CLASSICAL SOLUTIONS IN QUANTUM FIELD THEORY

Classical solutions play an important role in quantum field theory, high energy physics, and cosmology. Real time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for the cosmology of the early universe. Imaginary time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states.

Written for advanced graduate students and researchers in elementary particle physics, cosmology, and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices, and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions. This title is also available as open access on Cambridge Core.

ERICK J. WEINBERG is a Professor of Physics in the Department of Physics, Columbia University. Since 1996 he has been Editor of *Physical Review D*. His research interests include the implications of solitons and instantons for high energy physics, cosmology, and black holes, as well as a variety of other topics in quantum field theory.

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

- S. J. Aarseth Gravitational N-Body Simulations: Tools and Algorithms
- J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
- A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics
- J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics †
- O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems[†]
- F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved Space
- V. Belinski and E. Verdaguer Gravitational Solitons
- J. Bernstein Kinetic Theory in the Expanding Universe
- G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
- N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space
- K. Bolejko, A. Krasiński, C. Hellaby and M-N. Célérier Structures in the Universe by Exact Methods: Formation, Evolution, Interactions
- D. M. Brink Semi-Classical Methods for Nucleus-Nucleus Scattering[†]
- M. Burgess Classical Covariant Fields
- E. A. Calzetta and B.-L. B. Hu Nonequilibrium Quantum Field Theory
- S. Carlip Quantum Gravity in 2+1 Dimensions
- P. Cartier and C. DeWitt-Morette Functional Integration: Action and Symmetries
- J. C. Collins Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion †
- P. D. B. Collins An Introduction to Regge Theory and High Energy Physics[†]
- M. Creutz Quarks, Gluons and Lattices
- P. D. D'Eath Supersymmetric Quantum Cosmology
- F. de Felice and D. Bini Classical Measurements in Curved Space-Times
- F. de Felice and C. J. S Clarke Relativity on Curved Manifolds
- B. DeWitt Supermanifolds, 2^{nd} edition[†]
- P. G. O Freund Introduction to Supersymmetry[†]
- F. G. Friedlander The Wave Equation on a Curved Space-Time[†]
- Y. Frishman and J. Sonnenschein Non-Perturbative Field Theory: From Two-Dimensional Conformal Field Theory to QCD in Four Dimensions
- J. A. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory †
- J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists †
- Y. Fujii and K. Maeda The Scalar-Tensor Theory of Gravitation
- J. A. H. Futterman, F. A. Handler, R. A. Matzner Scattering from Black Holes[†]
- A. S. Galperin, E. A. Ivanov, V. I. Orievetsky and E. S. Sokatchev Harmonic Superspace
- R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity
- T. Gannon Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics
- M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and $Gravity^{\dagger}$
- C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics
- M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 1: Introduction
- M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 2: Loop Amplitudes, Anomalies and Phenomenology †
- V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics
- J. B. Griffiths and J. Podolský Exact Space-Times in Einstein's General Relativity
- S. W. Hawking and G. F. R. Ellis The Large Scale Structure of Space-Time[†]
- F. Iachello and A. Arima The Interacting Boson Model
- F. Iachello and P. van Isacker $\it The\ Interacting\ Boson-Fermion\ Model$
- C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory[†]
- C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 2: Strong Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems[†]
- C. V. Johnson *D-Branes*[†]
- P. S. Joshi Gravitational Collapse and Spacetime Singularities
- J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd edition
- V. E. Korepin, N. M. Bogoliubov and A. G. Izergin $\it Quantum~Inverse~Scattering~Method~and~Correlation~Functions^\dagger$
- M. Le Bellac Thermal Field Theory[†]
- Y. Makeenko Methods of Contemporary Gauge Theory
- ${\bf N}.$ Manton and P. Sutcliffe Topological Solitons

- N. H. March Liquid Metals: Concepts and Theory
- I. Montvay and G. Münster Quantum Fields on a Lattice[†]
- L. O'Raifeartaigh Group Structure of Gauge Theories[†]
- T. Ortín Gravity and Strings[†]
- A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization[†]
- L. Parker and D. J. Toms Quantum Field Theory in Curved Spacetime: Quantized Fields and
- R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields[†]
- R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry[†]
- S. Pokorski Gauge Field Theories, 2nd edition[†]
- J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String
- J. Polchinski String Theory Volume 2: Superstring Theory and Beyond J. C. Polkinghorne Models of High Energy Processes[†]
- V. N. Popov Functional Integrals and Collective Excitations[†]
- L. V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
- R. J. Rivers Path Integral Methods in Quantum Field Theory
- R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering † C. Rovelli Quantum Gravity †
- W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems[†]
- R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
- M. Shifman and A. Yung Supersymmetric Solitons
- H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein's Field Equations, 2^{nd} edition[†]
- J. Stewart Advanced General Relativity[†]
- J. C. Taylor Gauge Theories of Weak Interactions[†]
- T. Thiemann Modern Canonical Quantum General Relativity
- D. J. Toms The Schwinger Action Principle and Effective Action
- A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects[†]
- R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory[†] E. J. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics
- J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

[†] Issued as a paperback

Classical Solutions in Quantum Field Theory

Solitons and Instantons in High Energy Physics

ERICK J. WEINBERG

Columbia University

CAMBRIDGEHINDERSTTY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

 $www.cambridge.org \\ Information on this title: www.cambridge.org/9780521114639$

 \odot E. J. Weinberg 2012

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781139017787 under a Creative Commons Open Access licence CC-BY-NC 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given and any changes made are indicated. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781139017787

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Weinberg, Erick J.

Classical solutions in quantum field theory : solitons and instantons in high energy physics / Erick J. Weinberg.

p. cm. – (Cambridge monographs on mathematical physics) Includes bibliographical references and index. ISBN 978-0-521-11463-9 (hardback)

1. Quantum theory – Mathematics. I. Title. $QC174.17.M35W45 \quad 2012$

530.12–dc23 2012015503

 $\begin{array}{c} {\rm ISBN~978\text{-}0\text{-}521\text{-}11463\text{-}9~Hardback} \\ {\rm ISBN~978\text{-}1\text{-}107\text{-}43805\text{-}7~Paperback} \end{array}$

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.