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Abstract

A minimum Hamiltonian completion of a graph G is a minimum-size set of edges that,
when added to G, guarantee a Hamiltonian path. Finding a Hamiltonian completion has
applications to frequency assignment as well as distributed computing. If the new edges are
deleted from the Hamiltonian path, one is left with a minimum path cover, a minimum-size
set of vertex-disjoint paths that cover the vertices of G. For arbitrary graphs, constructing a
minimum Hamiltonian completion or path cover is clearly NP-hard, but there exists a linear-
time algorithm for trees. In this paper we first give a description and proof of correctness
for this linear-time algorithm that is simpler and more intuitive than those given previously.
We show that the algorithm extends also to unicyclic graphs. We then give a new method
for finding an optimal path cover or Hamiltonian completion for a tree that uses a reduction
to a maximum flow problem. In addition, we show how to extend the reduction to construct,
if possible, a covering of the vertices of a bipartite graph with vertex-disjoint cycles, that
is, a 2-factor.

1. Definitions and results

A Hamiltonian completion of a finite graph G = (V, E) is a set of edges that, when
added to E, ensure that G has a Hamiltonian path.> The Hamiltonian completion
number hc(G) is the minimum number of edges required in a Hamiltonian completion
for G. A Hamiltonian completion with the minimum number of edges is a minimum
or optimal Hamiltonian completion. A closely related concept is that of a path cover
for a graph G, which is a set of vertex-disjoint simple paths that together contain all
the vertices of G. The path cover number pc(G) is the minimum number of paths in
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(A)

FIGURE 1. (A) Graph G. (B) A péth cover (optimal) with three paths is shown with thickened lines; note
that one of the paths is a single vertex. A Hamiltonian completion with two edges (derived from the given
path cover) is shown with dashed lines.

a path cover. A minimum or optimal path cover is one with the minimum number of
paths. For an illustration of these terms, see Figure 1. Given a set of k paths in a path
cover, one can connect them to form a Hamiltonian path by adding & — 1 edges, so it
is easy to see that

pc(G) = he(G) + 1. 1

Our motivation in studying minimum Hamiltonian completion arises from the
problem of frequency assignment, an important issue in telecommunications. We
look at a problem introduced by Hale [8] and also described in [15, p- 195]. We
consider the special case of assigning frequencies in a small geographical area, with
two levels of interference, as follows. There are n transmitters x;, x», ..., x,. Toeach,
a positive integer f (x;) is to be assigned, representing a channel or frequency. Pairs of
transmitters whose distance is at most a threshold d, are said to interfere at level 0, and
must be assigned different frequencies. In our special case, all pairs of transmitters lie
in a region of diameter dy, so that all pairs interfere. Transmitters whose distance is at
most d; (< dp) interfere at level 1 and must be assigned nonconsecutive frequencies,
such as 3 and 5—not 3 and 4, for example. The span of an assignment is the maximum
of |f (x) — f (y)| taken over all pairs of transmitters x and y. The goal is to choose a
frequency assignment to minimise the span.

This can be formulated as a graph problem. Define a complete graph G whose
vertices are the transmitters. Assign edge (x, y) weight w(x, y) = 1 if transmitters
x,y interfere only at level 0, and w(x,y) = 2 if they also interfere at level 1:
thus w(x, y) is a lower bound on |f (x) — f (y)|. By adding edge weights along
a Hamiltonian path one can construct a valid frequency assignment; moreover, a
minimum-weight Hamiltonian path yields a minimum-span frequency assignment,
where the span is the weight. A minimum-weight Hamiltonian path must use as
few edges of weight two as possible, so finding an assignment of minimum span is
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equivalent to finding the Hamiltonian completion number of the subgraph of edges of
weight one.

Computation of the Hamiltonian completion number #c(G) of an arbitrary graph
is a difficult problem. On the other hand, hc(G) is the minimum value of hc(T) for
all spanning trees T (see [1, 6]). Thus, finding the Hamiltonian completion number
of a tree is an important problem in the area of frequency assignment.

Further applications of Hamiltonian completion include the optimization of pro-
gram code [2, 11] and the assignment of processes to distributed processors [14].

