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Abstract
The axially symmetric, swirl-free gas dynamics and interlinked motion of a cork stopper provoked by the opening
of a champagne bottle are modelled rigorously and studied numerically. The experimental study by Liger-Belair
et al. (Science Advances, 5(9), 2019) animated the present investigation. Inspection analysis justifies the inviscid
treatment of the expanding jet of air enriched with dissolved carbonic acid gas initially pressurised in the bottle.
Solving of the resulting Euler equations is facilitated by the open-source software Clawpack. Specific enhancements
allow for resolving of the emerging supersonic pockets, associated with surprisingly complex shock structures, as
well as the gas–stopper interaction with due accuracy. Our experimental effort provided modelling of the frictional
behaviour, constitutive law and reversible (de-)compression of the cork material. Initially, the gas expands inside
the bottleneck yet sealed by the stopper, and is hence accelerated by the gas but decelerated by dry sliding friction.
Once the stopper has passed the bottle opening, the jet rapidly assumes locally supersonic speed, where a complex
shock pattern is detected. Special attention is paid to the formation and dissolution of one or even two Mach discs
between the opening and the released stopper. This simulated dynamics is found to be in fairly good agreement
with recent experimental findings. It also provides a first insight into the generation of the typical popping sound.

Impact Statement
Popping of the cork stopper sealing a champagne bottle unequivocally represents an appealing prototype of
a daily-life event that offers a remarkably rich variety of physical phenomena at play. Here, these accompany
the sudden opening of, in more general terms, a vessel partially filled with a pressurised liquid and dissolved
gas (mostly carbon dioxide). Extending the detailed numerical investigation put forward to the situation of
more complex geometries and/or different sealing devices having different material properties is an indicated
task of further activities. The current focus on the involved gas dynamics, highly unsteady and supersonic
albeit at relatively moderate Mach numbers, might already provide a better insight into the complex details,
specifically the shock structures, of transitional ballistics in related but more extreme situations of engineering
importance. The study is also viewed as a benchmark test for future experimental and numerical efforts, in
particular the spatial/temporal resolution of the full fluid–structure interaction of a high-speed gas flow with
a solid moving obstacle. We suggest further modelling activities to predict (amongst others) the impact of
temperature variations on the initial pressure inside the bottle by virtue of the solubility of carbon dioxide
and the limitations of the inviscid-flow model for such scenarios, given the subtle role of viscosity lurking.
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1. Motivation and introduction

The quite recent experimental study by Liger-Belair, Cordier, and Georges (2019), succeeding the
pioneering ones by Vollmer and Möllmann (2012), Liger-Belair, Bourget, Cilindre, Pron, and Polidori
(2013) and Liger-Belair, Cordier, Honvault, and Cilindre (2017), discloses the surprisingly complex
formation of an expanding gas jet, propelling the cork stopper out of a just opened champagne bottle,
where the jet and the stopper generate the typical popping sound by the radiation of shock waves. This
stimulated us to tackle the challenge of resolving this process numerically in due detail, notably, by
resorting to the forerunner investigation by one of us (Wagner, 2021). It is the ultimate goal of this
work to supplement the experimental findings with theoretical predictions based on high-resolution
computations. To this end, a modelling focus is laid on the essential physical mechanisms while effects
of subordinate importance, either at play on smaller temporal/spatial scales or such as spontaneous
phase transition, are deliberately ignored.

Taking up a rigorous point of view sets the basis for a least-degenerate, sound mathematical descrip-
tion of the problem that combines the fields of gas dynamics, fluid–structure interaction and solid–solid
friction. Simultaneously, viscous effects are found as insignificantly weak over the spatial and temporal
gross resolution of the jet propagation. Emphasis is then laid on the prediction of the axisymmetric super-
sonic gas jet, mixing perfectly with the ambient air while forming a complex shock pattern including a
Mach disc or so-called shock diamond (cf. Reichenbach, 1983). This forms just outside of the bottle-
neck when the jet-driven stopper is already sufficiently remote from the latter. While the compressed
gas inside the bottleneck technically contains CO2 gas and water vapour besides small traces of alcohol,
the first partial pressure value is vastly larger than the other readings and the problem is therefore con-
sidered as a single-phase problem with a heat capacity ratio at atmospheric pressure and T = −40 ◦C of
𝜅CO2 ≈ 1.337 (NIST, 2023). The ambient air surrounding the bottle has a ratio of 𝜅air ≈ 1.401 (Engi-
neering Toolbox, 2023). The fact that the temperature of the system can fall below −100 ◦C and 𝜅CO2

increases faster with decreasing T than 𝜅air does, explains why the difference between their ratios in the
region of the Mach disc is even smaller. Additionally, the total mass of air vastly exceeds the one of
CO2, explaining the nearly instantaneous mixing of both gases. Both considerations allow the assump-
tion of a single-phase gas with a constant heat capacity ratio of 𝜅 = 1.4 obeying the ideal gas law. This
alleviates the computational effort drastically while the (viscosity-affected) mixing process itself would
not alter the results substantially. The fraction of time within which the process is simulated spans from
the effective opening of the bottle, seen as instantaneously fast, to the decay of the Mach disc.

We concede that the entire neglect of both viscous forces and the co-existence and mixing of two
gaseous phases appears doubtful in variety of possible scenarios. To name the most critical ones, these
include the shearing flow through the very small gap as the stopper just passes the bottle opening, gross
separation of boundary layers accompanied by vortex formation as well as partial freezing of the carbon
dioxide (CO2) during its sufficiently strong (isentropic) expansion, observed by Liger-Belair et al. (2019).
However, these simplifications are substantiated by dimensional reasoning based upon the geometrical
and kinematic reference scales. Consequently, they are admissible as their local/sudden invalidity would
not affect severely the simulated dynamics of the stopper and the shock structure elucidated on those
scales and being at the centre of our attention.

The resulting inviscid-flow simulations are preferably built upon the well-established open-source
software environment Clawpack (Clawpack Development Team, 2022; LeVeque, 2002; Mandli et al.,
2016), centred around the usual combination of Godunov’s numerical finite-volume scheme and Roe’s
approximate Riemann solver for hyperbolic systems of equations. Special care is taken to facilitate
the complete gas–stopper interaction in a fully implicit manner and the stage of stopper–bottleneck
interaction initiating the release of the stopper. Therefore, our approach contrasts with the recent
computational study by Benidar, Georges, Kulkarni, Cordier, and Liger-Belair (2022), complementing
the aforementioned motivating experimental work: these authors employ the widely used commercial
flow simulation software package Ansys Fluent® to solve the fully Reynolds-averaged Navier–Stokes
equations using turbulence closures but disregard that initial stage entirely. The present investigation,
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Figure 1. (a) Computational domain of coupled system bottleneck–stopper–gas (initial conditions);
(b) detail of density plot at t̃ = 0.5 ms; for colour levels of density see figure 9.

however, aims at resolving the coupled gas and stopper dynamics of the whole process in the greatest
possible detail, where our focus is on the formation of the Mach disc. It might thereby set the basis for a
discussion and, in turn, proper inclusion of the here neglected viscous effects in this and closely related
situations. In order to establish a reliable model of its compression/expansion and friction, tribological
tests with a cork potentially in use were carried out at AC2T research GmbH.

