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Abstract

Shifting to cycling in urban areas reduces greenhouse gas emissions and improves public health. Access to
street-level data on bicycle traffic would assist cities in planning targeted infrastructure improvements to
encourage cycling and provide civil society with evidence to advocate for cyclists’ needs. Yet, the data currently
available to cities and citizens often only comes from sparsely located counting stations. This paper extrapolates
bicycle volume beyond these few locations to estimate street-level bicycle counts for the entire city of Berlin.
We predict daily and average annual daily street-level bicycle volumes using machine-learning techniques and
various data sources. These include app-based crowdsourced data, infrastructure, bike-sharing, motorized
traffic, socioeconomic indicators, weather, holiday data, and centrality measures. Our analysis reveals that
crowdsourced cycling flow data from Strava in the area around the point of interest are most important for the
prediction. To provide guidance for future data collection, we analyze how including short-term counts at
predicted locations enhances model performance. By incorporating just 10 days of sample counts for each
predicted location, we are able to almost halve the error and greatly reduce the variability in performance among
predicted locations.

Impact Statement

We show how data science can be used to achieve urban sustainability goals at the nexus of climate change and
health by promoting active transportation. Our work demonstrates how bicycle volume can be extrapolated from
a few scarcely located counting stations to street-level predictions. Such spatial extrapolation based on urban
traffic sensor data has received little scholarly attention, especially in the case of bicycles. We generate
predictions with machine learning approaches using a wide range of different data sources. Among others, we
employ bike-sharing data that we scraped andmade available and illustrate how the different data modalities can
be feature-engineered. Providing this granularity of cycling data is a necessary step towards evidence-based
infrastructure development, a key factor in promoting cycling.
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1. Introduction

Shifting from motorized transport to bicycles offers significant health and environmental benefits,
including improved cardiorespiratory health, reduced cancer mortality risk (Oja et al., 2011; Woodcock
et al., 2009), and lower greenhouse gas emissions (Pörtner et al., 2022). Enhancing bicycle infrastructure
is a promising strategy to encourage cycling in urban areas. Research indicates that cyclists, particularly
women, prefer dedicated bike infrastructure (Dill, 2009; Garrard, Rose, and Lo, 2008). Also, riding in a
separate bicycle lane is linked to a reduced risk of accidents (Morrison et al., 2019). Introducing new bike
lanes, however, is often highly contested due to limited resources, such as funding and road space. Thus,
data-driven approaches are crucial for accurately targeting infrastructure improvements in areas with the
greatest need (Olmos et al., 2020; Larsen, Patterson, and El-Geneidy, 2013).

One relevant piece of information for such data-driven approaches is bicycle volume data. Currently, most
of this data is collected by permanently installed bicycle counting stations, providing information on cyclists
passing by a specific location. Due to their high cost, these stations are sparsely located across a road network.
At the same time, several data sources related to cycling are openly available (Romanillos et al., 2016). Given
the scarcity of bicycle volume data on the one hand and the abundance of related data on the other hand,
clamors for methods that are able to make use of all available information in order to better predict bicycle
volumes at a fine-grained scale. We address this by combining machine learning (ML) methods with a wide
variety of available data sources to extrapolate bicycle volume to a much higher spatial resolution. With this
machinery, we aim to answer three important questions. First, can we predict bicycle volume at unseen
locations using a variety of data?Second,whichof these data sources are themost relevant for prediction?And
third, how much can the performance be improved by adding sample counts for the predicted locations?

Researchers have identified several datasets related to bicycle volume that have proven useful,
especially for interpolating missing observations in bicycle count data. These include data sources that
have long been available, such as weather, holidays, infrastructure, and socioeconomic indicators
(Miranda-Moreno and Nosal, 2011; Strauss and Miranda-Moreno, 2013; Holmgren, Aspegren, and
Dahlströma, 2017). More recently, the growing availability of data associated with widespread smart-
phone use has opened new avenues for analysis (Lee and Sener, 2020). Notably, this includes valuable
information from crowdsourced bicycle usage data, in particular, from the Strava application (Lee and
Sener, 2021; Kwigizile, Morgan Kwayu, and Oh, 2022), bike-sharing protocols (Miah et al., 2023) or the
use of photos and tweets (Wu et al., 2017).

Among available studies, some extrapolate bicycle volume using only a few of these data sources. For
instance, Miah et al., 2022 explore how counting station data can be merged with crowdsourced data to
estimate bicycle volumes across street networks using clustering and nonparametric modeling. They find
that relying solely on crowdsourced data as an additional input to counts is challenging, particularly due to
oversampling from counting stations located at high-volume locations. Similar studies estimate cyclists’
exposure employing various data sources and using classical regression approaches (Sanders et al., 2017;
Griswold,Medury, and Schneider, 2011), mixed effects models (Dadashova andGriffin, 2020) or Poisson
regressions (Roy et al., 2019). In addition to traditional statistical approaches, ML methods have been
increasingly applied over the past decade. For instance, (Sekuła et al., 2018; Das and Tsapakis, 2020;
Zahedian et al., 2020) have proven howMLmethods can be leveraged for the extrapolation of motorized
traffic. However, to the best of our knowledge, there is no study that combines ML methods with a large
variety of different data sources to provide reliable, fine-grained predictions of bicycle counts beyond
available counting stations.

Our paper showcases our approach in the city of Berlin. In Germany’s largest city, with 3.6 million
inhabitants, the modal share for walking and cycling was 37% in 2023, which is above the European
average of 33% (based on 31 major cities with a minimum of 13% and a maximum of 57%) (European
Metropolitan Transport Authorities, 2023). We note that each city has unique characteristics, and while
Berlin’s case promises to provide valuable insights, it cannot represent the diversity of urban settings
across Europe, thereby limiting the generalizability of our findings to other cities. We implement and
compare differentML algorithms to predict the daily and average annual daily bicycle volume (AADB) at
unseen locations. We use a wide array of features, many of which have proven pertinent in previous
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studies (see Table 1 for an overview). To identify the most relevant data sources, we perform a grouped
base permutation feature importance. Lastly, we aim to guide future data collection by evaluating whether
collecting sample counts at unseen locations would be purposeful to improve the predictions further, and
what is the best strategy to collect this data.

2. Results

2.1. Data sources

Our study uses data from 20 long-term bicycle counting stations in Berlin, which continuously measure
the number of passing bicycles per hour. In addition, we employ data from 12 short-term counting
stations, where counts are conducted on individual days throughout the year (Senate Department for the
Environment, Mobility, Consumer and Climate Protection Berlin, 2022). To accurately predict bicycle
counts, we make use of information contained in a variety of further sources. These include data on
infrastructure, socioeconomic factors, motorized traffic, weather, holidays, centrality measures, bike-
sharing, and from a crowdsourcing application that tracks cyclists (Strava application). We also use
inherent information on the time. Bike-sharing and Strava data directly represent bicycle traffic. However,
they attract different users and differ in the type of information they provide. The former describes the
exact time and origin–destination-pairs of individual trips taken on short-term free-floating rented bikes.
The latter are anonymized georeferenced data from an application, which are aggregated to provide the
number of trips for a region and for road segments between intersections based on tracking users as they
ride. The bike-sharing, crowdsourced, and motorized traffic data are feature-engineered, to indicate the
usage volume, respectively of passing motorized traffic within different radii around counting stations.
The socioeconomic and infrastructure features are assigned in accordance with the location of the
counting stations. Further details on the distinct data sources, including data clearing and feature
engineering are provided in the Methods Section 4.1. A list of all features is provided in Table 2 together
with references to the data sources. The bike-sharing data is only available for April to December 2019
and June to December 2022. Therefore, we set our study period to these periods. This also largely omits
the period of the COVID-19 pandemic and its impact on transportation.

Table 1. Overview of data types used in this paper to predict bicycle volume and their use in other
publications: including crowdsourced (Strava)[Crowds.], infrastructure [Infr.], weather [Weath.],

socioeconomic [Socio.], bike-sharing [B.-S.], public and school holidays [Hol.], centrality measures
[Centr.], and motorized traffic [Moto.]

Reference/data source Crowds. Infr. Weath. Socio. B.-S. Hol. Centr. Moto.