The problem of finding minimum Hamiltonian completions was introduced in the
1970s by Boesch, Chen and McHugh [1] and by Goodman and Hedetniemi [6]. Path
covers had been studied earlier; for example, in 1960, Gallai and Milgram proved that
the path cover number for any digraph cannot exceed its independence number (see
[4, p. 39]). Finding optimal Hamiltonian completions or path covers is NP-hard in
general, but the authors of both [1] and [6] (independently) found essentially the same
polynomial-time algorithm to construct an optimal path cover for a tree. Kundu [11]
later showed that the same algorithm could be implemented in linear time. This result
has been generalised in several ways since then. Goodman, Hedetniemi and Slater
[7] also gave a polynomial-time algorithm to determine hc(G) for a unicyclic graph.
Several years later, Karejan and Mosesjan [9] gave a polynomial-time algorithm for
acyclic digraphs, and Kornienko [10] reported a linear-time algorithm to solve the
problem for any cactus, a graph such that no two cycles have a common edge. Moran
and Wolfstahl [13] also gave a linear-time algorithm for cacti, generalizing earlier
work of Pinter and Wolfstahl [14].

The linear-time algorithm for constructing a minimum path cover for a tree is quite
elegant, however [11] gives a terse description without a proof of correctness. The
proofs given in [1, 6] show that the underlying algorithm strategy is correct, but do
not give efficient implementatons. In this paper, we give a more intuitive derivation
of the algorithm, and a proof of correctness that is simpler than those in [1] and [6].
We show also that the algorithm can be extended to unicyclic graphs. These results
are given in Section 2.

Our main result is that finding an optimal path cover for a tree can be reduced to
finding a maximum flow in a certain network.* Moreover, we show that the same
reduction can be applied to any bipartite graph to test whether it is possible to cover
the vertices of the graph with vertex-disjoint simple cycles. These results are given in
Section 3.

One of our main tools is a reduction of the problem of finding a minimum path
cover to that of finding a maximum-edge path cover, a path cover that contains the
maximum number of edges in any path cover for G. The maximum-edge path cover

4Using the classic maximum-flow algorithms of Ford and Fulkerson [5], this immediately yields a
quadratic algorithm for finding an optimal path cover or Hamiltonian completion for a tree.
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FIGURE 2. Illustration of vines and vine paths. Graph G has three components. Paths ef , dcb, h, ij k and
m are vines; vertex g is the only path centre; paths ef gh, ij k and m are vine paths.

number or mpc(G) is the number of edges in such a cover. It is easy to show that the
number of edges in any path cover is always the number of vertices v of G minus the
number of paths. Using this observation, one can show that mpc(G) = v — pc(G);
combining this with (1) gives the following lemma, whose proof is straightforward.

LEMMA 1. For any graph G with v vertices, a path cover has the maximum number
of edges if and only if it has the minimum number of paths. Moreover, mpc(G) =
v —pc(G) =v—he(G) — 1.

Based on this lemma, for the remainder of the paper we shall use the term optimal
path cover to mean a path cover with either the minimum number of paths or the
maximum number of edges.

2. Constructing optimal path covers for trees

A top-level description of the algorithm A basic strategy for creating an optimal
path cover for a tree or forest is to greedily prune away special paths, which we now
define for arbitrary graphs. A vine in a graph G is a maximal path such that at least
one endpoint is a leaf and each edge (if any) is incident only to vertices of degree 1
or 2. Note that a vine is non-empty, and may be a single leaf, or G itself, if G is a
single path. If a vertex of degree at least 3 is adjacent to the endpoints of at least two
vines, it will be called a path centre. A vine path is either a path (vine) that is itself
a connected component of the graph, or the path that is induced by a path centre and
two of its adjacent vines. See Figure 2 for an illustration of these terms.

The importance of vine paths is described in the following lemma, which shows
that one can remove such paths arbitrarily when finding a maximum-edge path cover,
and is the heart of the path-cover algorithm described below. If H is a subgraph of G,
we use the notation G — H to mean the graph obtained from G by deleting all vertices
and edges of H along with any other edges of G incident to vertices in H.
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FIGURE 3. Illustration for Lemma 2. Graph G is shown with path centre v which is adjacent to two vines,
P, and P,, that induce a vine path P. In each case, paths in an optimal cover are shown as thickened
edges. Here Q is the path containing v in the original optimal path cover for G: the figures show how
to exchange pairs of edges to create a new optimal path cover containing P. (A) Case 1: If Q contains
exactly one of Py and P,, exchange edges e and f. (B) Case 2: If Q contains neither P, nor P,, exchange
edges e and g with f and h.

