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Abstract. In this paper, we follow and extend a group-theoretic method introduced
by Greenleaf–Iosevich–Liu–Palsson (GILP) to study finite points configurations spanned
by Borel sets in Rn, n ≥ 2, n ∈ N. We remove a technical continuity condition in a GILP’s
theorem in [Revista Mat. Iberoamer 31 (2015), 799–810]. This allows us to extend the
Wolff–Erdogan dimension bound for distance sets to finite points configurations with k
points for k ∈ {2, . . . , n + 1} forming a (k − 1)-simplex.
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1. Introduction. This paper is a self-contained sequel of [18] on dimension result
for triangle sets and more generally on higher order finite points configurations. Let n ≥ 2
and k ∈ {2, . . . , n + 1} be integers. In this paper, we study k points configurations spanned
by a subset F ⊂ Rn. We start with some definitions.

DEFINITION 1.1. Let n ≥ 2 and 2 ≤ k ≤ n + 1 be integers. Given a set F ⊂ Rn, define

�k(F)= {(rij, 1 ≤ i< j ≤ k) ∈ Rk(k−1)/2 : x1, . . . , xk ∈ F, |xi − xj| = rij, 1 ≤ i< j ≤ k}.
A special case is when k = 2. In this case, we write D(F)=�2(F) and call it the

distance set of F. If F is a finite set in R2, by a result in [10] we have

#D(F) >∼ #F/ log #F.

Here for a set A, we use #A to denote the cardinality of A. The above result settled the
challenging Erdős distance conjecture. For F being a compact set with positive Hausdorff
dimension, we are interested in whether D(F) has full Hausdorff dimension or ever positive
Lebesgue measure. In this direction, we have the following conjecture.

CONJECTURE (Falconer’s distance conjecture). Let n ≥ 2 be an integer. Let F ⊂ Rn be
a compact set with dimH F > n/2. Then, D(F) has positive Lebesgue measure.

See [9, 11, 14, 15] for some recent progresses towards the above conjecture for n = 2.
For n ≥ 3, see [1] and [2].

A natural generalisation of the distance set problem is to consider finite points config-
urations with more than two points, see [7] and the references therein. When n = 2, k = 3,
we meet the problems considering ‘triangle sets in the plane’, see [18]. In particular, if
dimH F = s ∈ (0, 2), one can show that the lower box dimension of �3(F) is at least 3s/2.
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Unlike most of the results which follow from harmonic analytic methods, this 3s/2 bound
holds for s< 1 as well. For distance sets (k = 2, n ≥ 2), one can obtain a similar result
which says that the upper box dimension of D(F) is at least s/n. We note here that the s/n
bound is often strict, see [6].

Following the approach in [7], we make the following definition.

DEFINITION 1.2. Let F ⊂ Rn be a compact set and let μ be a probability measure
supported on F. For g ∈ O(n), the orthogonal group on Rn, we construct a measure νg as
follows, ∫

Rn

f (z)dνg(z)=
∫

F

∫
F

f (u − gv)dμ(u)dμ(v),∀f ∈ C0(R
n),

here C0(R
n) is the space of continuous functions with compact support on Rn. In other

words, νg =μ ∗ gμ. We also construct a measure ν on�k(F)⊂ Rk(k−1)/2 by∫
f (t)dν(t)=

∫
f (|x1 − x2|, . . . , |xi − xj|, . . . , |xk−1 − xk |)dμ(x1) . . . dμ(xk),

∀f ∈ C0(R
k(k−1)/2),

where t is a k(k − 1)/2-vector with entries |xi − xj| for 1 ≤ i< j ≤ k.

In this way, we see that ν is ‘the natural measure’ supported on �k(F). In particular,
we have dimH ν ≤ dimH �k(F). We will introduce some notions of dimensions in the fol-
lowing section. Notice that our definitions are slightly different than those in [7]. Here, we
use k to denote the number of vertices of the ‘simplex structures’ we want to count in F
while in [7], k is the order of the simplices. For example, when k = 2, our definition gives
distance sets while the definitions in [7] gives triangle sets.