The paper is organised as follows. At first, we argue the simplifications addressed above to set up
the corresponding physical–mathematical model (§ 2). This comprises the description of the gas and
air flow, its interaction with the propelled stopper, subject to the dry sliding friction with the bottle
prior to its expansion outside of this. We then outline in due detail the incorporation of particular
numerical strategies in Clawpack that succeed in the stable resolution of the fully coupled gas–stopper
interaction and solid–solid sliding (§ 3). As the bedrock of our study, the discussion of the results (§ 4)
is accompanied by their comparison with those available in the literature and addressed above (§ 4.3).
Finally, an outlook towards potential further implications completes the study (§ 5).

The supplementary material and movies are available at https://doi.org/10.1017/flo.2023.34, which
contains two simulation movies (movie 1 and movie 2) and additional information, primarily addressing
the technically interested reader, named ‘supplementary technical details’ (comprising supplements
A–D in the supplementary PDF). However, the paper is self-contained to the necessary extent without
the latter.

2. Physical model and problem formulation

For what follows, we tacitly refer to the sketch in figure 1 throughout. The physical system considered
consists of four parts, subject to a reasonable and self-consistent level of modelling abstraction, in good
agreement with real-life observations (Liger-Belair et al., 2019) and outlined in the following.

2.1. Basic assumptions

The physical system considered consists of four subsystems, representing the different materials involved.
Its first part represents its boundary, formed by the perfectly rigid, impervious, axisymmetric, relatively
slender bottleneck, typically made of glass. The accordingly impervious axisymmetric stopper made of
cork forms the second. The third is given by the expanding gas, a solution of CO2, slowly degassed by the
liquid champagne and so accounting for its pressurisation prior to the opening of the bottle, air, alcohol
and water vapour, which propels the stopper out of the bottle in the axial direction. It is confined by
the surface of the contained champagne, during the process considered taken as a stationary, plane and
impermeable boundary, and before the opening sealed by the stopper. For what follows, the bottleneck
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is then precisely defined as the void portion of the bottle between its opening and the liquid level. The
initially quiescent ambient air represents the fourth subsystem. This, and the expanding gas, are taken
as Newtonian ideal gases having constant specific heats, heat conductivities and dynamic viscosities
(perfect gas), all of negligibly different magnitudes. Correspondingly, they form non-distinguishable
phases, the mixing of which is entirely ignored, as are the temperature dependences of those quantities.
Even though reasonable for the gas phase, this simplification admittedly disregards the phase transitions
observed by Liger-Belair et al. (2019).

The actual opening of the bottle effectively means the rapid overpowering of stiction (self-retention)
between the stopper and the bottleneck, compressing the former radially, in favour of much lower sliding
friction setting in. The so triggered force imbalance has the gas expand and starts the proper motion
of the stopper. Here, this very first stage of the opening process is abstracted as instantaneous with
respect to the resolved time scales. It thus provides the initial condition. Hence, the stopper is initially
accelerated by the gas but decelerated by wall friction. The expanding gas remains contained in the
bottle as long as the stopper has not entirely left the bottle. Simultaneously, it starts to move the outer
air. Once it has left the orifice behind, it rapidly expands towards its original (decompressed) shape as
it is pushed further by the now forming (under-expanded) gas jet and the thereby generated air flow.
The gas and the air completely dissolve into one another, and the resulting flow and the motion of the
stopper are presumed to remain axisymmetric.

We neglect the characteristic ‘dome’ of the stopper for a champagne bottle, which, in combination
with the frustum at its base, gives it the characteristic mushroom-like appearance. However, this renders
its discretisation unnecessarily complex whilst taking into account that the drag-increasing bumper
would not alter substantially the fascinating flow patterns between the stopper and the bottle opening,
tied in with the emergence of the Mach disc and fading out once the stopper is sufficiently remote from
the opening. That surprisingly complex shock regime lies at the heart of our numerical analysis.

Before we specify the modelling of the four subsystems and their interactions, we summarise the
essential assumptions and simplifications (i)–(vi):

(i) The ambient air and the pressurised gas mixture are indistinguishable single-phase ideal gases,
characterised by constant (temperature- and pressure-independent) thermophysical properties
(hence, the pressurised gas treated as air).

(ii) The bottleneck is beheld as a slender truncated cone, tapered towards the bottle opening, with
sufficient accuracy. The mushroom-shaped cap of the stopper and the fastening wire cage
(muselage) are both disregarded (as being irrelevant for the process under consideration).

(iii) The expanded (unloaded) stopper is also taken as a slender truncated cone, even though real
sparkling wine corks are so-called agglomerated ones, composed of up to three rings of slightly
different radii (Margalit, 2012).

(iv) The cork used is typically modelled as a homogeneous and isotropic hyperelastic material of
negligibly small lateral contraction: for this special case of an Ogden material model see Sasso
et al. (2022), Fernandes, Pascoal, and Alves de Sousa (2014) and references therein as well as
Ogden (1997) and Dill (2006). Here, both the weak visco-elasticity usually found to be at play
and the degradation of elasticity due to long-time ageing are ignored. Since the compressive
reactive force the weakly tapered bottleneck exerts onto the stopper sliding along it appears to be
much larger than all the other forces at play, the stopper can deform only radially while it remains
rigid in the axial direction. Therefore, it assumes its original undeformed shape once its reversible
decompression has stopped after a finite, properly defined relaxation time.

(v) We model the instantaneous expansion of the stopper by taking it as cylindrical when it has just left
the bottle and on the basis of the estimated characteristic time scale at play rather than founding it
more rigorously. This seems admissible given the relatively short duration of the expansion process.

(vi) We neglect any (unavoidable) leakage of gas out of the bottle as long as the stopper has not
completely been released from it. That is, we may assume dry sliding (Coulomb) friction between
the cork and the glass of the bottle (see Fatima Vaz & Fortes, 1998).
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Table 1. Geometrical input quantities, cf. figure 1, and density of relaxed cork (all suitably rounded).

Δr̃B (mm) d̃0 (cm) d̃1 (cm) d̃2 (cm) l̃C (cm) l̃B (cm) ṼB (ml) �̃�m
C (kg m−3)

3.015 1.8 2.3 2.6 2.5 6.10/7.28 20/25 240

Furthermore, the following conventions prove sensible. Tildes indicate dimensional quantities while
otherwise their non-dimensional form is used; the subscript 0 indicates the reference state of the quiescent
ambient air; the subscripts B and C indicate the properties of, respectively, the bottleneck, including the
pressurised gas initially at rest and provided by Liger-Belair et al. (2019), and the cork stopper.

2.2. Geometry of bottleneck, unloaded stopper and computational domain

We introduce cylindrical coordinates r̃ and z̃, radially from and along the axis of the bottle outwards from
its opening, respectively. Let us first describe the two truncated cones representing the bottleneck and
the fully relaxed stopper as inferred from figure 1. The bottleneck of an axial extent l̃B is slightly tapered
under an inclination angle 𝜃B towards its opening, having a diameter d̃0; this defines its void volume ṼB.
The accordingly shaped relaxed stopper of an axial length l̃C has an angle of taper 𝜃C and the diameters
d̃2 at its base (rear) end and d̃1(< d̃2) at its top (front) end, this initially exposed to the ambient air. The
(average) thicknessΔr̃B of the bottle glass completes the geometry of the systems bottleneck and stopper.