LEMMA 2. Let G be any graph with a vine path P. Then we may assume that an
optimal path cover for G contains P.

- PROOF. Assume that P is not an isolated component, otherwise the result is trivial.
Let v be the path centre of P, and let P, and P, be the two vines contained in P. Let
C be an optimal (maximum-edge) path cover for F, and let Q be the path in C that
includes v. First observe that since all the vertices of P, lie on a unique path in G,
either P, is in the cover C, or Q contains Py, and similarly for P;.

Assume that @ is not equal to P (or we are done), and suppose that Q contains
exactly one of P, and P,, say P,. By our observation, the cover contains P,. By
exchanging one pair of edges incident to v one can create P, as shown in Figure 3 (A);
since the exchange preserves the number of edges covered and cannot create a cycle, we
have created a new maximum-edge path cover containing P. Otherwise, Q contains
neither P, nor P,; by exchanging two pairs of edges, as shown in Figure 3 (B), we
again create a new maximum-edge path cover containing P.

Most graphs do not contain vine paths. The next lemma, however, shows that every
tree does.
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LEMMA 3. Every (non-empty) tree contains a vine path.

PROOF. If T is a single path, then it is itself a vine path. Otherwise, select an
arbitrary vertex u as the root of T, and select v, a descendant of degree at least 3 that
is farthest from u (possibly u itself). Then any two children of v must be endpoints of
vines, so v must be a path centre, and hence lies on a vine path.

Observe that, in general, deleting a vine path from a tree creates a forest; the lemma
also guarantees that in any forest, each (nonempty) component tree contains a vine
path. Thus, based on Lemmas 2 and 3, an algorithm for producing a maximum-edge
path cover for a forest is simply the following.

Path Cover Algorithm
Input: a forest, F.
Repeat until F is empty:
Let P be any vine path in F; add P to the path cover.
Continue, replacing F with F — P,
(End repeat) End

Extension to unicyclic graphs It is not hard to extend the algorithm to construct
optimal path covers for unicyclic graphs. Let G be a unicyclic graph. After using
Lemma 2 repeatedly, we may assume that G contains no vine paths. In that case,
assuming G is nonempty, we may assume that G consists of a single cycle C with at
most one vine attached to each vertex: examples are shown in Figure 4 (A) or (B).

If G = C or C has exactly one attached vine, it is easy to construct an optimal path
cover with one path (and |G| — 1 edges). If C has a vine attached to each vertex, as
in Figure 4 (A); we must delete at least one edge from C, which, by symmetry, may
be any edge. If there is a vertex v with no incident vine, let P and Q be the two vines
closest to v. Using an exchange argument similar to that in the proof of Lemma 2, one
can show that there is an optimal cover containing the path induced by P, v and Q,
which can be removed from G. In each case, the new graph is a tree, whose path
cover can be constructed as described above.

Linear-time implementation for trees We now describe a linear-time implemen-
tation of the Path-Cover Algorithm for a tree (or forest). Assume that tree 7 has its
edges given as adjacency lists. The output will be a labelling of the edges as In or Out
(of the cover). The paths can be easily recovered in linear time and space by finding
the connected components of the graph using the In edges only.

Our strategy is simply to implement Lemma 3. We first perform a breadth-first
search (BFS) (see, for example, {17, Section 3.2]) to number the vertices of T in order
of their distance from the root, which is chosen arbitrarily. See Figure 5 (A) for a BFS
numbering of atree. The vertices are processed in reverse BFS order so that each time
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P

(A) (B)

FIGURE 4. Graph G is a cycle C with vines incident to two or more vertices. (A) (Case 1) If every
vertex of C is incident to a vine, delete any edge of C (as shown by the dashed line) and proceed with the
resulting tree. (B) (Case 2) If some vertex v has no incident vine, let P and Q be the two vines closest to
v; add the path induced by P, v and Q to the cover by deleting the dashed edge(s) as shown and proceed
with the resulting tree.

we encounter a vertex of degree 3 or more, we will know that it is a path centre. The
core of the algorithm, called Path-Cover (T), is the subroutine Process (v), described
right after the main algorithm, which is as follows.