In this paper, we prove the following result which extends [7, Theorem 1.3]. The L2

function part was essentially proved in [7] with an additional condition that νg needs to
be absolutely continuous with respect to the Lebesgue measure for almost all g ∈ O(n). In
what follows, see Section 3.2 for the definition of Frostman’s measures.

THEOREM 1.3. Let μ be a s-Frostman measure with compact support on Rn. Let
k ∈ {2, . . . , n + 1} be an integer and νg, ν be as in Definition 1.2. We write ν̂ for the Fourier
transform of ν. Then for each ε > 0, there are constants C,Cε > 0 such that for all δ > 0
we have ∫

B
δ−1 (0)

|ν̂(ω)|2dω≤ Cδ−n(k−1)
∫ ∫

νk−1
g (B2.5δ(z))dνg(z)dg

≤ Cε max{δ−((n−s)(k−1)−γs+ε), 1}.
If −((n − s)(k − 1)− γs + ε) > 0, then ν can be viewed as an L2 function. Here, γs can be
chosen as follows:

γs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s s ∈ (0, (n − 1)/2];
(n − 1)/2 s ∈ [(n − 1)/2, n/2];
(n + 2s − 2)/4 s ∈ [n/2, (n + 2)/2];
s − 1 s ∈ [(n + 2)/2, n).

The above result generalises [7, Theorem 1.3] in two ways. First, it provides us a good
estimate of the growth of ‖νδ‖2

2 with respect to δ→ 0, which in turn allows us to estimate
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the Hausdorff dimension of �k(F). Here, νδ represents a δ-scale smooth approximation
of the measure ν. More precisely, it is ν ∗ φδ where ψδ = δ−k(k−1)/2φ(./δ) for a smooth
cut-off function φ on Rk(k−1)/2. See Section 2 for more details. Second, we can drop the
technical continuity condition mentioned above. In this way, the above theorem can be
seen as an alternative approach to the dimension results of distance sets discussed in [13,
Chapter 15]. We record the Hausdorff dimension estimate as a corollary.

COROLLARY 1.4. Let F ⊂ Rn, n ≥ 2, n ∈ N be a compact set with dimH F = s. Then
for each k ∈ {2, . . . , n + 1}, we have

dimH �k(F)≥ min

{
k(k − 1)

2
− n(k − 1)+ s(k − 1)+ γs,

k(k − 1)

2

}
,

where γs is the same quantity as in the statement of Theorem 1.3.

We will prove the above result in Section 4.2. For example, when k = 3, n = 2 we have

dimH �3(F)≥

⎧⎪⎨
⎪⎩

3s − 1 s ∈ [1/3, 1/2];
2s − 0.5 s ∈ [1/2, 1];
min{2.5s − 1, 3} s ∈ [1, 2].

If 2.5s − 1> 3, that is, s> 8/5, then �3(F) would have positive Lebesgue measure. This
is a result proved in [7].

We have another consequence from Theorem 1.3. We can cover Rn with closed δ-cubes
Kδ with disjoint interiors. For each K ∈Kδ , we use 2K to denote the 2δ-cube with the same
centre as K. Observe that∫

νk−1
g (Bδ(z))νg(Bδ(z))dz ≤

∑
K∈Kδ

∫
K
νk

g(Bδ(z))dz

≤
∑

K∈Kδ

δ−n sup
z∗∈K

νk
g(Bδ(z∗))

≤ δ−n
∑

K∈Kδ

∫
2K
νk−1

g (B2
√

nδ(z))dνg(z).

Since {2K}K∈Kδ
covers Rn with maximal multiplicity 2n+1, we see that∫
νk−1

g (Bδ(z))νg(Bδ(z))dz ≤ δ−n2n+1
∫
νk−1

g (B2
√

nδ(z))dνg(z).

By Theorem 1.3 and the argument above, we see that if (n − s)(k − 1)− γs < 0,

δ−kn

∫ ∫
νk

g(Bδ(z))dzdg<∼ 1.

From here, we deduce the following corollary.