Miah et al. (2023) ✓ ✓ ✓ ✓ ✓

Dadashova and Griffin (2020) ✓ ✓ ✓ ✓

Kwigizile et al. (2022) ✓ ✓ ✓ ✓

Hochmair et al. (2019) ✓ ✓ ✓ ✓

Sanders et al. (2017) ✓ ✓ ✓

Nelson et al. (2021) ✓ ✓ ✓

Hankey and Lindsey (2016) ✓ ✓ ✓

Strauss and Miranda-Moreno (2013) ✓ ✓ ✓

Roy et al. (2019) ✓ ✓

El Esawey (2018) ✓

Holmgren et al. (2017) ✓ ✓

Miranda-Moreno and Nosal (2011) ✓

Lu et al. (2017) ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 2. Overview of the features per data source used in this study

Data category Description of features
# of

features Data source

Crowdsourced Number of trips originating, arriving, or happening; with respect to
leisure and commute, with respect to different times of the day,
with respect to the weekend, with respect to different personal
characteristics (age, sex), with respect to normal and e-bikes, as
well as average speed (both for hexagon and street segment data)

135 Strava Metro (2023)

Infrastructure Latitude, longitude, distance to city center, maximum speed, bicycle
lane type, number of shops/education centers/hotels/hospitals/
industries for various radii, percent of area used for farming/
horticulture/cemeteries/waterways/industry/ private gardening/
parks/traffic areas/forests/ residential housing

50 OpenStreetMap contributors (2017)
and Senate Department for Urban
Development, Building and
Housing, (2023)

Weather Average/maximum/minimum temperature, precipitation,maximum
snow depth, sunshine duration, wind speed, wind direction, peak
wind gust, dew point, air pressure, humidity

10 meteostat (2022)

Socioeconomic Population density, total number of inhabitants, average age, gender
distribution, share of population with migration background,
share of foreigners, share of unemployed, share of population
with tenure exceeding 5 years, rate moving to/from area, age-
specific demographic proportions, greying index, birth rate

15 Senate Department for Urban
Development, Building and Housing
(2023) and Berlin-Brandenburg
Office of Statistics (2023)

Bike-sharing Number of bicycles originated, returned rented within various radii 24 CityLab Berlin (2019), Nextbike (2020)
and Kaiser (2023)

Holiday School holiday, public holiday 2 Senate Department for Education,
Youth and Family (2022)

Motorized traffic Total number and speed of vehicles/cars/lorries within different
radii

12 Berlin Open Data (2022b)

Centrality measures Degree, closeness, betweenness, clustering coefficient 4 based on Berlin Open Data (2024)
Time Month, day of month, weekday, weekend, year 5 Inherent
Total number of features 257
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2.2. Spatial extrapolation using multi-source data

Wetrain ourmodel usingdata fromexisting counting stations as ground truth.Wecompare the performance of
different ML algorithms on this task. A description of the models, the feature selection, and the hyperpara-
meter tuning can be found in the Methods Section 4.2. We evaluate the predictions on the daily and average
annual (AADB) scales. The daily scale is valuable for providing a more detailed picture of the variation
throughout the year, and it is relevant for understanding the effects of intra-week variation, special events, and
seasonal weather conditions (Yi et al., 2021; Sekuła et al., 2018; Zahedian et al., 2020). For infrastructure
planning decisions, annual averagesmay be sufficient. TheAADB is the average number of bicycles that pass
a given location per day for a given year. We compute the performance for the AADB by predicting the daily
counts and evaluating their average against the annual ground truth average. Since the counting station data is
recorded hourly, we sum up the measurements for each day to obtain daily measurements. To address non-
normal distribution characterized by a pronounced right skew of the ground truth, we apply a logarithmic
transformation (seeMethodsSection4.2). To simulate extrapolation,we evaluate ourmodels using leave-one-
group-out (LOGO) cross-validation (CV). The method follows the same principle as standard CV but differs
in how the data is partitioned. Instead of randompartitioning, the data is organized into distinct groups, which,
in our case, correspond to counting stations. Consequently, the model is trained on observations from all but
one long-term counting station and then evaluated on this hold-out long-term counting station.

In addition, we use the short-term counting locations as test data for a model trained on all long-term
counting stations. We provide the average error across stations, which implies that each location is equally
weighted in the test data. When computing these predictions, it is important to note that the hourly long-
term data are measured from 0 h to 24 h, while the short-term counts only from 7 h to 19 h. Hence, we train
themodel, predicting the short-term locations, only on dailymeasurements, which are computed as the sum
of the 7 h–19 h hourly measurements. We also perform the analysis of the long-term stations on daily
measurements based on 0 h–24h and07h–19h data separately. The former allows us to infer day effects for
long-term stations, and the latter can be used to compare results with the short-term counting predictions.

In order to provide information on the absolute and relative size of our errors, we use themean absolute
error (MAE), and the symmetric mean absolute percentage error (SMAPE) as evaluationmetrics and train
the models on various ML algorithms (see Methods Section 4.2). Additionally, we include a baseline for
comparison, where predictions are generated using the mean of the observations in the training data.

We find that all models, besides the linear regression, outperform the baseline in all specifications.
XGBoost also outperforms decision trees, random forests, support vector machines, linear regression, and
shallow neural networks in all specifications (Table 3). For reasons of brevity, we chose one model to
conduct the subsequent analysis. As the analysis dealswith long-term counting stations on the 0 h–24h data,
we select XGBoost, due to its slightly superior performance in terms of both MAE and SMAPE for this
specification. In particular, we note that this model does not produce the smallest MAE in predicting the
long-term counts for the 7-19 h data. The choice of XGBoost is made in the context of this specific use case
and is not a general recommendation for this model. To analyze the performance of the XGBoost model in
more detail, we looked into the variation of SMAPEbetween stations. At the daily scale, themodel performs
quite well for more than half the stations (SMAPE of up to 30), while for some, the SMAPE exceeds
80 (Figure 1a), and the performance also varies considerably between counters for the AADB (Figure 1b).
The poorly performing locations each have a high variance in their measurements, and each of these
locations is either consistently over-predicted or under-predicted. Our analysis revealed no further common
characteristics of the worst-performing counters that would allow us to pinpoint where the model is failing.
We conclude that there are latent factors within the data generation process that remain unaccounted for
despite our comprehensive inclusion of a wide range of features from the existing literature.Wewill explore
how this can be mitigated using sample counts in Section 2.5.

2.3. Relative importance of feature groups

Each data source used requires time and effort for acquisition, cleaning, and integration. Given the variety
of sources used in this study, we explore their relative importance so that individuals considering a similar
modeling approach can anticipate which ones are essential to obtain.
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Feature importance measures the contribution of the feature to the prediction of the target variable.
Given the large number of employed features and possible collinearity among them, we evaluate their
grouped importance. We group them along the data sources, further splitting them to account for their
different characteristics, such as whether they provide information on flows, travel demand, origin–
destination information, and the different radii used (particularly local vs. whole city features). With this
approach, collinear features are included in the same group, ensuring that their combined contribution is
evaluated rather than wrongly estimating the importance of any single feature. We only use those features
that the feature selection method selected for the XGBoost model. Our categories include time, holidays,
and weather derived from the data sources.We further divide motorized traffic features into city-wide and

Table 3. Errors for the various machine learning models at the daily, and average annual daily bicycle
volume (AADB) scale. The gray background implicates the columns employed as the criterion for

model selection for the subsequent analysis

(a) MAE

Dimension Daily Daily Daily AADB AADB AADB
Time 0 h–24 h 7 h–19 h 7 h–19 h all day 7 h–19 h 7 h–19 h
Counter type Long-term Long-term Short-term Long-term Long-term Short-term
Evaluation LOGO LOGO Test LOGO LOGO Test

(1) (2) (3) (4) (5) (6)

Linear regression 2275.83 1681.07 1803.38 2090.51 1500.85 1709.86
Decision tree 2139.44 1591.54 1425.18 1804.12 1327.36 1464.00
Random forest 1630.23 1609.00 1050.08 1477.03 1438.34 1067.96
Gradient boosting 1760.96 1477.24 1149.74 1575.33 1295.48 1132.62
XGBoost 1511.58 1540.70 828.94 1342.96 1339.80 913.75
Support vector machine 1793.84 1612.20 1225.12 1668.06 1404.77 1019.57
Shallow neural network 2186.43 1907.65 1611.37 1637.59 1816.15 1688.72
Baseline 2397.87 1944.66 1707.61 2397.87 1944.66 1707.61

(b) SMAPE

Dimension Daily Daily Daily AADB AADB AADB
Time 0 h–24 h 7 h–19 h 7 h–19 h 0 h–24 h 7 h–19 h 7 h–19 h

Counter type
Long-
term

Long-
term

Short-
term

Long-
term

Long-
term

Short-
term

Evaluation LOGO LOGO Test LOGO LOGO Test

(1) (2) (3) (4) (5) (6)

Linear regression 62.91 51.78 68.39 61.26 49.17 65.51
Decision tree 47.24 46.00 60.27 40.19 38.81 58.78
Random forest 38.18 48.72 47.57 35.40 46.76 47.02
Gradient boosting 45.20 45.05 54.82 42.83 42.41 52.35
XGBoost 37.36 44.52 43.24 34.26 42.47 37.89
Support vector

machine
47.68 52.79 56.93 48.36 47.94 50.18

Shallow neural
network

47.77 57.46 67.58 55.88 53.38 65.75

Baseline 64.10 63.14 69.80 64.10 63.14 69.80
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area-specific groups. Infrastructure features include street-level features (speed, type of bicycle lane),
points of interest (such as the number of shops or educational centers), and features related to the usage of
the area around the counting location. Bike-sharing features are grouped into those capturing the count of
passing bicycles and those tracking the number of trips that start or end. Lastly, we divided Strava data into
flow at different spatial levels (area-wide, city-wide, and street-level), as well as origin/destination
features. The feature selection process did not include any socioeconomic or centrality features.
A detailed list of the selected features and their assignment to the groups is included in Appendix A.1.