Hereafter, all lengths are advantageously made non-dimensional with d̃0. At first, r = r̃/d̃0, z = z̃/d̃0,
d1,2 = d̃1,2/d̃0, lB = l̃B/d̃0. Using VB = ṼB/d̃3

0, we then introduce the (small) slopes

aB = tan 𝜃B =
1
lB

(√
3VB

πlB
−

3
16

−
3
4

)
, aC = tan 𝜃C =

d2 − d1

2lC
. (2.1a,b)

The first relationship herein is needed to complete table 1, presenting the geometrical input data together
with a mean value �̃�m

C of the density of a fully relaxed and dry cork (Saadallah, 2020). We obtained
the geometrical data by measuring customary sparkling-wine bottles and the associated stoppers, apart
from the pairing for the larger value of ṼB, which we could not verify. However, only this and the value
of d̃0 were proposed by Liger-Belair et al. (2019). We extracted the value of 𝜃B from the measured one
of l̃B for ṼB = 20 ml and (2.1a). In order to accomplish the task of comparing our simulations with the
experiments, we then stipulated a congruent bottleneck and thus the same value of aB for ṼB = 25 ml.
The different liquid level l̃B then ensues as the single real root of the cubic satisfied by lB and arising
from (2.1a). We also note the so found inclination angles 𝜃B � 2.24◦ and 𝜃C � 3.43◦.

The axisymmetric computational domain is given by 0 ≤ r ≤ 2 and 0 ≤ z + lB ≤ 8. Numerical
tests with enlarged domains, at the expense of considerably increased computational costs, suggest the
chosen dimensions as being sufficiently large (cf. the discussions regarding the spatial resolution in § 4).

2.3. Gas/air flow

According to the premise (i) in § 2.1, we introduce the dynamic viscosity 𝜂, the heat conductivity �̃�,
the mass-specific gas constant R̃ and the heat capacity ratio 𝜅 for air under standard conditions as the
required, uniform gas properties. Let the ambient air be initially at rest under the uniform pressure
p̃0 and the temperature T̃0. From the common relations holding for an ideal gas, c̃p = R̃𝜅/(𝜅 − 1) is
its specific heat capacity at constant pressure, �̃�0 = p̃0/(R̃T̃0) its density at rest, c̃0 = (𝜅R̃T̃0)

1/2 the
associated isentropic speed of sound and ẽ0 = �̃�0c̃pT̃0/𝜅 = p̃0/(𝜅 − 1) the associated density of the
internal energy. We then typically have R̃ � 287.058 J (kg K)−1 and 𝜅 � 1.4. These data, together
with the characteristic, fixed inner diameter d̃0 of the cross-section of the bottle opening, adopted by
Liger-Belair et al. (2019), establish the reference values for all the remaining input quantities. As the

https://doi.org/10.1017/flo.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2023.34


E40-6 L. Wagner, S. Braun and B. Scheichl

Table 2. Thermophysical reference data (suitably rounded, slashes separate values of p̃B and T̃B).

p̃0 (bar) T̃0 (◦C) p̃B (bar) T̃B (◦C) 𝜂 (Pa s) �̃� (W (m K)−1) c̃p (J (kg K)−1) c̃0 (m s−1)

1.013 20 7.5 / 10.2 20 / 30 1.827 × 10−5 0.0262 1004.70 343.24

Table 3. The combinations (A)–(D) of ṼB and T̃B used in the simulations.

Case (no.): ṼB (ml), T̃B (◦C) (A): 20, 20 (B): 25, 20 (C): 20, 30 (D): 25, 30

data put forward by Liger-Belair et al. (2019) and Benidar et al. (2022) shall validate our simulation
results, we only consider the two combinations of the pressure p̃B and the temperature T̃B measured by
Liger-Belair et al. (2019) and that identify the state of contained gas initially at rest. All the essential
input data and their values are summarised in table 2 and the resulting four combinations addressed by
our simulations in table 3.

Consequently, we consider the local values of five flow quantities, depending on space and time: the
fluid velocity v, the fluid density 𝜌, fluid pressure p, fluid temperature T and the density of its total
energy (the sum of internal and kinetic energy)

et = p + 𝜅(𝜅 − 1)𝜌 |v|2/2, (2.2)

already made non-dimensional with, respectively, c̃0, �̃�0, p̃0, T̃0 and ẽ0. Accordingly, the time t is in
natural manner made non-dimensional with the basic time scale d̃0/c̃0 � 0.0524 ms. As seen from the
particular dimensionless form of et in (2.2), p also ensues as the density of the internal energy. Those
flow quantities satisfy the thermal equation of state for an ideal gas

p = 𝜌T , (2.3)

and the resulting full set of the non-dimensional Navier–Stokes equations. These describe conservation
of mass (2.4), of momentum (2.5) and of the total energy density et, (2.6), all conveniently written in
coordinate-free divergence form:

𝜕t𝜌 + ∇ · (𝜌v) = 0, (2.4)
𝜕t (𝜌v) + ∇ · (𝜌vv) = −𝜅−1∇p + Fr−2𝜌eg + Re−1∇ · 𝜮 , (2.5)

𝜕tet + ∇ · (vet) = 𝜅(𝜅 − 1)(−𝜅−1∇ · (vp) + Fr−2𝜌eg · v + Re−1∇ · [𝜮 · v + (𝜅 − 1)−1Pr−1∇T]). (2.6)

Herein, 𝜮 denotes the tensor of the viscous Cauchy stresses for a Newtonian fluid and

Fr = c̃0/

√
g̃d̃0 � 817, Re = c̃0d̃0 �̃�0/𝜂 � 4.07 × 105, Pr = 𝜂c̃p/�̃� � 0.701, (2.7a–c)

respectively, the Froude, Reynolds and Prandtl numbers as the key groups at play. In the first, g̃ denotes
the (constant) scalar gravitational acceleration, g̃ � 9.81 m s−2, acting in the direction of some (constant)
unit vector eg. The figures of these three parameters then follow from the aforementioned input values
(see tables 1 and 2). The set (2.2)–(2.6) governs the aforementioned five flow quantities in full, apart
from the required boundary, coupling and initial conditions discussed below.