Path-Cover (7))
Input: Tree T; List of pointers to the vertices in reverse BFS order;

For each vertex v, a pointer Parent (v) to its parent in the rooted tree.
Initialise: Label all edges In; Degree (v):= number of edges incident to v;
For each vertex v on the list, Process (v); End For
End

Process (v) ]
If Degree (v) is at least 3
Let x, y be any two children of v {with vx, vy labeled In}
For each z # x, y, with edge vz labeled In
Label vz Out; Degree (z) := Degree (z) — 1

End For
Degree (v) :=2

{Otherwise, do nothing} Return

The algorithm is illustrated in Figure 5. Note that the procedure Process (v) is
defined whether or not v is the root; if v is not the root and has degree at least 3,
the edge between v and its parent will be labeled Out. The implementation clearly
uses linear time and space; the correctness is established in the proof of the following
theorem.

THEOREM 1. For any tree (forest) with n vertices, the algorithm Path-Cover (T)
produces an optimal path cover using O(n) time and space.
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(8)

5& 010 12 13 a«a’ 010 XH 12 13
14 18 i 14 15 16

FIGURE 5. Illustration of the algorithm Path-Cover (7). (A) A tree with a breadth-first search (BFS)
numbering of the vertices. (B) When Vertex 4 is processed, three edges are deleted (labeled Out); these
are shown as dashed lines. (C) When Vertex 3 is processed, only its parent edge is deleted. (D) The path
cover found by the algorithm.

PROOF. We only need to show that after algorithm Path-Cover (T) has been per-
formed, the vertices of T along with the edges labeled In form an optimal path cover.
First, it is easy to show that the following invariant holds, which is the key to the proof.

Invariant. If the subroutine Process (v) is called and vertex x was processed before
v, then Degree (x) is 0, 1 or 2.

In the next part of the proof, 7' (v) represents the (modified) tree just after Process (v)
is called, that is, the tree induced by the root and all edges labeled In. Also C(v)
represents the remaining connected components induced by the edges labeled In. In
order to show that Process (v) works correctly, we prove the following claim by
induction.

Claim. Throughout the algorithm Path-Cover (7T), every component in C(v) is a
path in an optimal cover.

To prove the claim, we first note that if v is the first vertex processed it is a leaf and
must have degree 0 or 1; thus C(v) is empty and T(v) = T. Now suppose that we
have just finished running Process (x), and are about to call Process (v). Assume that
the claim holds for C(x). Observe that every vertex that has not yet been processed
is still a member of T(x); this is true because the BFS numbering guarantees that
a vertex can only be deleted from the tree when it is processed or when one of its
ancestors is processed later. In particular, v is in T(x).

If Degree (v) < 2 then C(v) = C(x), so we may assume that Degree (v) > 3. Then
the invariant guarantees that all descendants of v in 7 (x) must have degree 1 or 2, and
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(A)

FIGURE 6. (A) Tree T; (B) the network N(T) is formed by creating a bipartition (X, Y) of the vertices
of T, then adding new vertices s and ¢ along with new arcs to all vertices in X or Y, respectively (shown
with dashed lines). All arcs from original edges have capacity 1; the new arcs have capacity 2.

hence lie on vines; therefore v is a path centre for some path P in T(x).

When Process (v) is complete, if v is not the root, C(v) will now include P, as
well as all of the vine paths (vines) in T(x) — P whose endpoints are the children of
vnoton P. By Lemma 2, these are all paths in an optimal cover, which establishes
the Claim. If v is the root, then the invariant guarantees that T(v) = P. By Lemma 2,
T(v) U C(v) is an optimal path cover for T.

Notice that the only place the BFS numbering is used is to guarantee that all
descendants of a vertex v are processed before v. Thus any numbering with this
property, such as a depth-first search numbering (see, for example, [17]) will also
work in the algorithm.

The following corollary follows immediately from Theorem 1 and Lemma 1.

COROLLARY 1. A minimum Hamiltonian completion or path cover of a tree (forest)
can be constructed in linear time and space.