We compute the grouped feature importance at the daily scale, using the Grouped Permutation
Importance (GPI; Plagwitz et al., 2022), which is described in Section 4.2. Additionally, we focus on
the SMAPE error, as correctly predicting both relatively busy and relatively slow roads is valuable when
deciding where to prioritize infrastructure. Finally, since we want to get a comprehensive picture of the
daily traffic situation, including at night, we use the data for the 0 h–24 h time window.We train themodel
on all long-term counting stations. Within GPI, we compute 100 permutations and use repeated 5-fold
stratified CV.

The GPI reveals that crowdsourced Strava application data, specifically those features describing the
flow in the area around the point of interest, is themost important group, followed by infrastructure (use of
area), time indicators, motorized traffic (city-wide), infrastructure (street-level) and infrastructure (points
of interest) (Figure 2a). The crowdsourced information is much more relevant than the bike-sharing data.
While both directly represent bicycle traffic, the movement patterns of individuals tracking their trips turn
out to be more indicative of the overall cycling volume. Therefore, consistent with previous research, we
find that Strava indicators are very useful for estimating cycling volumes (Sanders et al., 2017; Hochmair,
Bardin, and Ahmouda, 2019; Kwigizile, Morgan Kwayu, and Oh, 2022).

(a) Model using wide array of inputs (daily) (b) Model using wide array of inputs (AADB)

(c) Model using a wide array of inputs
and ten days of sample data (daily)

(d) Model using a wide array of inputs
and ten days of sample data (AADB)

Figure 1. Performance of XGBoost model at the daily level and for average annual daily bicycle volume
estimations (AADB) across the individual counting stations. Subfigure b) and d) were trained on 10 days’
worth of sample data and on the additional long-term counting stations (full-city model specification).
Highlighted in all graphs are the counting stations whose error exceeds or is below a deviation of
1 standard deviation from the mean. The color coding and the ordering of the counting stations across all
subplots are the same to ensure comparability. The counting station ‘SEN’ is left out in subplot b) and d),
due to the small number of observations available.
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2.4. Proof of concept of multi-source model

We empirically demonstrate benefits from our multi-source model by simulating daily streetwise bicycle
volume in a subarea of Berlin for the month of September 2022. Figure 2b shows a snapshot from the
simulation, which is available online at https://silkekaiser.github.io/research. To generate these predic-
tions, we used XGBoost, trained on data from all available long-term counting stations. Specifically, we
predict the bicycle volume for each street segment between two intersections, using the midpoint of each
segment as the reference point for our estimates.

We find that the demonstration effectively captures temporal variations, especially between weekends
andweekdays. However, the spatial aspects of the predictions could bemore convincing. Themodel often
predicts that adjacent streets have similar bicycle volumes and fails to detect high values. This former
shortcoming is likely due to the construction of features based on large radii. The usage of the log
transformation of the target variable might amplify the latter. Nevertheless, the model reasonably captures
the differences between major streets and residential areas, picking out high and low-traffic zones.

2.5. Spatial extrapolation using additional sample count data

Our multi-source model has only a limited ability to reproduce spatial patterns of cycling volume. Here,
we investigate whether collecting additional location-specific bicycle volume sample counts improves the
predictive performance at unseen locations on a daily scale and what is the most effective strategy for
conducting them.

Hankey, Lindsey, and Marshall, 2014 elaborate on the usefulness of short-term counts to estimate
annual averages for non-motorized traffic using scaling factors. They find that as the number of
observation days increases, the extrapolation error decreases, but that the incremental gains become
modest after the first week. Also, the advantage derived from conducting counts on consecutive days is
minimal compared to nonconsecutive days. We seek to revisit their findings in the context of ML. We
chose to simulate three different sample data collection strategies: Firstly, the collection of data is
commissioned for 1 day at a time (1-day). The days are selected at random throughout the year. In the
second and third strategies, we simulate the collection of data on three (3-day) or seven (7-day)
consecutive days. Also, these multi-day periods are randomly distributed throughout the year. We
compare the performance of the model with data from each of those three different sampling strategies.
We simulate a collection of up to 28 days.

We simulate this using 19 long-term counting stations only, as all short and one long-term station have
too few observations available. We employ the XGBoost model with SMAPE, using only the features
selected by the feature selection, just as in Section 2.2. As before, we evaluate the performance by iterating

(a) Information gain computed via a grouped permuta-
tion importance for the XGBoost model at the daily level
using SMAPE.

(b) Proof of concept: Application of the XGBoost model
to a subset of Berlin streets to predict the streetwise
daily bicycle volume. The prediction in the picture is for
20.09.2022.

Figure 2. Feature importance and proof of concept based on an XGBoost model trained on data of all
available long-term counting stations.
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over the counting stations. Each counting station serves once as the new (“hold-out”) location. For that
location, we randomly choose some of the available observations to represent sample counts performed at
that location, following the three sampling strategies (1, 3, or 7-day). We use the remaining data from the
location as the test set. For training, we implement two scenarios. For the first scenario, wemake use of all
available data: we train themodel on both the sampled observations and all the observations from the other
counting stations. We assign weights to the data, giving 25% weight to the sample counts and 75% to the
observations from other counting stations. Please refer to the Methods Section 4.2 for details on the
weights. This “full-city” scenario benefits from both location-specific sample data and city-wide long-
term information. For the second scenario, we train the model only on the sample data. Since it only uses
information from the location in question, we refer to this model as the “location-specific” scenario. Thus,
by definition, the training data for this model exhibits no variation in infrastructure and socioeconomic
features, as these features only vary across locations. We then use both scenario models to perform
predictions on the test set.We repeat this process for each counting station and compute the average across
the resulting errors. This procedure is repeated 10 timeswith different sample days to allow for uncertainty
estimation. We train and evaluate the models after each additional day of data collection. This allows a
comparison of the different approaches for as little as 1 day and as much as 28 days of additionally
sampled data (see Appendix A.2 for a graphical representation of this full methodology). As a simple
baseline, we include the error of predicting the site-specific volume as the mean of the sample data
collected at the respective location.

Sample data collection notably enhances predictive performance for new locations in the full-city
scenario (Figure 3). In the location-specific scenario, two or more days’ worth of sample data already
outperforms a model without any location-specific data. Sampling only 1 day at a time is the superior
collection strategy for both scenarios, and this advantage is more pronounced for the full-city scenario.
Collecting data on as many different days as possible may provide an advantage, as seasonal effects are
better captured. Given that setting up counting infrastructure at new locationsmay be costly, the 3-day and
7-day approaches may still yield sufficient results at lower costs. Moreover, we find that the full-city
approach using the 1-day strategy outperforms the location-specific approaches up until the 8th day of
data collection (across all repeated samples) and in the mean also thereafter. A comparison of the 1-day

(a) Combined sample and city-wide
long-term data for training (full-city)

(b) Using only sample data for
training (location-specific)

Figure 3. The effect of collecting additional sample data at a new location to predict the daily volume of
bicycles using XGBoost. In the left diagram, the models are trained on the full-city available data, both
long-term data from other sites and sample data from the location in question; in the right diagram, the
models are trained on location-specific sample data only. Best-performing specifications are depicted in
gray in the other plot to allow for comparison. The error is the average over the 19 counting stations used,
with 95% confidence intervals calculated from 10 repeated samples.
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strategy between the two approaches shows that to achieve a SMAPE of 20, one would need to collect on
average 9 days of sample data using the full-city scenario or 14 days using the location-specific model.
This underscores the fact that models can benefit greatly from information obtained at locations other than
the one under consideration. Finally, we find that the use of multi-source data is also highly relevant when
using sample data, and simple averages over the counts do not suffice. The baseline error never drops
below 30, while the errors for the location-specific models are below 20 after 15 days of sample counts
(Figure 3b). This demonstrates the importance of leveraging multi-source data in combination with
sample counts.

Based on these results, we seek to provide a numerical comparison of the performance of a model with
sample data to the simple multi-source model. We compute the full-city model using 10 days’ worth of
sample counts using the 1-day strategy.With this approach, we can predict new locations at the daily scale
with an average SMAPE of 20.22 (in comparison to the multi-source model of 37.36) and an MAE of
641.57 (1511.58). For the AADB, we get 11.85 (34.26) and 416.81 (1342.96), respectively. On closer
inspection, we also find that these errors vary little across counting stations (Figure 1b and 1d). This is a
clear improvement over the multi-data-only model. Therefore, estimates predicted with sample counts
and multi-source data are not only more accurate (depending on the specification, almost halved to 2/3
lower) but also more reliable.

3. Discussion

Our research highlights the feasibility of estimating bicycle volumes for all streets across a city by
leveraging open-source data together with long- and short-term counting station data and machine-
learning models. Advances not only in data availability but also in analytical methods have made such
purely data-driven approaches feasible.