COROLLARY 1.5. Let μ be a s-Frostman measure with compact support on Rn. Let
k ∈ {2, . . . , n + 1} be an integer and νg, ν be as in Definition 1.2. If −((n − s)(k − 1)−
γs) > 0, then for almost all g ∈ O(n), νg is an Lk(Rn) function. In particular, for such
g ∈ O(n), νg is absolutely continuous with respect to the Lebesgue measure. Here γs can
be chosen as in Theorem 1.3.

https://doi.org/10.1017/S0017089520000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089520000373


550 HAN YU

If s = n, then νg is an L∞-function for almost all g ∈ O(n). For k = 2, we see that the
positivity criterion happens when

s>
n

2
+ 1

3
. (1.1)

This recovers a result stated at the end of [13, Section 15.5]. In Section 7, we give
some sketched discussions in this situation. In [13, Section 7.3], it was asked whether
the following conjecture is true.

CONJECTURE 1.6. Letμ be a s-Frostman measure with compact support on Rn. If s>
n/2 then for almost all g ∈ O(n), νg is absolutely continuous with respect to the Lebesgue
measure.

Now there are better results than (1.1), see [9] and the references therein for more
details.

2. Notation. 1. Let f be a function on Rn, we write f̂ for its Fourier transform,

f̂ (ω)=
∫

f (x)e−2π i(ω,x)dx,

where ω ∈ Rn and (ω, x) is the Euclidean inner product between ω and x. Let μ be a
probability measure on Rn we also write μ̂ for its Fourier transform,

μ̂(ω)=
∫

e−2π i(ω,x)dμ(x).

2. For each integer n ≥ 1, we will often need to find a smooth cut-off function φn on
Rn. More precisely, we define φ to be 1 on the unit ball and 0 outside the ball of radius 2
centred at the origin. Then, we can smoothly construct this function φn. Let δ > 0 we write
φδ,n to be the function

x ∈ Rn → δ−nφn(xδ
−1).

Throughout this paper, when the ambient space of ψn is clear, we will just write it as φ. Let
f be a function on Rn we write fδ = f ∗ φδ. Similarly for a measureμ, we writeμδ =μ ∗ φδ.

3. It is convenient to introduce notions ≈, <∼, >∼ for approximately equal, approxi-
mately smaller and approximately larger. As our estimates always involve scales, we use
1> δ > 0 to denote a particular scale. Then for two quantities f (δ), g(δ), we define the
following:

f <∼ g ⇐⇒ ∃M > 0, ∀δ > 0, f (δ)≤ Mg(δ).

f >∼ g ⇐⇒ g<∼ f .

f ≈ g ⇐⇒ f <∼ g and g<∼ f .

We will use the same symbols for scales tending to ∞ as well. More precisely, for R ∈
(0,∞), and quantities f (R), g(R), we write

f (R) <∼ g(R)

if there is a constant C > 0 such that f (R)≤ Cg(R) for all R> 0. Similar meanings can be
given to symbols>∼ and ≈ .
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3. Preliminaries.

3.1. Hausdorff dimension for sets. Let n ≥ 1 be an integer. Let F ⊂ Rn be a Borel
set. For any s ∈ R+ and δ > 0, define the following quantity

Hs
δ(F)= inf

{ ∞∑
i=1

(diam(Ui))
s :

⋃
i

Ui ⊃ F, ∀i ≥ 1,Ui ⊂ Rn, diam(Ui) < δ

}
.

The s-Hausdorff measure of F is

Hs(F)= lim
δ→0

Hs
δ(F).

The Hausdorff dimension of F is

dimH F = inf{s ≥ 0 :Hs(F)= 0} = sup{s ≥ 0 :Hs(F)= ∞}.
More details about the Hausdorff dimension can be found in [5] and [12].

3.2. Frostman’s measure. It is known (e.g., see [13, Theorme 2.7]) that if F is a
Borel subset of Rn with dimH F = s, then for any ε > 0 there is a measure μ supported in
F such that for all x ∈ F and r> 0 we have μ(B(x, r))≤ rs−ε . Such a measure μ is usually
called a (s − ε)-Frostman measure.