Most importantly, Fr and Re appear to be so (predictably) large that we may safely consider the
limits Fr → ∞ and Re → ∞ in (2.5) and (2.6). Then (2.4)–(2.6) reduce to the Euler equations
governing the adiabatic and inviscid flow of a weightless ideal gas. To specify them for our axisymmetric
situation, we introduce the r- and z-components u and w, respectively, of v. Then (2.4), the two scalar
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momentum equations for the r-and the z-direction resulting from (2.5) and the energy equation (2.6)
give, respectively,

𝜕t𝜌 + 𝜕r (𝜌u) + 𝜕z(𝜌w) = −𝜌u/r, (2.8)
𝜕t (𝜌u) + 𝜕r (𝜌u2 + p/𝜅) + 𝜕z(𝜌uw) = −𝜌u2/r, (2.9)
𝜕t (𝜌w) + 𝜕z(𝜌w2 + p/𝜅) + 𝜕r (𝜌uw) = −𝜌uw/r, (2.10)

𝜕tet + 𝜕r (u[et + (𝜅 − 1)p]) + 𝜕z(w([et + (𝜅 − 1)p]) = −u[et + (𝜅 − 1)p]/r. (2.11)

The source terms on the right sides of (2.8)–(2.11) are typically due to continuity in the radial direction.
Hence, special care is required for resolving the flow near the axis of symmetry r = 0. We are interested
in finding q(z, r, t), where q stands for any of the dependent variables 𝜌, 𝜌u, 𝜌w, et and p. Eliminating
p with the aid of (2.2) closes the system of (2.8)–(2.11). Specifically, et + (𝜅 − 1)p in (2.11) is replaced
by 𝜅 [et − (𝜅 − 1)2𝜌 |v|2/2]. Governing the four remaining quantities, these equations are then ripe for
their proper numerical treatment. Most importantly, their divergence form, together with (2.2), allows
for their weak solutions, i.e. the capturing of shock waves. The temperature field T , the local speed of
sound c = T1/2, made non-dimensional with c̃0, and the local Mach number M = (u2 + w2)1/2/c can be
calculated a posteriori, using (2.3). It is noted that 𝜅 is the only material-specific parameter entering the
problem.

The inviscid-flow description reduces the kinematic boundary conditions to those of axial symmetry
and the impermeability of the gas/liquid interface and the bottle wall:

u(z, 0, t) = w(−lB, r, t) = 0 (0 < r < 1/2), v · nB = 0 on the bottle surface, (2.12a,b)

where nB denotes a unit normal of the bottle wall at its respective position. The typical outflow conditions
prescribed on the remaining (outer) boundaries of the computational domain complete the boundary
conditions. We remark that the neglect of heat conduction and dissipation and the associated boundary
layers renders the temperatures at the solid surfaces as just resulting from convection. Therefore, the
(questionable) insulation conditions employed by Benidar et al. (2022) are irrelevant in our inviscid
approach.

The initial conditions are posed at some t = t0 as we choose t = 0 advantageously as that instance of
time when the stopper has just entirely passed the bottle opening. That is, z < 0 and t < 0 indicate the
regime of the sliding/compressed stopper that still seals the bottle, and z > 0 and t > 0 that of the freely
moving released stopper and expanding jet. Hence, for

t = t0(<0) : u = w = 0,

{
𝜌 = p = et = 1 (ambient air),
𝜌 = �̃�B/�̃�0, p = et = p̃B/p̃0 (pressurised gas),

(2.13)

cf. (2.2). The particular value of t0 is extracted from the output data of the calculation initialised by
(2.13).

2.4. Stopper–bottleneck and gas–stopper interactions

We first introduce the radial position r = R(z, t) of the surface of the stopper, the axial one z = Z(t)
subject to Z(0) = 0 at its base and the radial ones of the bottleneck, r = rB(z), and of the relaxed stopper
in our resting frame of reference, r = rC (z − Z). From (2.1a,b)

rB(z) = 1/2 − aB z, rC (z − Z(t)) = d2/2 − aC (z − Z(t)). (2.14a,b)
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The fluid–stopper interaction is facilitated by virtue of the kinematic coupling condition and the
dynamic one given by the equation of axial motion of the stopper:

(v − vC) · nC = 0 on the stopper’s surface, (2.15)
𝜅mC �Z = (Fb − Ft − FB − Fls)(t), mC = �̃�m

CṼB/( �̃�0d̃3
0). (2.16a,b)

Here, vC denotes the velocity on and nC a unit normal to the stopper surface at the position considered,
mC the non-dimensional mass of the stopper (cf. table 1) and Fb, Ft, Fls and FB are, respectively, the
scalar pressure forces at the base, top and the axial components of the forces the fluid and the bottleneck
exert at the respective portions of its lateral surface. We term FB the bottle force as it comprises the
z-components of the compressive normal force and the tangential Coulomb friction force at play. Given
the tapering of the bottleneck and the stopper, see figure 1, all forces in (2.16a) are taken as positive first.

The forces Fb and Ft have the straightforward explicit representations

Fb(t) = 2π

∫ R(Z (t) ,t)

0
p(Z(t), r, t)r dr, Ft (t) = 2π

∫ R(Z (t)+lC ,t)

0
p(Z(t) + lC, r, t)r dr. (2.17a,b)

Let �̃�n and 𝜎n = �̃�n/p̃0 denote the stress acting normally on the portion of the lateral surface of
the stopper yet compressed by the bottleneck, and 𝜇 the Coulomb friction coefficient. Hence, 𝜇𝜎n
is the tangentially acting frictional stress and (sin 𝜃B + 𝜇 cos 𝜃B)𝜎n the z-component of the net stress
exerted by the bottleneck on the lateral surface of the stopper yet inside the bottle (see figure 1a). The
presumptions (ii) and (iii) in § 2.1 allow for approximating both the bottleneck and the stopper by very
long cylinders and the static constitutive law proposed in the premises (iv) by taking �̃� as a monotonically
increasing function of the local relative compression, 𝜀(z, t). With H(·) denoting the Heaviside step
function

FB(t) = 2πH(−t)
∫ 0

Z (t)

(
−

drB

dz
+ 𝜇

)
𝜎n

(
1 −

rB(z)
rC (z − Z(t))

)
rB(z) dz, (2.18)

Fls (t) = 2πH(t)
∫ Z (t)+lC

Z (t)

𝜕R(z, t)
𝜕z

p(z,R(z, t), t)R(z, t) dz. (2.19)

Relaxing the assumption of a constant negative slope drB/dz of the bottleneck in (2.18) signifies the
straightforward advancement towards a more general approach. The movement of the stopper decreases
its portion inside the bottle and thus FB, to remain zero for t ≥ 0. We also anticipate that Fls = 0 for t < 0:
then, inside the bottle, the stopper slides along the solid wall and, outside, contributions to Fls vanish as
its cylindrical shape, when it has just passed the opening, assumed in (v) in § 2.1, gives 𝜕R/𝜕z = 0.

Closing the relationship 𝜎n(𝜀) in supplement A completes the statement of the problem.
Supplement B presents the evaluations of (2.18) and (2.19) with the localised variation of R examined in
supplement C.

3. Simulation method and problem-specific innovations of discretisation

The numerical solution of the fluid–structure interaction problem, fully coupling the Euler flow and the
dynamics of the stopper as described above, is entirely accomplished within the software environment
Clawpack (cf. § 1). As a problem-specific numerical challenge, however, the three physical key features,
namely the jet flow, the gas–stopper interaction and the sliding between the stopper and the bottle,
involve quite disparate time and length scales and force magnitudes. These become critical given the
relatively high speeds the stopper attains. Although its surface is found to be slower than the adjacent
flow throughout, its considerably fast movement in its normal direction, especially during its radial
expansion, raises the vital demand for a tailored calling scheme to achieve a most stable and, therefore,
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implicit resolution of the gas–stopper coupling. This section addresses the specific care taken in the
discretisation of the problem during the intermediate stages of preprocessing and calling.

3.1. Numerical scheme: overview

Let us first recall briefly the layers of Clawpack, where the more methodically interested reader is
referred to the online software manual by Clawpack Development Team (2022), the outline given by
Wagner (2021) and the references in § 1.