We find that leveraging already existing multi-source and long-term counting station data allows for
predicting bicycle volume at unseen locations usingXGBoost with a reasonable error for both daily values
and annual averages (SMAPE of 37.36 and 34.26, respectively). Direct comparison with previous studies
is limited due to differences in focus and error metrics. Studies that focused mainly on temporal
interpolation, a less complex task than our extrapolation, and employed mean absolute percentage error
(MAPE) rather than our use of SMAPE – obtained MAPE between 10 and 59.4 (see Miah et al., 2023 for
an overview of these studies). Our results also show that the most important data sources in our study are
crowdsourced Strava flow data (in the area around the counting station), infrastructure data (use of the
area, street level indicators, and points of interest), time indicators, and motorized traffic (city-wide).
Furthermore, we find that the prediction error varies greatly between locations, which means that the
model is able to predict certain streets very well and others much less so (with no apparent pattern). This is
also anecdotally shown in the proof of concept, where the model performs well in capturing temporal
trends and identifying high-volume areas, but shows shortcomings in reproducing intricate geographic
nuances. The feature selection process results in some features derived from averaging over large radii,
which means that the prediction is in part optimized towards performing well over large area, temporal
variations. Themodel’s ability to reproduce intricate geographic nuances could be improved by better data
that both allow for creating more street-level features as well as having more ground truth counter
locations. The combination of selected street-level/small-radius features with large-radii features pro-
duces the best possible predictions by balancing the need to capture broader trends and localized
variations. Finally, collecting sample counts for unseen locations not only drastically reduces the error
across all locations but also the variance across locations. The decrease is at around 2/3 on average. This
experiment showed that spending resources to collect additional short-term counts may be worthwhile.

Experts tasked bymunicipal governments can replicate ourmodel using data that are already owned by
the city or can be obtained from third-party providers. Although implementing the coding process
demands a certain level of expertise, the models themselves are computationally efficient, enabling
practical application in a municipal setting (Appendix A.3). Counting stations provide bicycle counts at
limited locations. To predict bicycle counts beyond existing municipal counting stations, we advise
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obtaining additional data sources on regional flow data from crowdsourced applications (Strava),
comprehensive infrastructure data, and, if available, city-wide motorized traffic. We also recommend
conducting multiple one-day sample counts at locations of interest to obtain more accurate results. Each
day of sampling leads to a significant improvement in the estimate for that location. Using 10 days of
sample data, our model provides policymakers with accurate and reliable estimates. Such estimates can
allow them to make evidence-based decisions about infrastructure improvements or repairs. Busier roads
can be prioritized, and financial expenditures can be justified by the number of cyclists they may benefit.
Similarly, civil society can use such estimates to advocate for local infrastructure improvement needs.

In future research, more complex modeling approaches that take into account spatial and temporal
dependencies can be another promising direction. Such approaches may also benefit from more ground
truth data, particularly from more continuous counting stations to cover spatial variability. We hypothe-
size that more ground truth data could further improve predictions for unseen locations and possibly
reduce the need for sample data collection. Expanding the case study of Berlin to a comparative analysis
with other cities could shed light on the generalizability of the approach. Finally, while this article does not
grapple with how cycling volumes are practically used, future studies could explore the applicability for
planning, policy-making, and urban traffic modeling techniques.

4. Methods

4.1. Data description

A table explaining each individual feature is included in Appendix A.4, Table 6. In the following, we
elaborate on the data sources. All datasets are publicly available via the sources cited with one exception.
Strava Metro provides its crowdsourced app data upon request (Strava Metro, 2023).

4.1.1. Bicycle counting stations data
TheBerlin city administration collects data on bicycle volume at various locations (Senate Department for
the Environment, Mobility, Consumer and Climate Protection Berlin, 2023). The data come from long-
term counting stations, which are permanent devices that identify passing bicycles through an electro-
magnetic field embedded in the ground. The city installed its first of 30 counting stations in 2012 and the
most recent one in 2022. Ten of the stations are located on opposite sides of the street and also record the
direction of flow, while in the other locations, there is only one counter for both directions. We sum
counters on opposite sides of the same street into one count as we are interested in the number of bicycles
passing by a certain location rather than their direction of flow. This reduces the number of counting
locations to 20. Occasionally, counting stations are out of service (e.g., due to construction or malfunc-
tioning), resulting in missing observations. We also exclude observations that are interpolated by the
municipality, as the city does provide information on their interpolation method. Short-term bicycle
counts have been conducted at 21 fixed locations repetitively on different dates by the city since 1983.We
exclude short-term counters consisting of only one observation (1 day) from the analysis. Consequently,
the data set comprises information from a total of 12 short-term locations. Amap of the counting stations,
a table detailing the number of observations per station as well as some basic descriptions of the
measurements are included in the Appendix A.5. There is no publicly available information on the
criteria used by the city to determine the placement of these counting stations. Upon closer examination,
we find that these stations tend to be located closer to the city center (and thus, also closer to, for example,
shops and education centers), along high-traffic roads (with a speed limit of 50 km/h), and in streets with
some sort of cycling lane (see for more details Appendix A.6).We recognize this selection bias. Literature
concerned with the Traffic Sensor Location Problem (Owais, 2022) addresses the concept of placing
sensors optimally given various purposes. However, to the best of our knowledge, there is currently no
research comparing the optimal placement of bicycle sensors with their actual locations. Further research
is needed.
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4.1.2. Bike-sharing data
Bike sharing data is an emerging data source that is considered for monitoring cycling (Lee and Sener,
2020). As bike-sharing users are part of the cycling population, we hypothesize that bike-sharing data can
serve as an indicator for predicting overall cycling volumes. To our knowledge, only one study (Miah
et al., 2023) has examined the potential of bike-sharing data for this purpose. In this study, we build on this
approach by exploring the predictive value of bike-sharing data in a new urban context. The bike-sharing
data used in this study consists of individual trips from free-floating bike-share systems. In these systems,
bicycles are available for pick up and return anywhere within the city, unlike systems dependent on
designated stations for both pickup and drop-off. It comprises two distinct periods. Themonths fromApril
to December 2019, covering the providers Call-a-bike andNextbike, as provided to us by CityLab Berlin,
2019. And from June to December 2022, covering only Nextbike, which we collected ourselves via their
application programmable interface (API) (Nextbike, 2020). The data is made available for download
(Kaiser, 2023). These data provide details of individual trips, unlike crowdsourced data (Strava), which
only offers aggregate counts. The 2022 bike-sharing data was collected as follows. Nextbike’s application
programming interface furnishes real-time information on the location of all accessible bicycles, each
identified by a unique bike ID, at a minute-by-minute granularity. When a bike is rented, it is temporarily
removed from the available list and reappears when it is returned. By querying the list at one-minute
intervals, we can accurately record trips to the minute, providing precise departure and arrival points and
the respective times for every trip. For both bike-sharing datasets, 2019 and 2022, only the start and end
points of each trip are available. We impute the route using OpenStreetMap as of July 2022 and the
designated routing algorithm tailored for bicycles. OpenStreetMaps facilitates route planning for different
modes of transportation, by adapting the suggested route according to the chosen mode (OpenStreetMap
contributors, 2017). It is important to note that the resulting trajectories are approximations of the actual
routes taken by bike-sharing users. Based on the routed trips, we perform data cleaning to account for
possible incorrectly recorded journeys. We exclude trips shorter than 100 m (0.64% of total trips), which
may be due to errors in GPS measurements or aborted trips, for example, due to a broken bike. Similarly,
we exclude trips longer than the 45 km diameter of Berlin (0.005%), shorter than 120 seconds (1.63%),
and longer than 10 hours (6.05%), assuming that incorrect use of the rental system is the cause. Finally, we
exclude trips with an average speed slower than 2 km/h (16.57%) or faster than 40 km/h (10.87%). After
cleaning, the data contain 1,333,737 bike-sharing trips. We engineer the bike-sharing data based on the
methodology proposed byMiah et al. (2023). For each counter, we count the number of bikes passing, the
number of bikes whose rental started, and the number of bikes whose rentals ended within a certain radius
within a day. Unlike their approach, which considers a single radius of 0.125 miles, we examine multiple
radii: 100, 200 m, 500 m, 1000 m, 2000 m, 5000 m, 6000 m, and the entire city. While smaller radii are
selected more often, we still include larger radii because they can play an important role, possibly because
they have a more regional impact (Hankey and Lindsey, 2016). We do not create a feature on the number
of bike-sharing trips per street segment, as the exact route between the start and end points is interpolated.
We provide an example of feature engineering for the bike-sharing data in Appendix A.7. The following
limitations to the bike-sharing data remain. In Berlin, the bike-sharing market is diverse, with multiple
providers. We were only able to acquire data from two providers. These twomaintain a fleet of traditional
bicycles, unlike other companies that primarily offer e-bikes. In addition, neither Nextbike nor Call-a-bike
responded to requests for information or provided detailed information about their data. This lack of
transparency raises concerns about the stability of bike IDs, potentially leading to the inclusion of
fictitious rides in our dataset due to how we compute trips. Also, these data are potentially biased, as
bike-sharing users differ from private bicycle users. We do not have demographic information about the
users of Nextbike or Call-a-bike, but bike-sharing users tend to have higher incomes and education
(Fishman, 2016).