3.3. Energy integrals and Hausdorff dimension for measures. Let μ ∈P(Rn),

the space of Borel probability measures on Rn. For each positive number t> 0, we define
the t-energy of μ to be

It(μ)=
∫ ∫

dμ(x)dμ(y)

|x − y|t .

Through Fourier transform, it can be shown that

It(μ)= γ (n, s)

∫
|μ̂(ω)|2|ω|t−ndω,

where γ (n, s)= π s−n/2�((n − s)/2)/�(s/2) and when s ∈ (0, n) we have γ (n, s) ∈
(0,∞), see [13, Sections 3.4 and 3.5]. We define the Hausdorff dimension of μ as follows:

dimH μ= sup{t> 0 : It(μ) <∞}.
Let F ⊂ Rn be a Borel set, then we have

dimH F = sup{t> 0 : ∃μ ∈P(F), It(μ) <∞}.
This implies that if μ ∈P(F), we have dimH μ≤ dimH F.

3.4. Spherical averages and Wolff–Erdogan’s estimate. Let μ ∈P(Rn). We
define the following spherical average for μ̂,

S(μ, R)=
∫

Sn−1

|μ̂(Rσ)|2dσ,

where dσ is the normalised Lebesgue measure on Sn−1. We have the following deep result
on the decay rate of S(μ, R) as R → ∞, see [4, 17]. The following version is taken from
[13, Theorem 15.7].
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THEOREM 3.1 (Wolff–Erdogan estimate). Let μ ∈P(Rn) with compact support, for
each s ≥ n/2, ε > 0, there is a positive constant C(n, s, ε) and for all R> 0, we have

S(μ, R)≤ C(n, s, ε)Rε−γs Is(μ).

Here γs can be chosen as follows:

γs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s s ∈ (0, (n − 1)/2];
(n − 1)/2 s ∈ [(n − 1)/2, n/2];
(n + 2s − 2)/4 s ∈ [n/2, (n + 2)/2];
s − 1 s ∈ [(n + 2)/2, n).

Thus, if dimH μ> s, then we see that Is(μ) <∞ and S(μ, R) <∼ R−γs .

3.5. Orthogonal group, Haar measure. For each integer n ≥ 2, we denote O(n)
the orthogonal group of order n over R. It can be represented by n × n real matrices A
with AT A = I . O(n) is a real compact Lie group of algebraic dimension n(n − 1)/2. We
associate O(n) with the normalised Haar measure and we often write∫

dg

instead of ∫
O(n)

dg

for simplicity.

3.6. Group-theoretic energy. Let n ≥ 2 be an integer and k ∈ {2, . . . , n + 1}. Let
μ ∈P(Rn). For each δ > 0, g ∈ O(n), we define k-group-theoretic energy for μ at scale δ
with respect to g to be

Ek(μ, g, δ)=μ2k{(x1, . . . , xk, y1, . . . , yk) ∈ R2kn : |(xi − gyi)− (xj − gyj)| ≤ δ}.
Often, we can write E(μ, g, δ) for Ek(μ, g, δ) as the dependence on k will be always
assumed. If A ⊂ Rn is a finite set and μ is the normalised counting measure on A. Let
k = 2, δ= 0, we see that

E(μ, g, 0)=μ4{(x1, x2, y1, y2) ∈ A4 : x1 − x2 = g(y1 − y2)},
which counts the number of quadruples (x1, x2, y1, y2) of A such that x1 − x2 = g(y1 − y2).

This idea was introduced in [3] and it played a crucial role in Guth–Katz’s proof of Erdős’
distance problem, see [10] and [8, Section 9].

4. An L2 approach to the Hausdorff dimension.

4.1. Some general results. In this section, we discuss a simple method for estimat-
ing the Hausdorff dimension of a compactly supported Borel probability measure μ in
P(Rn). We denote its Fourier transform as μ̂. It is a continuous function as μ is compactly
supported. In general it is not L2, for otherwise μ is in fact an L2 function. To measure how
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far away it is from being L2, we take the following ball average, see also [13, Section 3.8],

A(μ, R)=
∫

BR(0)
|μ̂(ω)|2dω.