Godunov’s finite-volume discretisation and Roe’s linearisation of a Riemann problem of most general
type, posed by some hyperbolic system of transport equations expressed in (physically admissible)
conservative form, here specified by the Euler equations (2.4)–(2.6), lie at the core of Clawpack. The
stable spatial/temporal resolution of weak solutions, i.e. discontinuities/shocks, requires the numerically
stable evaluation of the local waves and corresponding speeds. This is achieved by constructing the
global solution from the waves resolved in the directions normal to the interfaces of adjacent finite-
volume cells (dimensional splitting) and a positively conservative formulation of the actual Riemann
solver (Einfeldt, 1988; Einfeldt, Munz, Roe, & Sjögreen, 1991; Harten, Lax, & van Lee, 1983). In
practice, the latter requirement can vary greatly in complexity, where the implemented Harten–Lax-
van-Leer–Einfeldt (HLLE) scheme by this group of authors provides probably the most prominent one.
In each time step, the dependent variables are updated successively via the so obtained scheme and a
single call of a second-order Runge–Kutta method. The latter is potentially required to accomplish the
time integration of any source terms in the set of equations. Here, their appearance as the right sides
of (2.4)–(2.6) resorts to conservation of mass in the radial direction (and thus merely the use of polar
coordinates).

3.2. Boundary and coupling conditions in stable scheme

In the following, we give a synopsis of the numerical implementation, adopting two formal ingredients.
Supplement D puts forward specific technical details. Further information will be provided upon request.

At first, we introduce the solution vector Q = (𝜌, 𝜌u, 𝜌w, et) and let subscripts indicate the type or
the index of the evaluated cell and superscripts the index of the time step considered. In order to start
the simulation, every cell must possess initial values, contained in Q0 = Q at t = t0. Hence, Q0 equals
either Q0

in = ( �̃�B/�̃�0, 0, 0, p̃B/p̃0) or Q0
out = (1, 0, 0, 1), where the subscripts ‘in’ and ‘out’ refer to the

pressurised gas in the bottle and the ambient one, respectively. The cells occupied by the bottle and
stopper are filled with non-numeric values so that they are not updated during the subsequent time steps
(black regions in figure 1). Secondly, we take into account the method of dimensional splitting in the
subsequent outline. It drastically alleviates the discretisation of the kinematic coupling conditions (2.15)
as they can be treated separately for the radial and the axial directions, i.e. as if for independent families
of one-dimensional waves.

In Clawpack, boundary conditions are realised by including ghost cells near the edges of the domain
and at the interfaces between solid and gaseous phases (for a graphical depiction see supplement D.1).
The kinematic constraints (2.12a,b) and (2.15) are treated as reflective walls, and extrapolating boundary
conditions simulate an undisturbed flow out of the spatial domain (outflow conditions). The extrapolation
condition assigns the first and last internal value to all ghost cells at the left and right or base and top
edges, respectively, Qj = QNG+1, QNl+j = QNl

( j = 1, . . . ,NG). Here, NG denotes the number of ghost
cells and Nl the last internal cell index. With regard to (2.15), ghost cells inside the stopper result from
mirroring fluid cells at its surface. Velocities are assigned to the ghost cells such that the average value
of their and the original flow components perpendicular to the surface match that of its local normal
speed ( 	Z or 	R). All other quantities are simply mirrored along the interface. Its index is set to m − 1/2
consistently, where m indicates the cell centre: 𝜌m−1+j = 𝜌m−j, pm−1+j = pm−j, vm−1+j = 2vC,m−1/2 − vm−j
( j = 1, . . . ,NG). While this allocation describes the filling of ghost cells right of a reflective wall,
these equations can simply be rearranged to apply to a wall to the left. As a particular novelty, p is
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mirrored instead of et, which, as part of the solution, is the intuitive and traditionally used choice (see the
aforementioned literature on Clawpack). However, if the method is performed in this classical manner,
unacceptable negative values of the pressure inevitably arise inside the HLLE algorithm when the value
of the kinetic contribution in (2.2) exceeds a certain threshold.

The maximum value of the variable time step must be smaller than that given by the
Courant–Friedrichs–Lewy (CFL) condition (Courant, Friedrichs, & Lewy, 1928): uΔt/Δr + wΔt/Δz ≤

Cmax. For explicit time stepping methods, Cmax = 1. A grid with quadratic cells is chosen (Δr = Δz) to
minimise distortions. A variety of different cell distances and time steps is used in order to assess the
consistency of the discretisation and the temporal convergence of the scheme (§ 4).

The (continuous) motion of the stopper is resolved for discrete but variable time steps Δtn = tn+1 − tn
using Taylor approximations. Setting 𝜏 = Δtn/Δtn−1, we approximate the base position of the stopper
Z(tn) and the corresponding velocity 	Z(tn) with Zn, 	Zn as

Zn+1 = −𝜏 Zn−1 + (1 + 𝜏) (Zn + �Zn Δtn Δtn−1/2) + O(Δt3) , (3.1)
	Zn+1 = 𝜏2 	Zn−1 + (1 − 𝜏2) 	Zn + Δtn(1 + 𝜏) �Zn + O(Δt3) . (3.2)

4. Results, post-processing and discussion

We now scrutinise the simulated results for the four cases shown in table 3. The interaction of the stopper
with its surrounding fluid heavily influences the movement of the stopper and also the behaviour of the
Mach disc. The latter is obviously more visible in the cases of the higher initial temperature/pressure,
which promotes a greater richness of the flow structure. Since here case (C) is substantiated by our own
measurements, we discuss the dynamics of the stopper and some aspects of its measured counterpart
(Liger-Belair et al., 2019) for this reference case in greater detail before we address the comparison of
the simulated flows for all situations.

The following enumeration summarises the key flow features in chronological order, where the
specific time stamp of these events depend strongly on the considered scenarios (table 3). As will become
evident later, it is sensible to distinguish (roughly) between six steps, referenced by (0) and (a)–(e):

(0) The stopper, initially completely inside the bottle, starts to move out of the opening as a cylinder
(see supplement C).

(a) The radial expansion of the stopper starts exactly when it has fully escaped the bottle. It takes
approximately 40 μs throughout to reach its final, decompressed state (supplement C). The bottle
emits the gas through the thin gap forming between the stopper and the bottle as a supersonic, first
radially expanding, jet. A pressure wave is emitted.

(b) At about the opening radius, a shock emerges at the edge of the jet and wanders radially inwards.
(c) The shock finally forms a Mach disc of initially convex shape (‘shock diamond’). The jet, now

moving axially with the stopper, drives it away from the opening.
(d) Having reached some maximum distance, the Mach disc retracts until it dissolves into a

compression wave propagating inside the then diverging bottleneck, with approximately M ≈ 0.5,
against the gas still outflowing, also with M ≈ 0.5. Correspondingly, transonic conditions prevail
at the opening. The jet bends and starts to overtake the stopper in the positive axial direction.
Also, a second Mach disc can emerge and often exhibits a behaviour similar to the first one. Both
Mach discs can experience all phases or simply vanish after a certain period of time.

(e) During the (with respect to the simulated fraction of the opening process) end stage, the
compression wave may be reflected on the liquid interface and might again steepen to form a
shock (Mach disc) propagating outwards.