4.1.3. Crowdsourced app data
We obtain crowdsourced app data from the Strava smartphone app, which allows users to track their
speed, altitude gain, and exact route choice covered during physical activities such as cycling (Strava
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Metro, 2023). Similar to bike sharing, Strava users represent a small and varying share of the cycling
population (Conrow et al., 2018). However, usage patterns differ: Strava users tend to ride at about twice
the speed of bike-share users, while bike-sharing is more prevalent at night, and Strava sees higher usage
in the evening (see Appendix A.9). Previous research has demonstrated that incorporating crowdsourced
data as features within an ML model, alongside additional data, can significantly enhance model
performance in predicting bicycle volume (Kwigizile, Morgan Kwayu and Oh, 2022). Strava provides
these city-specific data at no cost to organizations involved in designing, overseeing, or maintaining
cycling infrastructure upon request (Strava Metro, 2023); however, access to these data is contingent on
Strava’s approval. While they typically grant access to city administrations, this could be subject to
change in the future. Strava Metro has modified the data to protect individual privacy. The data includes
only publicly available trip records (as opposed to trips taken in a private mode). They also do not provide
individual trip information but instead, aggregate the trip counts into two formats. In the first format,
various features are available at the “street segment” level, which covers a street between two intersec-
tions. The data is available on an hourly basis. In the second format, features are available for regions in the
form of hexagons, each spanning approximately 0.66 km2. In both formats, bicycle counts are rounded to
the nearest multiple of five, for example, when seven cyclists pass a street segment, Strava rounds it to
five. We use both the segment and the hexagon formats. For the segment data, the features include
information on the number of journeys, whether the trip was made with an e-bike, the gender and age
group of the user, and the average speed.We calculate the average of the available features for all segments
within a certain radius of the counting station (as for the other features, 100 m, 200 m, 500 m, 1000 m,
2000m, 5000m, 6000m, whole city) at the daily level. Additionally, we compute the features on the level
of individual street segments. For the hexagon data, the features include the number of trips, the purpose of
the trip (leisure or commute), and the time of the day (morning, midday, evening). We use the features for
both the hexagonwhere the counter is located and themean of the six surrounding hexagons.We include a
wide range of features across both segment and hexagon data formats to allow the model to capture
nuanced variations in cycling patterns that may influence overall cycling volume. With feature selection,
the model identifies the most relevant predictors from this set. A graphical representation of our feature
engineering process is available inAppendixA.8, with all features listed inAppendixA.4. The Strava data
is based only on the voluntary recording of Strava app users, and it has a sampling bias in its user base (Lee
and Sener, 2021). Based on the few demographic indicators included in the data, a sampling bias towards
youngmales with an ambitious riding style is apparent: 89.57% of trips were recorded bymale users, only
3.9% of the trips were recorded by users aged 55 and over, e-bike trips contribute only 0.17%, and the
average speed is relatively high at 21.14 km/h (see Appendix A.9 for more details). To check for a
potential spatial bias, we compared the distribution of the Strava features at the counting stations to those
on all street segments in Berlin (see descriptive statistics in Appendix A.10). Our findings show that the
Strava usage at the counting stations generally reflects overall citywide patterns. This is true, especially
for the flow characteristics. The only exception is that a larger portion of street segments across the city
show zero Strava rides (i.e., no rides were recorded on these segments). However, there are apparent
differences in the hexagon-based characteristics: data from the counting stations tends to have much
higher values. Since traffic flow data is the primary predictor for our model, while hexagon data plays a
lesser role (see Figure 2a), we consider this potential bias to have minimal impact.

4.1.4. Weather data
Cyclists are more exposed to environmental conditions than motorized traffic users, which affects their
comfort while cycling and, consequently, their decision to use a bicycle. Research shows that weather
conditions can have both positive and negative effects on cycling, resulting from both immediate and
delayed weather effects (Miranda-Moreno and Nosal, 2011). The data we use comes from the German
Weather Service and is provided by Meteostat (2022). We include various features at daily granularity.
The weather indicators are for all of Berlin, that is, they are the same for all counting locations but vary
over time.
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4.1.5. Infrastructure data
We include infrastructure data on road conditions, points of interest, and land use around the counting
stations. Cycling and road infrastructure play a critical role in increasing cyclists’ perception of safety and,
consequently, influence bicycle use (Møller and Hels, 2008). The infrastructure features also affect how
many trips may be made to an area. Similarly, points of interest, such as schools and shops, can influence
bicycle volumes at different times throughout the day and week (Strauss and Miranda-Moreno, 2013).
FromOpenStreetMap contributors, 2017, we obtained information about themaximum speed allowed for
motorized traffic, the type of bike lane at the exact location of the counting station, and the number of
different points of interest within different radii (as for the other features: 100, 200 m, 500 m, 1000 m,
2000 m, 5000 m, and 6000 m). In contrast to the radii used for the other data sources, we do not compute
the features for the entire city. Doing sowould result in constant features over time and space, providing no
valuable information to our model. We also compute the distance of the counting stations from the city
center, following the definition of a city center used by OpenStreetMap. Data from the city of Berlin
provides information on land use, such as for parks or industry, which can impact the timing and volume of
human frequenting in various areas. This data is collected at the “planning area” level: For urban planning
purposes, the city is divided into planning areas that represent neighborhoods; each planning area has an
average size of about 2 km2. The city collected the indicators in 2015 (Berlin Open Data, 2022a; Senate
Department for Urban Development, Building and Housing, 2023). We use data from the planning area
surrounding each counting station. To standardize the measurements, we convert the features from square
kilometers into percentages. For example, instead of stating that 0.5km2 within the planning area
surrounding the counting station is occupied by parks, we express it as 25% occupied by parks.

4.1.6. Centrality measures
We include network connectivity measures as features because they capture the importance of individual
links, that is, roads, within the transport network – a factor associated with cycling behavior (Schön,
Heinen, and Manum, 2024; Hochmair, Bardin, and Ahmouda, 2019; Lu et al., 2017). Using the Berlin
road network (BerlinOpenData, 2024), we compute the following graphmeasures: degree, which reflects
the number of direct connections a road segment has; betweenness, which indicates the frequency with
which a segment serves as a bridge along the shortest paths in the network; closeness, which measures the
average distance from a segment to all other segments, thus reflecting its accessibility; and the clustering
coefficient, which assesses the degree to which a segment’s neighboring links are interconnected. Formal
definitions of these measures can be found in Appendix A.11.

4.1.7. Socioeconomic data
Bicycle use varies with regard to socioeconomic characteristics such as age and gender (Goel et al., 2022).
We obtain socioeconomic data from the city of Berlin (Berlin-BrandenburgOffice of Statistics, 2023).We
include socioeconomic features at the level of “planning areas” (see the infrastructure data for details). For
each counter, we use the indicators of the planning area in which it is located. Since the socioeconomic
data are only available until 2020, we use the 2019 observations for the same year and the 2022
observations for 2020. Therefore, the data has spatial and temporal variation, but the data for 2022
remains an approximation.

4.1.8. Motorized traffic data
Similar to the bicycle counting stations, the city administration conducts counts of motorized traffic at
267 counting stations (for 2019 and 2022) (Berlin Open Data, 2022b). To the best of our knowledge, we
are unaware of any studies that have attempted to predict bicycle volume from motorized traffic counts.
We hypothesized that this could be a valuable source of additional information as bicycle counts and
motorized traffic counts may show similar patterns in terms of commuting peaks, weekday/weekend
behavior, and locations of interest. The data includes the volume, type, and speed of motorized vehicles
collected at various locations in Berlin. The detectors measure the features only on one side of the road
(e.g., only eastbound traffic).We compute the respectivemean values of thesemotorized traffic features of
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all traffic counters within a 6-kilometer radius and for the city as awhole, all on a daily basis. The choice of
a 6-kilometer radius as our spatial unit is intentional, as it is the smallest possible radius for the feature to be
available for each counting station. The main drawback of the data is that the motorized traffic counting
stations are unevenly distributed throughout the city (see AppendixA.12). Therefore, not only dowe have
to employ a large radius, but we also have to compute the features for each counting station based on a
different number of motorized traffic counting stations.

4.1.9. Holiday and time data
Traffic data can exhibit strong seasonality. We, therefore, include several time indicators: the day of the
week, the day of the month, the month itself as features, the year, and whether it is a weekday.We also use
features that indicate the presence of each public and school holiday (Senate Department for Education,
Youth and Family, 2022).

4.1.10. Pre-processing of the combined data
In the merged dataset, an observation represents a daily measurement from one counting station.
Additionally, we exclude any features that are constant across all observations. This is the case for the
number of hospitals within 100, 200, and 500 m, the number of industries for all radii, and the percentage
of land used for horticulture, as they are all zero. The socioeconomic data is also missing for one counting
station, whichwe replace with themean of the respective features across all other counting stations. Based
on this preprocessed data, we conduct feature selection as detailed in the next section.

4.2. Data analysis

4.2.1. Models and algorithms
We implement all models with the Python library scikit-learn (Pedregosa et al., 2011). Based on the results
for extrapolating daily and annual street-level bicycle volumes, we selected Extreme Gradient Boosting
(XGBoost) for further analysis of the feature importance and the sample data collection experiment, as it
demonstrated slightly better performance in our comparative tests. XGBoost is an ML algorithm that
combines boosting and regularisation techniques. By iteratively adding decision trees to an ensemble
model, it corrects the errors of the previous trees, resulting in a more robust and accurate model compared
to standard decision trees or random forests. The trees are trained using a gradient descent optimization
method, which updates the weights of the features to minimize a given loss function. In addition, the
algorithm uses a technique called tree pruning to remove unnecessary leaves and nodes from the trees.
XGBoost also incorporates regularization techniques, which help mitigate multicollinearity by reducing
the influence of correlated or redundant features, ensuring that the model remains stable. For information
on the other models, we would like to refer the reader to Géron (2022).