If limR→∞ A(μ, R) <∞, then μ can be viewed as an L2 function. In general, we expect
that A(μ, R) tends to ∞ at a certain speed. If there is a constant C> 0 and a number s> 0
such that

A(μ, R)≤ CRs

for all R> 0, then we see that for t ∈ (0, n)

It(μ)=
∫

|μ̂(ω)|2|ω|t−ndω=
∫

|ω|≤1
|μ̂(ω)|2|ω|t−ndω+

∑
j≥0

∫
2j≤|ω|≤2j+1

|μ̂(ω)|2|ω|t−ndω.

Since μ is a probability measure, μ̂ is bounded on unit ball. Therefore, we see that∫
|ω|≤1

|μ̂(ω)|2|ω|t−ndω<∞.

For each j ≥ 0, we have∫
2j≤|ω|≤2j+1

|μ̂(ω)|2|ω|t−ndω≤ A(μ, 2j+1)2j(t−n) ≤ C2(j+1)s2j(t−n) = C2s2j(s+t−n).

If s + t − n< 0, the sum with respect to j converges and we have

It(μ) <∞.

Therefore, dimH μ≥ t whenever t< n − s. This implies that

dimH μ≥ n − s. (4.1)

In order to study this L2 phenomena more systematically, we introduce the following
notion of dimension,

dimL2 μ= n − lim sup
R→∞

log A(μ, R)

log R
.

There are several other ways of doing this L2 approach. For example, we can define

A(μ, R, h)=
∫

B(0,R)
|μ̂(ω)|2h(ω)dω

for a weight function h on Rn. For example, if we choose h(ω)= |ω|−t for a number t ≥ 0
we see that

A(μ, R, h)≤ A(μ, 1, h)+
∑
j≥0

∫
|ω|∈[2j,2j+1]

|μ̂(ω)|2|ω|−tdω≤ A(μ, 1, h)

+
∑

j≥0,2j≤2R

2−jtA(μ, 2j+1).
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Thus, if A(μ, 2j) <∼ 2uj then we see that∑
j≥0,2j≤2R

2−jtA(μ, 2j+1) <∼
∑

j≥0,2j≤2R

2−jt2ju <∼ Ru−t

if u − t> 0 or else the above sum is bounded uniformly for all R. In terms of the L2-
dimension, we see that if dimL2 μ> n − t then

sup
R

A(μ, R, h) <∞,

otherwise

A(μ, R, h) <∼ Rn−dimL2 μ−t.

In general, A(μ, R, |.|−t) could have a smaller growth exponent. It is interesting to find
the infimum among all possible values s such that

A(μ, R, |.|−t) <∼ Rs

holds for all R> 0. More precisely, we consider the following quantity

dimL2,t μ= n − t − lim sup
log A(μ, R, |.|−1)

log R
.

For t ≥ 0, we have

dimL2,t μ≤ dimL2 μ. (4.2)

In general, it is possible that the above inequality is strict.
By collecting the results (4.1) and (4.2), we have shown the following result.

THEOREM 4.1. Let n ≥ 1 be an integer and μ ∈P(Rn) be a Borel probaility measure.
Then, we have

dimH μ≥ dimL2 μ.

The function t ≥ 0 → dimL2,t μ is non-increasing and bounded from above by dimL2 μ.

In most cases, it is difficult to estimate A(μ, R) directly. A useful method is to consider
the L2-norm of μδ =μ ∗ φδ. Notice that μδ is a Schwartz function taking non-negative
values. Since μ̂δ = μ̂φ̂δ and φ̂δ decays very fast outside the ball Bδ−1(0), we see that

A(μ, δ−1) <∼ ‖μδ‖2
2 =

∫
μ2
δ(x)dx,

where the implicit constant in <∼ depends only on the choice of the cut-off function φ.