We stress that the axisymmetry of the flow cannot be reduced further, not even locally; unlike for the one-
dimensional classical Riemann problem referring to a cylindrical shock tube (cf. Sod, 1978), here, the
just released stopper inevitably invokes both axial and radial flow variations near the bottle opening. On
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Figure 2. Stopper dynamics: (a) force F̃b at base surface vs. t̃; (b) magnification around t̃ = 0 ms.

the other hand, Clawpack adopts a quasi-one-dimensional approach by combining the local solutions
of the Riemann problem for each dimension (dimensional splitting, cf. § 3.1), and the stopper-free
benchmark simulation carried out by Wagner (2021) is indeed closely related to the shock tube problem.

The grid resolution ranges from 200 × 50 to 3200 × 800 cells and the maximum real-time steps
from 500 down to 50 ns. Unless stated otherwise, the results are obtained with the latter (finest)
spatial and temporal resolutions. According to the finite-volume discretisation, summation of the cell
pressures yields their forces and a linear interpolation between the data points gives the two-dimensional
graphs. The contour plots do not employ any interpolation at all. We conveniently provide the reader
with dimensional results according to the scalings introduced in § 2.3: further notable conversions are
F̃ = p̃0d̃2

0F, t̃ = (d̃0/c̃0)t (subscripts omitted), Z̃ = d̃0Z, 	̃Z = c̃0 	Z, �̃Z = (c̃2
0/d̃0) �Z. All data are rounded

appropriately. The supplementary material contains two animated videos displaying the simulation of
the case above.

4.1. Interaction of gas with stopper passing bottle opening

From the start of the simulation until the complete escape of the stopper out of the bottle, F̃b decreases
(rather linearly) with time (figure 2a). This fact is the result of two phenomena: the expansion of the
gas behind the stopper decreases the density and thus the pressure of the gas; also, the bottleneck
and therefore the sliding stopper become narrower as it moves towards the opening, having the base
diameter decreased. Its numerical value changes at discrete times. Their distances increase and, in turn,
the temporal resolution of F̃b becomes more visible the coarser the grid is and the smaller the slope of
the bottleneck. During the expansion of the fully released stopper, its base surface rapidly increases,
explaining the initial increase of F̃b (figure 2b). The following variation of F̃b originates in the adopted
constitutive behaviour of the cork controlling its radial expansion. This is so rapid at the edge of the base
that the numerical method seems to partially resolve a spurious flow field generated by the just produced
ghost cell: the feedback of the fast flow in the just forming gap separating the bottle and the stopper starts
to compensate this, but the newly arising ghost cell triggers its reemergence and, in turn, oscillations.
(More generally, the lagging adaption of the flow to a moving surface heralds a potential localised
failure of the ghost-cell method once the speeds of its generation/annihilation and of the neighbouring
flow become comparable; cf. the comments at the begin of § 3.) While the numerical errors/algorithmic
instabilities induce small short-scale oscillations, the slower but larger self-sustained waves seen in
figure 2(a) (0.1–0.5 ms) have a physical origin. Albeit interfering with the supersonic jet and reflected
on the base of the stopper, they are too weak to be resolved in any of the upcoming flow visualisations.
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Figure 3. Stopper dynamics: (a) force F̃t at top surface vs. t̃; (b) magnification around t̃ = 0.5 ms.
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Figure 4. Stopper dynamics: (a) force F̃ls at lateral surface vs. t̃; (b) magnification around t̃ = 0 ms.

Figure 3(b) displays the pressure force at the top surface, F̃t. Initially, F̃t is less than 10 % of F̃b. It
remains almost constant as long as the stopper seals the bottle and its top cross-section has not expanded.
The increase after 0.5 ms discerned in figure 3(b) is the result of the leading pressure wave overtaking
the stopper (see figure 9(d) further below). Both the pressure and friction forces acting on the lateral
surface of the stopper decelerate the object. However, they vary greatly in size and appearance. Here, the
pressure-induced component F̃ls is the smallest of the forces resulting from the gas–stopper interaction
(figure 4). The base surface area expands quicker than the top one (see supplement C, figure S 2b),
initially resulting in a negative mean slope of the lateral surface and thus reducing the acceleration of the
stopper. However, this effect changes shortly after. At approximately 25 μs, the top surface has already
reached its relaxed state while the base is still expanding, and F̃ls takes on a negative minimum and
stays negative for a short period of time (figure 4b). After the stopper has reached its terminal expanded
shape, its axial slope remains equal to −aC and therefore F̃ls is positive, only oscillating in accordance
with the pressure forces acting on the other surfaces.

The temporal development of the bottle force F̃B is plotted in figure 5(a) (see supplement B). It is
key for determining when and even if the stopper will exit the bottle for a given set of initial conditions.
Rather surprisingly, the simulations with our originally extrapolated value 0.2 of 𝜇 and the more sensitive
cases where T̃B = 20 ◦C (i.e. of a lower initial driving pressure p̃B) predicted the stopper getting stuck
inside the bottleneck. Consequently, we set 𝜇 to 0.15 in turn so as to grant the realistic scenario of an
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Figure 5. Stopper dynamics: (a) bottle force F̃B and (b) acceleration �̃Z vs. t̃ for 3200 (blue), 800
(orange) and 200 (green) cells in axial direction.

escaping stopper for all cases considered. The complete form of FB (S 4) is rather lengthy but provides
the following straightforward explanation of the initial dynamics of the stopper. Due to the sliding, its
lateral surface along the convergent bottleneck steadily decreases, thereby also reducing the value of F̃B.
Consequently, the bottle force drops to reach zero at t = 0 and stays at that value for t > 0. Figure 5(b)
shows the total acceleration calculated from (2.16a,b) for three different grid resolutions. Because of
their dominant magnitudes compared with those of the other forces at play, only F̃b and F̃B influence
the shape of the acceleration significantly. Although both forces decrease over time, F̃B does so more
slowly, therefore resulting in a decline of �̃Z until t̃ � −0.5 ms, which becomes marked for the highest
resolution (blue graph). The minimum value of �̃Z determines if the stopper will get stuck inside the
bottle. For this behaviour to occur, the acceleration of the stopper must reach such a negative value that
also its speed becomes negative. Due to F̃B remaining zero for all t̃ ≥ 0 and the gradient of F̃b being
negative nearly at every point in time, the maximum value of the acceleration must be at around t̃ = 0.
After that, the oscillation pattern is the result of all pressure forces combined, which is patently more
visible for finer grids when neglecting all the grid oscillations intrinsic to the numerical resolution.

The speed 	̃Z and the base position Z̃ of the stopper are typically resolved as much smoother than
its acceleration �̃Z: see figure 6. While this directly results from the pressure forces that are inherently
bound to the discretised spatial domain, the update (3.2) of the stopper speed tends to smear out sharp
edges. Since 	̃Z increases from case (A) to case (D) (see table 3, figure 6), the start time t̃0, defining
Z̃(0) = 0, increases likewise. A negative acceleration only occurs in the first case, thereby explaining
the local minimum of the green graph in figure 6(a). In the case (A), the stopper undergoes an exit speed
of around 18 m s−1, a value closely resembling the experimental data found in Liger-Belair et al. (2019)
and used in Benidar et al. (2022).

