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Abstract

A new version of Erdos-Turan's inequality is described. The purpose of the present paper is to show
that the inequality provides better upper bounds for the discrepancies of some sequences than usual
Erdos-Turan's inequality.
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1. Introduction

Let {x} = x — [x] be the fractional part of x e K. For a subinterval E of the unit
interval U = [0, 1), the characteristic function of E is defined by XE(X) = 1 for
{x} 6 E and XE(X) = 0 otherwise. Let e{x) = e2irix for x <= R. Let co = (*„),
n = 1, 2, . . . , be an infinite sequence in K. For a positive integer N, the discrepancy
of the sequence co is defined by

(1) DN(co) = sup

Erdos-Turan's inequality is very useful to obtain an upper bound of the discrepancy
([2,3]). Baker and Harman gave a new version of Erdos-Turan's inequality for the
logarithmic discrepancy, which is defined by adapting the logarithmic mean instead
of the arithmetic mean to (1) [1, Lemma 1]. By using the techniques developed by
Baker and Harman [1, Lemma 1], we can analogously obtain Theorem 1, so we omit
the proof of Theorem 1.
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THEOREM 1. Let co = (xn) be a real sequence and let 0 < <5 < 1. Then there exists
a constant C(8) > 0 such that

(2)

where

N

F(N) =

\ sup
l<h<N' h"s<n<B

2l~s - T + 1 ) ^ forO<S<\,

+ logN

N
for 5 = 1.

2. Main results

The purpose of the present paper is to show that Theorem 1 provides better upper
bounds for the discrepancies of some sequences than usual Erdos-Turan's inequality.
The following is an analogue of Baker and Harman's theorem [1, Theorem 2].

THEOREM 2. Let f (x), x > 1, be a real-valued twice differentiate function such
that f"{x) ~2+( for some 0 < e < 1/2. Suppose that there are real numbers
1 = XQ < x\ < • • • < xH < oo such that f"(x) is of constant sign and monotone
in each of the intervals [XJ_UXJ] (J = 1 , . . . , / / ) and [xH, oo). Then the sequence
co = (f («)) satisfies

(3) DN(co)
1

PROOF. We use van der Corput's method for bounding exponential sums. Let
1 < A < xH < B. There exists an integer 1 < k < H such that xk-\ < A < xk. Let
j el with k < j < H and let h e 1 with h >\. Suppose that f"{x) < 0 in the
interval [xj,xj+i]. Let hf'(xj+1) = a, hf'(xj) = p. Applying [5, Lemma 4.7], we
have

(4) e(hf(n)) f
a-l/2<v<0+l/2''xj

- vx)dx + OOog(j8 - ct + 2)).

By [5, Lemma 4.4] we get

(5) e(hf OO - vx)dx
1/2'
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Since /"(•*) <£ x~2+(, we have

(6) 0 -a «; Al~xh.

From (4), (5) and (6) we get

53

(7)

The inequality (7) holds also for the interval [A, xk]. Similarly, we can obtain the
same estimate even if f"{x) > 0 in the interval [XJ ,xj+l].

On the other hand, since \f "(x)\ is monotone decreasing on [xH, B], in like manner
we have also

(8)
H <fl<B

From (7) and (8) it follows that

(9)
A<n<B min

In the same way we obtain

(10)
A<n<B

min
J ^U,... , /

Now, we set

-1/2

+ log /i if A < JCH and B < xH,

log/i if x// < A

h h'"B<

52 = r S U P e{hf(n))
h'ls<n<B

where it is assumed that xH < N.
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First we consider Si. From (9) and (10) it follows that

\ - 1 f
S\ — > — max { sup , sup

xH<B<N

min \f"(Xj
=0 H

 u J

(ID « + 1.

Furthermore, from (10) we have

(12)
1

0ogA02,|/"(W)|>/2

according to 0 < € < 1/2. From (11) and (12) we infer

(13)
1
7 SUP

1

l<h<N> " *""<«<« hi/i<n<B

and (13) holds even if N < xH. By (13) and Theorem 1 we have

1 (logAO2

(14)

where

W'(A0l1/2 N

F(N) «
-sN

logN
N

forO < 5 < 1,

for 8 = 1.

Since f"(N) «; N~2+(, by choosing 8 = e/2, the desired result follows.

[4]

•
REMARK 1. Suppose that/(jc) satisfies the conditions of Theorem 2. By (9) we

have

(15)
~"(N)\V2

Applying usual Erdos-Turan's inequality together with (15), for any positive integer
m we obtain

(16) m
1'21

m N\f"(N)\1'2'
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Choosing m = [tf2/3|/"(AOI1/3L from (16) we have
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UN'2 « |/"(A0|, then the upper bound of (3) is smaller than that of (17).

As the examples of functions f (x) satisfying the conditions of Theorem 2, we
consider/ (x) = ax+P(logx)a,a, P e IRwith/3 ^O,cr > l ,and/(x) = ax+Pxa,
a, 0 € R with P ^ 0, 0 < a < 1/2. Then we have the following.

COROLLARY 1. The discrepancy of the sequence co = (an + P(logn)a) with real
numbers a, P with P ^ 0 and a > 1 satisfies

COROLLARY 2. The discrepancy of the sequence co = (an+Pna) with real numbers
a, p with P ^ 0 and 0 < a < 1/2 satisfies

DN(co) « N-"11.

The following is another application of Theorem 1.

THEOREM 3. If a is an irrational number of finite type rj > 1 and P is a nonzero
real number, then for any s > 0 the discrepancy ofco = (an + P log n) satisfies

(18) DN(co)

PROOF. We also use van der Corput's method for bounding exponential sums. Let
g(x) = ax + piogx and let 1 < A < B. Applying integration by parts, for integers
v and h > 1 we have

e(hg(x) - vx)dx « — -
A \ha — v|

(19) /
JA

Since [1, Lemma 2] implies

I -e(hg(x)~vx)dx
JA x

(19) yields

(20)

-e(hg(x) - vx)dx

/ e(hg(x) - vx)dx « —- ,
JA II Ml
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where ||JC|| = min{|x — n\ : n € Z} for* € R. By using [5, Lemma 4.7], from (20)
we obtain

(21)

Let 0 < 8 < 1. Then from (21) it follows that

(22) T y sup V e(hg(n))

By using (22) with the following analogue of [3, Lemma 3.3]: for every # > 0

(23) * ' l

Theorem 1 implies

(24) DN(co)«F(N)

By choosing 8 = (r) + l/2)~\ the desired result follows. D

REMARK 2. By applying usual Erdos-Turan's inequality, Tichy and Turnwald [4,
p. 357] showed that DN((o) « N-l/(r>+l)+e.

In the same way as in the proof of Theorem 3, we obtain the following.

THEOREM 4. If a is an irrational number of constant type and fi is a nonzero real
number, then the discrepancy ofco = (an + /S logn) satisfies

DN(co) «Ar2/3logN.
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