4.2. Wolff–Erdogan bound for finite points configurations: Proof of Corollary 1.4.
Before we prove Theorem 1.3, let us see how to obtain a Hausdorff dimension estimate.
Let F ⊂ Rn and dimH F = s. Then, we can choose (s − ε)-Frostman measure on F for each
ε > 0. Then by Theorem 1.3 together with the discussions above, we see that

dimH �k(F)≥ k(k − 1)

2
− (n − s)(k − 1)+ γs,
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provided that the RHS is not greater than k(k − 1)/2, otherwise, �k(F) has positive
Lebesgue measure. For k = 2, this result revisits the Wolff–Erdogan–Mattila’s bound for
the Hausdorff dimension of distance set.

5. GILP’s lemma and an energy integral estimate. First, we introduce a lemma
obtained in [7].

LEMMA 5.1. Let n ≥ 2 and k ∈ {2, . . . , n + 1} be integers. Let μ ∈P([0, 1]n) and
νg, ν as defined before. Then there is a constant C > 0 and we have for all δ > 0∫

ν2
δ (z)dz ≤ Cδ−n(k−1)

∫
E(μ, g, δ)dg,

where νδ = ν ∗ φδ is the smoothed version of ν with scale δ > 0 and E(μ, g, δ) is the group-
theoretic energy of μ with scale δ > 0.

Proof. A proof can be found in [7, Section 2].

LEMMA 5.2. Let n ≥ 2 and k ∈ {2, . . . , n + 1} be integers. Let μ ∈P[0, 1]n and νg, ν

as defined before. Then for each δ > 0, g ∈ O(n), we have

E(μ, g, δ)≤
∫
νk−1

g (B2.5δ(z))dνg(z).

Proof. By putting in definitions, we see that the statement of this lemma is equiva-
lent to

μ2k{(x1, . . . , xk, y1, . . . , yk) ∈ R2kn : |(xi − gyi)− (xj − gyj)| ≤ δ, 1 ≤ i< j ≤ k}

≤
∫
νk−1

g (B2δ(z))dνg(z).

To prove this, let x1, . . . , xk−1, y1, . . . , yk−1 be fixed, consider the following section

{(xk, yk) : |(xi − gyi)− (xj − gyj)| ≤ δ, 1 ≤ i< j ≤ k}.
It is easy to see that the above section is contained in

E = {(xk, yk) : |(xk − gyk)− (x1 − gy1)| ≤ δ}.
We see that the μ2k measure is now bounded from above by

μ2(k−1){(x1, . . . , xk−1, y1, . . . , yk−1) ∈ R2(k−1)n : |(xi − gyi)− (xj − gyj)| ≤ δ, 1 ≤ i< j

≤ k − 1} ×
∫

1E(xk, yk)dμ(xk)dμ(yk).

Observe that 1E(xk, yk)= f (xk − gyk) for f : z ∈ Rn → f (z)= 1{a:|a−(x1−gy1)|≤δ}(z). By the
definition of νg, we see that∫

1E(xk, yk)dμ(xk)dμ(yk)≤ νg(B2δ(x1 − gy1)).

If νg does not give positive measure on any spheres, then we would get∫
1E(xk, yk)dμ(xk)dμ(yk)= νg(Bδ(x1 − gy1)).
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However, we do not assume this continuity of νg and we only have an upper bound. We can
do the above step k − 1 times and by Fubini’s theorem we see that

μ2k{(x1, . . . , xk, y1, . . . , yk) ∈ R2kn : |(xi − gyi)− (xj − gyj)| ≤ δ, 1 ≤ i< j ≤ k}

≤
∫
νk−1

g (B2δ(x1 − gy1))dμ(x1)dμ(y1)≤
∫
νk−1

g (B2.5δ(z))dνg(z).

If νg(B2δ(.)) would be continuous, then we would have∫
νk−1

g (B2δ(x1 − gy1))dμ(x1)dμ(y1)=
∫
νk−1

g (B2δ(z))dνg(z).

In general, we choose a continuous function sandwiched by νg(B2δ(.)) and νg(B2.5δ(.)) (by
taking convolution with a suitable smooth cut-off function), and then apply the definition
of νg to arrive at the above inequality.