4.2. Resolution and consistency study

We focus on the long-time dynamics to discuss the independence of our results of the (coupled
spatial–temporal) numerical resolution. As mentioned briefly in § 4.1, the required spatial resolution is
determined from figure 5(b): the physical oscillations must predominate markedly over the numerical
(spurious) ones. This is the case for 3200 cells in the axial direction. Any further grid refinement would
not be discernible in figure 5(b) but increase the computation time, roughly proportional to the total
number of cells in the axial direction squared. As a reference, the simulation was performed on an Intel®
Core i9-12900 K processor where case (A) needed the longest computation time of about 24 hrs.
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Figure 6. Stopper dynamics: (a) speed 	̃Z and (b) base position Z̃ vs. t̃ for the cases in table 3: green
(A), orange (B), blue (C) and red (D).

In order to assess the consistency of the simulated data and temporal convergence, we evaluate
the accumulated mass of gas that has already exited the bottle in two different ways and compare the
results: at first, we introduce m̃out,I (t̃) as the mass flow through the bottle opening integrated over time
from t̃ = 0; secondly, we define the same quantity as m̃out,II (t̃) = m̃in (0) − m̃in(t̃), where m̃in(t̃) is the
mass of gas yet contained in the bottle. While the discretisations of the area integral over the mass flux
density to obtain m̃out,I and of the volume integral over 𝜌 to compute m̃in are analogous to that of the
pressure forces, the time integration is based on the Euler method. The so encountered integration error
is consistent with that due to the flow simulation. Obviously, m̃∞ = m̃in(∞) must equal the mass of gas
filling the volume ṼB of the bottleneck (including the stopper volume) in the state of full equilibrium
(cf. figure 1a). Therefore, m̃∞ serves as an appropriate reference quantity for highlighting the approach
towards global equilibrium as the non-dimensional time t takes on relatively large values.

In figure 7(a), the mass flow through the bottle opening, 	̃m(t̃), and w̃ at its centre (coordinate origin)
are plotted. Figure 7(b) displays the accumulated masses obtained by the two methods and normalised
with m̃∞ as well as their relative differenceΔmout = [m̃out,I (t̃)−m̃out,II (t̃)]/m̃∞. This exhibits a maximum
value of approximately 1.96 ± 0.5 %, varying only insignificantly with different (satisfactorily high)
temporal resolutions. Here the axial extent of the computational domain was doubled but the spatial
resolution kept fixed so as to accordingly stretch the time interval in which the movement of the stopper
is resolved.

Due to the compressible ‘sloshing’, associated with the occurrence of the Mach discs, all quantities
except Δmout disclose ‘damped’ oscillations. While those seem to be in phase for both 	̃m and w̃ in
figure 7(a), the only perturbations in w̃ occur when the first and second Mach disc enter the bottle.
Because the relaxation time is much bigger than the simulation time, m̃in/m̃∞ in figure 7(b) only
deceptively seems to attain a value greater than one for sufficiently large times. However, while the
relative error Δmout exhibits its maximum when the oscillations are most pronounced, it indeed stays
below 2 % and dies out for larger values of t̃, which indicates temporal convergence.

4.3. Parameter study and comparison with experimental data

A careful detection of any discontinuities in all flow quantities reveals the occurrence of shock waves:
see the instantaneous distributions of T̃ , p̃ and M depicted in figure 8. While figure 8(a) visualises
the isentropic relation between T̃ and p̃, their minimum values also explain the conditions for the
creation of dry ice particles, mentioned by Liger-Belair et al. (2019). Figure 8(b), on the other hand,
is used for determining the distances between the Mach discs and the bottle opening (see movie 1 in
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the supplementary material). Here, the related study of an underexpanded jet by Orescanin and Austin
(2010) also deserves notation. Therefore, we analysed M along the z-axis and along a parallel line
r = 0.25, i.e. centred between this and the outer edge of the bottle opening. It turned out that this
value satisfactorily measures the initial edge of the disc. Then the shock positions along these lines, and
thereby of the centre and edges of the Mach discs, were determined by two methods. In a first attempt,
we considered them where M undergoes its maxima. However, the locations of the (positive) maxima of
−𝜕zM (which lie immediately downstream of the maximum values of M) allowed for their much more
accurate prediction. More precisely, if the value of such a local maximum exceeds a certain threshold,
5.5 in case (A), 5.8 in cases (B)–(D), we assign its z-position to that of the Mach disc. Notably, a low
threshold allows us to capture weaker Mach discs more easily, hence predominantly on coarser grids;
but for a certain value, the algorithm falsely detects shock waves where none are physically present.
A further noteworthy feature of the flow extracted from figure 8(b) is the near-critical conditions around
the bottle exit, typically raised by the only slightly converging cross-section of the bottleneck.

The contour plots of the density (positive radii) and Mach number (negative radii) distributions shown
in figure 9 for four different snapshots, taken from movie 2 in the supplementary material, illustrate the
evolution of the flow as their labels refer to the instances (a)–(d) itemised in the introduction of § 4. In
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Figure 9. Temporal evolution of density (top halves of all graphs) and Mach number (bottom halves);
two Mach discs are finally observed. (a) t̃ = 0.035 ms, (b) t̃ = 0.250 ms, (c) t̃ = 0.428 ms and
(d) t̃ = 0.600 ms.

particular, it becomes evident how the cylindrical stopper that has just escaped from the bottle is morphed
into the terminal truncated cone. Its decompression causes an acoustic wave propagating in the radial
direction (figure 9a). The Mach disc is generated at the jet edge roughly after 0.25 ms and subsequently
moves in the positive z-direction (figure 9b). This delay in its appearance at different values of r explains
the initial convex shape of the disc (‘shock diamond’). Eventually, the disc reaches its maximum distance
from the bottle opening at around 0.428 ms (figure 9c), then moves in the opposite direction to retract
into the bottle after approximately 0.56 ms (figure 9d), thereby converted into a compression wave. In
some cases it can even be reflected as a pressure wave at the liquid interface; see instance (e).

In addition, a second, but very weak Mach disc that splits off the first one or is created further
upstream can only be observed near the axis, which is created during the retraction phase of the original
disc (figure 9d). The thin ‘boundary layers’ visible in figures 9(b)–9(d) are a purely numerical artefact
resorting to the realisation of the no-penetration condition at a wall consisting of discrete steps. As
another intriguing finding, figure 9 unveils that the jet becomes umbrella-shaped due to the impingement
and deflection of the expanding gas at the rear side (base) of the stopper (cf. the discussion of the waves
in § 4.1). Thereby, a number of supersonic ‘pockets’ (blue colour regions) shaped as concentric tori
temporally emerge (figure 9a–c), in agreement with the findings of Benidar et al. (2022).

Figures 10(a)–10(d) visualise the quantitative behaviour of the Mach disc and the compression wave
in terms of its axial distance from the bottle orifice, Δz̃, for the respective cases (A)–(D) in table 3.
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Figure 10. Distances Δz̃ of Mach disc (Δz̃ > 0) and compression wave (Δz̃ < 0) from bottle opening:
numerical results (lines) for centre (blue) and edge of the disc (red) vs. experimental ones for edge (red
circles, for ṼB = 25 ml from Liger-Belair et al. (2019), repeated for ṼB = 20 ml); the cases (a–d) refer
to their counterparts (A)–(D) in table 3; darker lines refer to first and lighter ones to second Mach
disc, only recorded in cases (C) and (D); (a) ṼB = 20 ml, T̃B = 20 ◦C; (b) ṼB = 25 ml, T̃B = 20 ◦C;
(c) ṼB = 20 ml, T̃B = 30 ◦C; and (d) ṼB = 25 ml, T̃B = 30 ◦C.