4.2.2. Addressing the skewed distribution of the counting stations’ measurements
The target variable, the measurements from counting stations, follows a non-normal distribution char-
acterized by a pronounced right skew (see Appendix A.5). To account for this, we transformed our target
variable using a logarithmic transformation (see Appendix A.13 for QQ plot). This approach reduces the
impact of extreme values on our models and ensures that the errors are more robustly distributed across
different types of roads, including those with low traffic volumes. We used the log-transformed target
variable during model training and applied the inverse transformation before calculating test errors to
provide interpretable results on the original scale.

4.2.3. Hyperparameter tuning
For XGBoost, we tune the following hyperparameters with random search: the learning rate (controls the
step size during the optimization process), the maximum depth of each tree (deeper trees can capture more
complex relationships but can cause overfitting), the fraction of features used when constructing each tree
(reducing overfitting also introducing randomness), the minimum sum of instance weight needed in a
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child (can prevent overfitting by controlling theminimum amount of instances required in each leaf) and a
regularization parameter that encourages pruning of the tree (Brownlee, 2016). For the hyperparameters
of the other models, we would like to refer the reader to Appendix A.14.

4.2.4. Feature selection
Given the richness of our feature set, we implement model-specific feature selection (FS) techniques to
minimize computational demands and enhance model performance. For each model, we evaluated several
methods, including Select KBest, recursive feature elimination with CV, and sequential FS. Ultimately, we
employ recursive feature elimination for linear regression, gradient boosting, random forest, sequential
feature selection forXGBoost and decision tree, while applyingSelectKBest for SVMandSNN (Pedregosa
et al., 2011) on both the 0–24 h and 7–19 h datasets. For the XGBoost model, we observe that none of the
centrality measures or socioeconomic features were selected. Instead, the FS prioritized several street-level
and small-radius features (e.g., 100m, 200m) from Strava, infrastructure, and bike-sharing data, along with
a few larger-radius features (i.e., 1000 m, 2000m) (Appendix Table 4). For the other models, we findmuch
variation in the selected features, with 243 of the 257 features selected at least once. For all models, features
based on smaller radii tend to be selected more often, but also, for almost every model, a feature based on a
large radii is included. We find Strava (flow in the area) and motorized (city-wide) indicators selected
relatively often across models (see Appendix A.15 for an overview and the number of selected features).

4.2.5. Error metrics
For benchmarking, we choose two error metrics, MAE and SMAPE, which are defined as follows, with n
the number of observations, yi the true value, and byi the prediction of the variable of interest:

MAE=
1
n

Xn
i = 1

∣yi�byi∣ (4.1)

SMAPE=
1
n

Xn
i= 1

∣yi�byi∣
ð∣yi∣+ ∣byi∣Þ=2 : (4.2)

We have chosen these metrics over the more commonly used error metrics: root mean squared error
(RMSE), mean absolute percentage error (MAPE), or standard errors based on the underlying distribu-
tion. The counting station measurements include several high values. Compared to the RMSE, the MAE
places less emphasis on extreme values, which is more suited to the right tail distribution. See Appendix
A.5 for histograms and boxplots of the counts. We have chosen SMAPE over MAPE to measure the
relative error, as it yields small percentage errors when the true value is very high. Additionally, SMAPE
gives a symmetric measure that considers both overestimation and underestimation errors equally.

4.2.6. Grouped feature importance
Computing feature importance for groups of features cannot be simply done by summing individual
feature importance scores. Neither can one sum individual feature importance for tree-based methods.
This method often overfits, boosting features that contribute little, and thus, they cannot be summed at the
group level since this would overweight groups with many features (Loughrey and Cunningham, 2005;
Breiman, 2001). Nor can one sum up permutation-based features, as all features besides the one in
question are known during the permutation, which does not sufficiently reveal the impact of a particular
feature group when summed up (Plagwitz et al., 2022).

Here, we use the grouped feature importance as introduced by Plagwitz et al., 2022. The data is split in
the sense of cross-validation into training and test data. On each fold, the following is computed: Amodel
is trained on the training data. The test data is replicated a certain amount of times, and in each replication,
the features belonging to a feature group in question are permuted. The model is then applied to the
permuted test sets. The change in performance is estimated and averaged across all permuted test sets.
This process is repeated for every feature group. The mean between the cross-validation folds returns the
final grouped feature importance score, which provides the information gain per group. These scores are
not comparable across models but only within each model.
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4.2.7. Sample weights in training
We employ sample weights during model training with the sample data to enhance the model’s emphasis
on these particular observations. Sampleweights assign differentweights to individual observations in the
training dataset. This is useful when dealing with imbalanced datasets or when certain samples are more
critical than others. The latter is the case in our setting. In XGBoost, sample weights can be assigned to
each instance, influencing the contribution of that instance’s error to the overall loss function during
training. This way, samples with higher weights contribute more to the model’s updates, thus affecting the
model’s learning process (Pedregosa et al., 2011).

Abbreviations

AADB average annual daily bicycle volume
CV cross validation
FS feature selection
GPI grouped permutation Importance
LOGO leave-one-group-out
MAE mean absolute error
MAPE mean absolute percentage error
ML machine learning
RMSE root mean squared error
SMAPE symmetric mean absolute percentage error
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A. Appendix

A.1. Features grouping for the feature importance

Table 4. Grouping of the features for the feature importance evaluation in Section 2.3: This table
presents the features selected for the XGBoost model for 0-24 h (all day), grouped into their respective

categories

Group Features

Time Weekday, weekend, month, year
Holidays School holiday, public holiday
Weather Maximum snow depth, wind direction
Bike-sharing (flow in area) No. bikes rented (within 2000 m)
Bike-sharing (origin/dest.) No. bikes originating (within 100 m), no bikes returned

(within 100 m)
Infrastructure (street level) Maximum speed, bicycle lane type
Infrastructure (points of interest) No. of shops (within 500 m)
Infrastructure (use of area) Percent of area used for farming, parks, private gardening and

forest
Motorized (city-wide) No. of cars
Motorized (area) Average speed of lorries (within 6000 m)
Strava (origin/destination) No. of trips originating by time of the day (weekend) in the

respective hexagon
Strava (flow street level) No. of rides (e-bikes only), no. of rides by various age groups

(55–64 and 64+), and by sex (unspecified gender)
Strava (flow area) No. of rides (e-bikes only within 100 m, 200 m, 500 m,

1000 m, and 2000 m), by gender (unspecified gender
within 100 m, 200 m, and 2000 m; male within 500 m), by
age group (55–64 and 65+ within 100 m and 200 m)
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A.2. Graphic explanation: spatial extrapolation using additional sample count data

A.3. Computation time and energy consumption

Figure 4. Workflow for estimating errors using sample counts in a LOGO evaluation. Each counting
station is held out once, with the figure providing an example for one such counter. A sampling strategy –
1-day, 3-day, or 7-day – is selected, according to which up to 28 days from the held-out counting station
are sampled. These days are the location specific training data (depicted in dark orange). The test data
consists of unsampled observations from the same station (depicted in white). In the case of the location-
specific model, we train themodel on these data alone. For the city-wide model, the training data includes
both the observations of the held-out station and data from other stations (depicted in light orange). For
space considerations, the figure illustrates this process for the 3-day strategy with seven sampled
days only.

Table 5. Computation time and energy consumption for various tasks using XGBoost. The table
reflects the performance of a 128-CPU server, illustrating the efficiency of the model in terms of both
time and energy. Training and testing times are based on the task of predicting the short-term counting
stations’ data (Table 3, column (3)). The energy consumption was computed with CodeCarbon (Courty

et al., 2024)

Task Computation time Energy consumed for

RAM all CPUs

Sequential feature selection 2532.53 s (≈ 42 min) 0.132732 kWh 0.079092 kWh
Hyperparameter tuning 50.78 s 0.002594 kWh 0.001546 kWh
Training 1.69 s 0.000021 kWh 0.000013 kWh
Testing 1.28 s 0.000001 kWh 0.000001 kWh
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A.4. Detailed feature list

Table 6. Overview of all considered features

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Time features
Year Measurement from

2019 or 2022
Stationary Yearly 1 Binary Inherent

Month Indicating January
through December

Stationary Monthly 1 Numerical One-hot-encoded Inherent

Day of month Indicating numerical
day of month

Stationary Monthly 1 Numerical Standardized Inherent

Weekday Indicating Monday
through Sunday

Stationary Daily 1 Numerical One-hot-encoded Inherent

Weekend If Saturday or Sunday Stationary Daily 1 Binary Inherent
centrality

measures
Degree See Appendix A.11 for

formal explanation
Counting station

location
Daily 1 Numerical Standardized Based on Berlin

Open Data (2024)
Betweenness see Appendix A.11 for

formal explanation
Counting station

location
Daily 1 Numerical Standardized Based on Berlin

Open Data (2024)
Closeness See Appendix A.11 for

formal explanation
Counting station

location
Daily 1 Numerical Standardized Based on Berlin

Open Data (2024)
Clustering

coefficient
See Appendix A.11 for

formal explanation
Counting station

location
Daily 1 Numerical Standardized Based on Berlin

Open Data (2024)
Vacation and

holiday features
School holiday Presence of

school holiday
Stationary Daily 1 Binary Senate Department

for Education,
Youth and Family
(2022)