6. The main result. In this section, we give a detailed proof of Theorem 1.3. We
note that in [7], a proof is given under the condition that νg is absolutely continuous for
almost all g ∈ O(n). In [18], a sketched proof is given for the case when k = 3 and we note
that the same strategy works for general cases k ≥ 2 as well and here we will provide more
details.

Proof of Theorem 1.3. By Lemmas 5.1 and 5.2, we see that as δ→ 0,∫
ν2
δ (z)dz ≤ Cδ−n(k−1)

∫ ∫
νk−1

g (B2.5δ(z))dνgdg,

where C > 0 is a constant. The situation would be simple if νg(B2.5δ(z)) would be con-
tinuous with respect to z. However, we cannot assume this continuity condition. To deal
with this issue, let φDD(.) be a radial Schwartz function such that φ̂DD is real-valued, non-
negative, vanishes outside the ball of radius 0.5c′′> 0 around the origin and is equal to a
positive number c> 0 on a ball of radius c′> 0 around the origin. Now we take the square
φD = (φDD)2 and see that

φ̂D = φ̂DD ∗ φ̂DD.

We see that φ̂D is radial, real-valued, non-negative, vanishes outside the ball of radius c′′
around the origin. Unlike φ̂DD, φ̂D is no longer a constant function on any ball centred
at the origin. By further rescaling if necessary, we may assume that φD(x)≥ 1 for x ∈
B2.5(0). This can be done because φD is real-valued, Schwartz and φD(0) > 0. Since φ̂D is
compactly supported, we can denote c′′′ = ‖φ̂D‖∞. Then we write hg,δ = νg ∗ φD(δ−1.).We
see that

νg(B2.5δ(z))=
∫

B2.5δ(z)
dνg(x)≤

∫
φD((z − x)/δ)dνg(x)= hg,δ(z).

Now we write fg,δ(.)= δ−nhg,δ(.), as a result we see that∫
ν2
δ (z)dz<∼

∫ ∫
f k−1
g,δ (z)dνg(z)dg.

Let ψ be a smooth cut-off function supported in {ω ∈ Rn : |ω| ∈ [0.5, 4]} and iden-
tically equal to 1 in {ω ∈ Rn : |ω| ∈ [1, 2]}. We can also require that

∑
j∈Z ψ(2

−jω)= 1
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and this is the starting point of the Littlewood–Paley decomposition. Let fg,δ,j, νg,j be the

j-th Littlewood–Paley piece of fg,δ, νg, respectively, namely, f̂g,δ,j(ω)= f̂g,δ(ω)ψ(2−jω) and
similarly for νg,j. We need to bound ‖fg,δ,j‖∞ as well as ‖νg,j‖∞. The later can be bounded
by C′2j(n−s) for any s< dimH F with a constant C′ depending on the function ψ . This was
shown in [7, p. 805]. For the former, we will be interested in estimating ‖fg,δ,j‖∞ when 2j is
not as large as δ−1. In this case, recall that fg,δ = νg ∗ φD

δ and in terms of Fourier transform
we have

f̂g,δ,j = ν̂gφ̂
D
δ ψ(2

−j.)

Recall that φD
δ (.)= δ−nφD(./δ), therefore we have φ̂D

δ (.)= φ̂D(δ.). Then we see that

‖fg,δ,j‖∞ ≤ ‖f̂g,δ,j‖1

≤ c′′′
∫

|ν̂g(ω)ψ(2
−jω)|dω

≤ c′′′
∫

B2j+2 (0)
|μ̂(ω)μ̂(gω)|dω

≤ c′′′
√∫

B2j+2 (0)
|μ̂(ω)|2dω

∫
B2j+2 (0)

|μ̂(gω)|2dω.

By the discussion in [13, Section 3.8], we see that∫
B2j+1 (0)

|μ̂(ω)|2dω<∼ 2(j+2)(n−s).