3. Path covers via maximum flow

In this section, we show that finding an optimal path cover for a tree T (and thus
an optimal Hamiltonian completion for T) can be reduced to finding the maximum
flow in a special directed network N (T) with edge capacities, which we now define.
We assume throughout that T has at least one edge. The construction also works for
a forest.

Since T is bipartite, we can create a bipartition of the vertices of T into nonempty
sets X and Y such that all edges join vertices of X to vertices of Y. Orient all of these
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edges from X to Y to create arcs, and give them capacity 1. Next, add a vertex s,
with an arc oriented from s to each vertex of X; add a corresponding vertex ¢ with an
arc oriented from each vertex in y to ¢. Assign all of these new arcs capacity 2. An
example is shown in Figure 6. In the following theorem, we show that a maximum flow
in N(T) can be used to compute the path cover number or Hamiltonian completion
number of T. The proof gives a construction of an optimal path cover from an integral
maximum flow.

THEOREM 2. Let f* be the value of a maximum s-t flow in the network N (T) where
T is a tree with at least two vertices. Then f* = mpc(T), the maximum-edge path
cover number of T.

PROOF. To prove the theorem, we will give a correspondence between flows and
path covers, which is illustrated in Figure 7.

First, let f * be any maximum flow such that the flow in each arc is an integer.> Let
C be the subgraph of T consisting of all the vertices of T and the X ¥ edges with flow
1in f*. Each vertex in X or Y can have degree 0, 1 or 2 in C; and, since T is acyclic,
C must be a set of vertex-disjoint paths that cover the vertices of T and which contain
f * edges. Hence mpc(T) > f*.

Now let PC(T) be a maximum-edge path cover for T. If edge xy is in PC(T) then
assign flow 1 to the corresponding arc in N(T). In N(T), let the flow for each arc
sx with x € X be the degree of x in PC(T) (which can be 0, 1 or 2), and assign flow
similarly for each arc yz with y € Y. It is easy to check that this is a legal s-¢ flow.
Since the flow value is equal to the number of edges in PC(T), which is mpc(T),

mpe(T) < f~.

Lemma 1 yields the following corollary.

COROLLARY 2 (to Theorem 2). If f* is the value of a maximum s-t flow in N (T),
then the path cover number of T is v — f* and the Hamiltonian completion number
of Tisv—1~—f"

The corollary yields an O(v?) algorithm for computing the Hamiltonian completion
number or path cover number, using the maximum-flow implementation of Ford and
Fulkerson [5], as described in Roberts [16]. The algorithm in fact constructs an
optimal path cover, and hence yields an optimal Hamiltonian completion.

The construction of N (T') can be extended easily to any bipartite graph G. However,
the construction of the set C given in the proof of Theorem 2 from a maximum flow in

SSince all the capacities are integers, such a flow exists (see, for example, Lawler [12, Theorem 2.2,

p. 113]); in fact, the Ford and Fulkerson labelling and scanning algorithm [5] produces an integral
maximum flow.
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FIGURE 7. (A) The network N (T) with an integral maximum flow of value 8: arcs with flow 2 are shown
as thick lines, those with flow 1 as thin lines, and those with flow 0 as dashed lines. (B) The corresponding
path cover in the tree T.

N (G) may not yield a path cover: instead, the construction gives a path-cycle cover, a
set of vertex-disjoint paths and cycles that cover the vertices of G. The same argument
in Theorem 2 yields the following result for bipartite graphs.

LEMMA 4. Let G be a bipartite graph with at least one edge and let f * be the value
of a maximum s-t flow in the network N (G). Then f* is also the maximum number of
edges in any path-cycle cover of G.

Using an argument similar to that used for Lemma 1, it is not hard to show the
following result.

LEMMA 5. The maximum number of edges in a path-cycle cover for any graph G
is v — k, where k is the minimum number of paths in any path-cycle cover.

Combining these two lemmas yields the following interesting result, which gives a
method for testing whether a bipartite graph has a covering of the vertices by disjoint
simple cycles (also called a 2-factor).

THEOREM 3. Let f * be the value of a maximum s-t flow in the network N (G) where
G is a bipartite graph with at least two vertices. Then G has a covering of the vertices
by disjoint simple cycles if and only if f* = v.
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