Specifically, the discussion of figure 9 for the reference case (C) is condensed in figure 10(c). According
to the overview introducing § 4, the cases (b)–(d) show the behaviour of the first Mach disc, (c) and (d)
additionally that of the second one, whereas the rather pathological case (a) refers to the end phase, and
in (e), our detection algorithm only records a Mach disc travelling outwards from the bottle at supersonic
speed as accelerated by the still outflowing gas. It vanishes after having reached its maximum distance.
We admit that the choice of the numerical threshold entering the algorithm might also be relevant when
it comes to the detected reappearance of the first Mach disc in case (d).

While the distance between the two discs stays fairly constant, the life span of the second one is
much shorter (figure 10c). As expected, higher temperatures and thus pressures in the bottle (cf. table 2)
promote the dynamics of the Mach disc, in particular Δz̃max = max(Δz̃). This represents a definite
reference quantity as it allows for, at least qualitatively, a comparison with the experimental data from
Liger-Belair et al. (2019). Increasing the internal volume ṼB and temperature T̃B(∝ p̃B) of the bottle
leads to a bigger value of F̃b, which in turn increases the respective exit speed of the stopper, 	̃Z at
t̃ = 0, cf. figure 6(a). Table 4 shows these speeds together with the associated values of Δz̃max and the
time needed to reach it, Δt̃max, in qualitative agreement with our expectations and the experiments. This
prompts us to conclude that Δz̃max is (roughly) proportional to its speed. A similar trend can be found by
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Table 4. Exit speed of the stopper, maximum disc distance and corresponding times from its edge for
the cases in table 3.

Case (no.): 	̃Z (m s−1), Δz̃max (mm), Δt̃max (μs)

(A): 18.3, −5.6, 1158 (B): 23.2, 5.0, 461 (C): 36.0, 9.1, 428 (D): 39.7, 11.5, 582

analysing the curvature of the first Mach disc in figure 10, which generally seems to be less for a faster
stopper.

Surprisingly, as inferred from figure 10, the simulated location of the Mach disc always occurs a
certain (constant) amount of time sooner than the corresponding sensed one. The definite clarification
of this lag, perhaps being intrinsic to the method of sensing the disc edge, is a subject of future efforts.

5. Summary and further outlook

The present study resolves the axisymmetric complex gas dynamics accompanying the opening of a
champagne bottle (or, speaking more generally, a bottle containing a pressurised liquid and gas) and
its interaction with the propelled bottle stopper. For this purpose, the Euler equations were solved
numerically via Godunov’s method adopting a problem-tailored Roe solver (open-source environment
Clawpack) and the no-penetration conditions, satisfied on the bottle and the stopper, and the outflow
conditions implemented via ghost cells. Whilst the fluid–structure interaction results in a net pressure
force accelerating the stopper in the axial direction, the sliding friction slows down the compressed
stopper as long as it has not entirely passed the opening of the bottle. The hereby required surface stress is
modelled via the typical hyperelastic constitutive law for cork, with the material parameters found by in-
house experiments. After the stopper has fully escaped from the bottle, its radial expansion, modelled by
elastic-wave propagation, causes its geometry to eventually attain the original, uncompressed truncated
cone. The diameter of the bottle opening as well as the initial temperatures and pressures of the
pressurised gas contained in the bottle agree with the values used by Liger-Belair et al. (2019), which
allows for a satisfactorily good agreement between our numerical and their experimental predictions.

The difference between the (scalar) pressure force at the base of the stopper, F̃b, and the (scalar)
bottle force, F̃B, decisively controls its motion as the pressure forces acting on its remaining surfaces
have negligible impact. Since F̃B decreases slower over time than F̃b, the acceleration of the stopper
must exhibit a minimum, found to be near 0.5 ms prior to its full escape. Even more, this minimum
value can become so negative such that the stopper gets stuck inside the bottleneck. We adopted different
strategies to assess the spatial and temporal consistency of the numerical method with respect to refined
grid resolutions and maximum time steps.

As of utmost interest, a Mach disc forms between the bottle opening and the freely moving stopper.
This initially exhibits a convex shape due to the radially varying times of the shock generation. The Mach
disc reaches a maximum distance from the bottle opening and then retracts towards the latter. Moreover,
during this phase a second disc is potentially created upstream of or splits off the first one. That maximum
distance depends strongly on the input parameters, whilst the time between the full release of the stopper
and its occurrence seems to only depend weakly on the initial conditions. Despite the good qualitative
agreement between its simulated and experimentally found values, the nearly invariant offset between
the measured and numerically predicted time of its emergence deserves to be unravelled. In future,
evaluating the full set of Rankine–Hugoniot conditions might refine the shock detection. The following
improvements may further help to reduce the deviation of the simulated from the measured data.

For instance, dealing with at least two species of gases, i.e. air and CO2, is indicated, where Henry’s
law could provide the initial solubility of CO2. Then the pressurised gas and the ambient air are more
realistically treated as two different ideal gases. In an inviscid flow model, the thereby entailed immiscible
two-phase flow would give rise to phase discontinuities. In turn, numerical dissipation would smooth
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them as it currently counteracts the resolution of the shocks and provokes the formation of artificial
boundary layers and finally vortices at the later stages of the simulations. The viscous influence on
the temporal approach towards equilibrium is assessed by balancing the instantaneous acceleration
and the shear stress exerted across the diameter of the bottle opening: this gives a representative but
irrelevantly long relaxation time d̃2

0 �̃�0/𝜂 � 21 s. The action of viscosity, however, is effectively at play
and originates in the very first stages of the gap forming between the bottle opening and the stopper and
its motion relative to the flow during later times. This is where the fully inviscid treatment apparently
fails and calls for a more sophisticated analysis of these localised effects involved by the largeness of
the characteristic Reynolds number. We believe that such an approach, combined with solving the full
Navier–Stokes equations, also in related situations will outweigh the straightforward use of turbulence
models (Benidar et al., 2022). Also, the shape and the material behaviour of the cork stopper could
be modelled more realistically; the first by including its mushroom-like top, the latter by inclusion of
wetting, an orthotropic material behaviour and viscoelasticity, this for enabling an improved (rigorous)
description of its expansion during its passage of the opening. A simulation accounting for the fully
three-dimensional flow for extended times and breaking the axial symmetry by small disturbances would
presumably provide the typical period of time where stipulating that symmetry remains permissible.

We deliberately adopted the, without doubt unusually high, reference temperatures of 20 and 30 ◦C
provided by Liger-Belair et al. (2019) to validate our results. With that said, further progress demands
pressure measurements in a sealed bottle for much lower, viable temperatures, ranging from 5 to 10 ◦C.
Last but not least, the present findings suggest that sensing the position of the Mach disc provides, quite
remarkably, an option to determine either the gas pressure or temperature inside a champagne bottle.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/10.1017/flo.2023.34.
Raw data and proprietary programming code are available from the corresponding author (L.W.).
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