Continued
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Public holiday Presence of
public holiday

Stationary Daily 1 Binary Senate Department
for Education,
Youth and Family
(2022)

Bike-sharing
Originating/

returned/rented
number of Within a certain

radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)
to the counter

Daily 21 Numerical Standardized Nextbike (2020) and
web scraped from
Nextbike, as well
as Call-a-bike

Originating/
returned/rented

number of Within the whole city Daily 3 Numerical Standardized Nextbike (2020) and
web scraped from
Nextbike, as well
as Call-a-bike

Strava
No. of trips

(originating/
arriving)

number of In the respective
hexagon

Daily 2 Numerical Standardized Strava Metro (2023)

No. of trips (overall/
originating/
arriving)

number of In the six
neighboring
hexagons

Daily 2 Numerical Standardized Strava Metro (2023)

No. of trips
(originating/
arriving) by
purpose (leisure/
commute)

number of In the respective
hexagon

Daily 4 Numerical Standardized Strava Metro (2023)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

No. of trips
(originating/
arriving) by
purpose (leisure/
commute)

number of In the six
neighboring
hexagons

Daily 4 Numerical Standardized Strava Metro (2023)

No. of trips
(originating/
arriving) by time
of the day
(morning/ midday/
evening/
overnight/
weekday/
weekend)

number of In the respective
hexagon

Daily 12 Numerical Standardized Strava Metro (2023)

No. of trips
(originating/
arriving) by time
of the day
(morning/ midday/
evening/
overnight/
weekday/
weekend)

number of In the six
neighboring
hexagons

Daily 12 Numerical Standardized Strava Metro (2023)

No. of trips (all bikes/
e-bikes only)

number of In the segments
within a different
radii (per street
segment, 100 m,
200 m, 500 m
1000 m, 2000 m,
5000 m, 6000 m)

Daily 16 Numerical Standardized Strava Metro (2023)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

No. of trips (all bikes/
e-bikes only)

number of In the whole city of
Berlin

Daily 2 Numerical Standardized Strava Metro (2023)

No. of individuals number of In the segments
within a different
radii (per street
segment, 100 m,
200 m, 500 m
1000 m, 2000 m,
5000 m, 6000 m)

Daily 8 Numerical Standardized Strava Metro (2023)

No. of individuals Number of In the whole city of
Berlin

Daily 1 Numerical Standardized Strava Metro (2023)

No. of rides by sex
(female, male and
unspecified
gender)

number of In the segments
within a different
radii (per street
segment, 100 m,
200 m, 500 m
1000 m, 2000 m,
5000 m, 6000 m)

Daily 24 Numerical Standardized Strava Metro (2023)

No. of rides by sex
(female, male and
unspecified
gender)

Number of In the whole city of
Berlin

Daily 3 Numerical Standardized Strava Metro (2023)

No. of rides by
various age groups
(18–34, 35–54,
55–64 and 65+)

Number of In the segments
within a different
radii (per street
segment, 100 m,
200 m, 500 m
1000 m, 2000 m,
5000 m, 6000 m)

Daily 32 Numerical Standardized Strava Metro (2023)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

No. of rides by
various age groups
(18–34, 35–54,
55–64 and 65+)

Number of In the whole city of
Berlin

Daily 4 Numerical Standardized Strava Metro (2023)

Average speed Number of In the segments
within a different
radii (per street
segment, 100 m,
200 m, 500 m
1000 m, 2000 m,
5000 m, 6000 m)

Daily 8 Numerical Standardized Strava Metro (2023)

Average speed Number of In the whole city of
Berlin

Daily 1 Numerical Standardized Strava Metro (2023)

Infrastructure
Latitude and

longitude
Counting station

location
Stationary 2 Numerical Standardized Senate Department

for the
Environment,
Mobility,
Consumer and
Climate Protection
Berlin (2022)

Distance to city
center

In km counting station
location

Stationary 1 Numerical Standardized OpenStreetMap
contributors
(2017)

Maximum speed In km/h Counting station
location

Stationary 1 Categorical One-hot-encoded OpenStreetMap
contributors
(2017)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Bicycle lane type Counting station
location

Stationary 1 Categorical One-hot-encoded OpenStreetMap
contributors
(2017)

No. of shops Within a certain
radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)

Stationary 7 Numerical Standardized OpenStreetMap
contributors
(2017)

No. of education Within a certain
radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)

Stationary 7 Numerical Standardized OpenStreetMap
contributors
(2017)

No. of hotels Within a certain
radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)

Stationary 7 Numerical Standardized OpenStreetMap
contributors
(2017)

No. of hospitals Within a certain
radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)

Stationary 7 Numerical Standardized OpenStreetMap
contributors
(2017)

No. of industries Within a certain
radius (100 m,
200 m, 500 m,
1000 m, 2000 m,
5000 m, 6000 m)

Stationary 7 Numerical Standardized OpenStreetMap
contributors
(2017)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Percent of area used
for farming

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for horticulture

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for cemeteries

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for waterways

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for industry

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for private
gardening

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Building and
Housing (2023)

Percent of area used
for parks

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for traffic areas

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for forests

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Percent of area used
for residential
housing

In the planning area Stationary 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)

Cocioeconomic
indicators

Population density Inhabitants/km2 In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023),
Berlin-
Brandenburg
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Office of Statistics
(2023), Senate
Department for
Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Number of
inhabitants

In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Average age In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Gender distribution In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Share of population
with migration
background

In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Share of foreigners
(total,
EU-foreigners,
non-EU-
foreigners)

In the planning area Yearly 3 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Share of population
unemployed

In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Share of population
with tenure
exceeding 5 years

In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Net migration rate
(moving to/away
from the area)

In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Age-specific
demographic

In the planning area Yearly 2 Numerical Standardized Senate Department
for Urban
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

proportions
(individuals aged
<18 & ≥ 65)

Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Greying index In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Birth rate In the planning area Yearly 1 Numerical Standardized Senate Department
for Urban
Development,
Building and
Housing (2023)
and Berlin-
Brandenburg
Office of Statistics
(2023)

Weather
Average temperature In °C Stationary Daily 1 Numerical Standardized meteostat (2022)
Daily maximum

temperature
In °C Stationary Daily 1 Numerical Standardized meteostat (2022)
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Table 6. Continued

Feature name Further explanation Spatial scope
Timing for
daily model

#
Features Type Scaling Data source

Daily minimum
temperature

In °C Stationary Daily 1 Numerical Standardized meteostat (2022)

Precipitation In mm Stationary Daily 1 Numerical Standardized meteostat (2022)
Maximum snow

depth
In mm Stationary Daily 1 Numerical Standardized meteostat (2022)

Sunshine duration In minutes Stationary Daily 1 Numerical Standardized meteostat (2022)
Average wind speed In km/h Stationary Daily 1 Numerical Standardized meteostat (2022)
Wind direction In degrees Stationary Daily 1 Numerical Standardized meteostat (2022)
Peak wind gust In km/h Stationary Daily 1 Numerical Standardized meteostat (2022)
Average sea-level air

pressure
In hPa Stationary Daily 1 Numerical Standardized meteostat (2022)

Motorized traffic
No. of vehicles/cars/

lorries
Within a 6 km radius

to the counter
Daily 3 Numerical Standardized Berlin Open Data

(2022b)
No. of vehicles/cars/

lorries
Within the whole city Daily 3 Numerical Standardized Berlin Open Data

(2022b)
Speed of vehicles/

cars/lorries
Within a 6 km radius

to the counter
Daily 3 Numerical Standardized Berlin Open Data

(2022b)
Speed of vehicles/

cars/lorries
Within the whole city Daily 3 Numerical Standardized Berlin Open Data

(2022b)
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A.5. Overview counting stations
This section provides further details on the counting stations, including an overview of the available counting stations (Table 7) and a
mapping of them (Figure 5), as well as some descriptions of the measurements (Figure 6).

The boxplots and histograms of counting stations’measurements reveal distinct patterns. The boxplot (Figure 6a) demonstrates
that long-term stations have very infrequent high values. Conversely, short-term stations show a lower mean count with few high
values. This disparity arises as they cover a shorter period, including fewer days with extreme events. Short-term stations consider
only daytime measurements (7–19 h), omitting the lower nighttime counts. This assumption is supported by Figure 6b, depicting
permanently higher values for the long-term, in comparison to the long-term 7–19 h. The distributions, exhibit a right-skewed, long-
tailed pattern, occasionally indicating notably high cycling volumes. However, the right-skewedness is less pronounced for short-
term stations.

Figure 5. Location of the 12 short-term and 20 long-term counting stations within Berlin.

