement with its integrable character.

In what follows, we shall not present all the results on discrete Painleve equations
in detail. They can be found in [15]. The important result is that in our analysis of the
growth properties of the d-P's, for all cases the nonautonomous forms obtained through
singularity confinement led to the same degrees of the iterates as the autonomous form.
Moreover, we have been able to study the degree growth of the generic asymmetric
QRT mapping and found dn = n2. It appears that n2 is the maximal growth one can
obtain for the QRT mapping. As a control, we have also checked the degree of growth
of the asymmetric nonautonomous g-Pvi equation and found that it led to exactly the
same degree growth dn = n2. These results are of particular significance since they
confirm the finding of the singularity confinement in the case of the discrete Painleve
equations.

As we have seen in Section 3 there exists another class of integrable systems which
are integrable in a much simpler way: the linearisable mappings. The degree growth
considerations can be (and have been) extended to these systems as well, leading to
interesting results [21]. Let us start with the generic second-order projective mapping,
in canonical form,

0 1
*„+, = a + -i- + , (10)

where a, /$ are free functions of n. The calculation of the degree of the iterates of (10)
is straightforward (withx0 = p,X\ = q/r, p being assigned zero degree) and we find
da = 1 for n > 0. The constancy of the degree can be explained through the fact that
(10) can be obtained as the projective reduction of a system of three linear equations.

Let us now turn to the Riccati derivative we encountered in Section 3,

x2

xn+\ = —— + anxn . (11)

The degree growth of the iterates of mapping (11) are readily obtained. We find, with
x0 = p (p of homogeneity zero), X\ = q/r, the degrees dn = n. In [21], we have
studied in detail the growth properties of linearisable second-order mappings. While
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for the projective system we have dn = 1, in the other linearisable cases studied we
have found a linear degree growth. This has led us to the formulation of the conjecture
that linearisable systems are characterised by growth slower than that of the generic
integrable mapping of the same order: in the case of second order mappings this means
linear growth compared to the quadratic growth of the general integrable mapping.
Thus a study of the degree growth can give an indication not only of the integrability
but also of the way to integrate a mapping.

At this point we must present a tentative answer to the title of the paper. In the
light of the recent findings, what plays the role of the Painleve property in discrete
systems could be the slow growth of some characteristic quantity. On the other hand,
the findings on linearisable systems tend to indicate that low complexity is related
rather to integrability in general than to the particular kind of integrability associated
to the Painleve property (and all the nice analytical properties the latter entails in the
continuous case).

The second question we must answer is that of the title of this section, or, rather in
a more operational rephrasing, "how can singularity confinement still be useful in the
investigation of integrability?" First, we should remark that the implementation of the
degree growth, although straightforward, can lead to prohibitively bulky computations,
in particular for systems with more than one degree of freedom. Second, the constraints
for the limitation of degree growth, whenever we wish to distinguish the integrable
subcases of a more general parametrisation, can appear in a pretty intricate way. In
contrast, the singularity confinement approach studies each singularity separately and
thus the constraints are usually obtained one by one. These considerations have led
us to the proposal of the following strategy for the study of integrability of discrete
systems. Given a mapping we start by studying it using the singularity confinement
method. This leads to a set of constraints which we consider tentatively as a necessary
condition for integrability. We implement these constraints and obtain a system with
much less freedom than the initial one. We then study the complexity of this system.
If we find an exponential growth, this is an indication that the system is not integrable
and we investigate whether some further restriction could curb the exponential growth.
If the growth is polynomial, this can be considered as an indication of integrability.
However, if the growth is even slower than the maximal polynomial compatible with
the degree of the mapping, this can be an indication of linearisability. In this case,
the constraints of singularity confinement may be too stringent and we must examine
whether some may be released while conserving the same rate of degree growth.

We are convinced that this dual approach will prove a most valuable tool for the
study of the integrability of discrete systems.
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