Figure 6. Descriptive statistics of the daily counter measurements (number of bicycles per day).
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Table 7. The long-term and short-term counting stations

Counter
name1 Location

Two-way
combined
to one-
way2

Installed
in

# 0 h–24 h
measurements3

# 7 h–19 h
measurements3

Long-term counting stations (20 locations)
JAN Jannowitzbrücke True 2015 380 381
BRE Breitenbachplatz True 2016 380 381
PRI Prinzregentenstraße False 2015 380 381
FRA Frankfurter Allee True 2016 381 382
BER Berliner Straße True 2016 379 380
SCH Schwedter Steg False 2012 376 378
MON Monumentenstraße False 2015 373 376
MAY Maybachufer False 2016 380 381
KAI Kaisersteg False 2016 379 380
MAS Markstraße False 2015 376 377
MAD Mariendorfer Damm True 2016 374 376
KLO Klosterstraße True 2016 373 374
PUP Paul-und-Paula-Uferweg False 2015 351 352
ALB Alberichstraße False 2015 355 356
OBB Oberbaumbrücke True 2015 218 218
INV Invalidenstraße True 2015 204 205
YOR Yorckstraße True 2015 179 180
KMA Karl-Marx-Straße False 2021 164 164
JUN Straße des 17. Juni True 2021 164 164
SEN Senefelderplatz False 2022 53 53
Short-term counting stations (12 locations)
CHA Joachimsthaler Str./

Lietzenburger Str.
True 2001 0 10

TEM Tempelhofer Damm False 2011 0 10
TEG Scharnweberstraße False 2011 0 10
SPA Schönwalder Str.

Neuendorfer Str.
True 2001 0 10

KRE Zossener Str./
Blücherstr.

True 2001 0 10

HOH Pablo-Picassso-Str./
Falkenseer Chaussee

True 2001 0 10

KOP Lange Brücke True 2001 0 10
PRE Kastanienallee/Schwedter Str. True 2001 0 10
NEU Karl-Marx-Straße False 2011 0 10
MIT Karl-Liebknecht-Str./

Spandauer Str.
True 2001 0 10

ZEH Teltower Damm/Schönower
Straße

True 2001 0 10

KAU Altentreptower Straße False 2011 0 9

1We use the abbreviation throughout the paper, to pinpoint the individual counters.
2In some locations the counter stations count the passing bikes independently for the different sides of the street. In these cases, we combined them,
ignoring the direction of the flow.
3The number of observations refers to the time span in which all other necessary features were available.
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A.6. Infrastructure features: city-wide in comparison to counting station locations

Figure 7. Frequency histograms of selected infrastructure features, illustrating the distribution of these
features for both counting station locations and all street segments across Berlin. A street segment
describes a street section between two intersections/the end of a street and an intersection. It should be
noted that since paths in forests and parks are included in the analysis, there is a higher-than-expected
proportion of segments with a speed limit of 0 km/h.
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A.7. Feature engineering bike-sharing data

A.8. Feature engineering crowdsourced data

Figure 8. The bike-sharing data was feature engineered based on a radius: For a given day all passing
bike-sharing trips passing, starting or ending within a certain radius around the counting station in
question were counted. This was also done for the entirety of the city. In this visualization, two bike-
sharing trips are depicted. Given that both trips started and ended in a given day, the graph would
produce a count of two passing, newly rented, and returned bike trips in the whole city, as well as two
passing bike trips in the radius and one ending and zero originating.

(a) All segments lying, partially or fully, within a certain
radius of the counting station (black) were considered
for the feature engineering. Other segments were not
considered (grey).

(b) The hexagon in which the counter is located (white,
in the center) and its neighboring entities (grey).

Figure 9. The Strava data, both the hexagon and the street segment data, was feature-engineered. We
computed the average across features for both data types, considering observations within a certain
proximity. For the street segment data, we considered all segments within a certain radius. For the
hexagon, we took the average of the features across the six neighboring hexagons. Additionally, we
included the features for the hexagon, where the relevant counting station is located.
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A.9. Comparison crowdsourced and bike-sharing data

Usage patterns differ between Strava and bike-sharing. On average bike-sharing usage is more evenly distributed throughout the
day, whereas Strava trips are more likely to be recorded during the midday and evening. Also, bike-sharers ride on average with a
speed of 11.05 km/hwhereas Strava are almost at double the speedwith 21.14 km/h. This seems reasonable, as Strava is used heavily
to track sporting activities and bike-sharing bikes tend to be of lower quality.

Table 8. Descriptives of the Strava and bike-sharing data. All specifications are in percent of the total
trips recorded. The numbers indicate that bike-sharing trips are more evenly conducted throughout the
whole day. Also, bike-sharing riders are much slower on average than Strava users, which seems

reasonable, given the different quality of bike-sharing trips versus private bikes

Group Type Strava Bike-sharing

Type of bike Non e-bike trips 99.83% 100%
E-bike trips 0.17% 0%

Purpose of trip1 Commute trips 39.74% NA
Leisure trips 60.26% NA

Sex of user Male 89.57% NA
Female 9.69% NA
Gender unspecified 0.74% NA

Age of user 18–34 33.63% NA
35–54 62.47% NA
55–65 3.67% NA
65+ 0.23% NA

Time of trip2 Morning 24.82% 23.65%
Midday 27.88% 27.09%
Evening 40.64% 32.88%
Night 6.66% 16.38%

Basic parameters Average distance NA 2.90 km
Average duration NA 24.31 min
Average speed 21.14 km/h 11.05 km/h

1Is categorized by Strava. Strava identifies commutes through a model This model utilizes the “commute” tag provided by Strava members as ground
truth. The term “commuting” encompasses all trips that are not related to leisure activities (Strava Metro, 2023).
2Morning: 5 h–10 h, midday: 10 h–15 h, evening: 15 h–20 h, overnight: 20 h–5 h. The Strava data was categorized by Strava. For the bike-sharing data,
we considered the moment of departure.
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A.10. Strava features: city-wide in comparison to counting station locations

A.11. Connectivity measures
The degree specifies the number of edges connected to a node v.

degree vð Þ= number of  edges incident tov

Betweenness centrality of a node v, indicates the extent to which it lies on the shortest path between pairs of other nodes s and t.
With σst the total number of shortest paths from s to t and σst vð Þ the number of those paths passing via v.

betweenness vð Þ =
X
s ≠ v ≠ t

σst vð Þ
σst

Closeness of a node, indicates how quickly all other n nodes can be reached in the graph, with d u,vð Þ the shortest path distance
between u and v.

closeness vð Þ = 1
1

n�1

P
u ≠ vd v,uð Þ

Figure 10.Histograms displaying the frequency distribution of selected Strava features, comparing counting
station locations with all street segments across Berlin, exemplified for September 2022. A street segment
describes a section of a street that lies between two intersections/the end of a street and an intersection. Some
features include high outliers. To enhance readability, we capped values at the 99th percentile.
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The clustering coefficient measures the degree to which nodes in the neighborhood of node v are connected, providing insight
into the local density. With the number of triangles centered at v referring to the closed loops of length 3) that include node v and its
neighbors:

C vð Þ = 2× number of  triangles centered at v
degree vð Þ× degree vð Þ�1ð Þ

A.12. Location of motorized traffic counting stations

A.13. QQ plot of the target feature before and after log-transformation

Figure 11. Location of counting stations measuring motorized traffic.

(a) Original target feature (b) Log-transformed target feature

Figure 12.QQPlot of the target feature (measurements of the counting stations), before and after the log-
transformation.
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A.14. ML models’ hyperparameters

A.15. Feature selection methods

Of the 257 available features (see Table 2), 243 are selected at least once across any feature selection approaches we applied. The
selection frequency varies significantly, with some features chosen for manymodels while most are selected only once or twice. The
individual most frequently chosen features are the population density, the age-specific demographic proportions (>65 years), and the
count of shops within 2000 m. Other relatively frequently selected characteristics include the categories of infrastructure

Table 9. Models and their tuned hyperparameters

Models Tuned hyperparameters

Linear regression –

Decision tree Maximum depth, minimum samples for splitting, min samples in leaf Node,
splitting criterion

Gradient boosting Number of estimators, learning rate, maximum depth, minimum samples for
splitting, minimum samples in leaf node

XGBoost Learning rate, maximum depth, subsample size, column subsampling rate,
minimum child weight, gamma

Random forest Number of estimators, maximum depth, minimum samples for splitting, bootstrap
sampling

Support vector
regression

C (regularization parameter), kernel choice, degree (for polynomial kernel),
gamma, epsilon

Shallow neural
network

Hidden layer sizes, activation function, learning rate

Table 10. Models, the applied feature selection method, and the number of selected features for both
the all day and the 7-19 h specification

Model Feature election method
# Features

selected all day
# Features

selected 7-19 h

Linear
regression

Recursive feature elimination with cross-
validation and linear regression

9 9

Decision tree Sequential feature selection with decision tree 38 38
Gradient

boosting
Recursive feature elimination with cross-

validation and gradient boosting
195 105

XGBoost Sequential feature selection with XGBoost 38 38
Random forest Recursive feature elimination with cross-

validation and random forest
15 215

Support vector
regression

Select K Best 28 28

Shallow neural
network

Select K Best 28 28
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characteristics (points of interest, such as the number of stores and the use of the area, especially the proportion of the area used for
parks and agriculture), Strava characteristics (traffic flow in the area for small andmedium radii) andmotorized traffic characteristics
(city-wide number of cars). For eachmodel, features based on smaller radii tend to be selectedmore frequently, but features based on
larger radii are also included for all models.

Cite this article: Kaiser SK, Klein N and Kaack LH (2025). From counting stations to city-wide estimates: data-driven bicycle
volume extrapolation. Environmental Data Science, 4: e13. doi:10.1017/eds.2025.5
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