The same estimate holds for
∫

B2j+2 (0)
|μ̂(gω)|2dω as well. Therefore, we see that

‖fg,δ,j‖∞ ≤ C′2j(n−s)

where C′ > 0 is a constant which does not depend on g, j, δ. Observe that if 2j−1 > c′′δ−1,
then fg,δ,j = 0 and this is the reason for considering 2j to be not much larger than δ−1. Thus,
we have obtained a complete estimate for ‖fg,δ,j‖∞.

In what follows, we want to estimate the following integral:∫
f k−1
g,δ (z)dνg(z). (6.1)

We want to apply the argument in [7, Section 3] and we provide details depending on
whether k = 2 or k ≥ 3. We note here that the argument in [7, Section 3] works only for
k ≥ 3 but we shall extend it to the case when k = 2.

6.1. Case k = 2. In this situation, the equation (6.1) can be written as∫
fg,δdνg.

We can apply [13, Formula (3.27)] and as a result we see that∫
fg,δ(z)dνg(z)=

∫
ν̂g(ω)f̂ g,δ(ω)dω.
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We note here that f̂ g,δ(ω)= f̂g,δ(−ω). Therefore, we see that

∫ ∫
fg,δ(z)dνg(z)dg =

∑
j∈Z

∫ ∫
f̂g,δ (−ω)ν̂g(ω)ψ(2

−jω)dωdg.

Recall that fg,δ = νg ∗ φD
δ , we see that

f̂g,δ = ν̂gφ̂
D
δ .

Then since νg =μ ∗ gμ, we see that

ν̂g(ω)= μ̂(ω)μ̂(gω).

As a result, we see that∫ ∫
f̂g,δ(−ω)ν̂g(ω)ψ(2

−jω)dωdg =
∫ ∫

|μ̂(ω)|2|μ̂(gω)|2φ̂D
δ (ω)ψ(2

−jω)dωdg.

Observe that φ̂D
δ is a cut-off function at scale δ−1.More precisely, for |ω|> c′′δ−1, we have

φ̂D
δ (ω)= 0.

By integrating first with respect to dg and then dω, we see that∫ ∫
|μ̂(ω)|2|μ̂(gω)|2φ̂D

δ (ω)ψ(2
−jω)dωdg

= C(n)

∫ (∫
Sn−1

|μ̂(tσ)|2dσ

)2

ψ(2−jt)φ̂D
δ (t)t

n−1dt, (6.2)

where dσ is the Lebesgue probability measure on Sn−1. We write φ̂D
δ (t)= φ̂D

δ (ω) for |ω| = t
and similarly for ψ(2−jt). Since ψ and φD

δ are radial functions, the above step is well
defined. The constant C(n) is a positive number which depends only on n.

We need to sum (6.2) over j ∈ Z. Because of the cut-off property of φD
δ , we only need

to consider the sum up to
∑

j:2j≤2c′′δ−1 . More precisely, there is a positive constant C′′ > 0
and we have∫ ∫

fg,δ(z)dνg(z)dg ≤ C′′ ∑
j:2j≤2c′′δ−1

∫ (∫
Sn−1

|μ̂(tσ)|2dσ

)2

ψ(2−jt)tn−1dt.

In fact when 2j > 2c′′δ−1, thenψ(2−jω)φ̂D
δ (ω)= 0. Therefore, we do not need to sum larger

values of j. This is because we can choose a special cut-off function φD whose Fourier
transform is compactly supported. This makes φD not compactly supported but we do not
need this. We still need to sum negative values of j but as μ is a probability measure
we have

∑
j≤0

∫ (∫
Sn−1

|μ̂(tσ)|2dσ

)2

ψ(2−jt)tn−1dt ≤ C′′′
∫

[0,2]
tn−1dt<∞,
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for a positive constant C′′′ > 0. We can use Theorem 3.1 (Wolff–Erdogan). For all ε > 0,
there is a constant Cε > 0 such that for each t> 0 we have∫

Sn−1

|μ̂(tσ)|2dσ ≤ Cε t
−γs+ε .

We can insert one of the factors
∫ |μ̂(tσ)|2dσ into (6.2) and we see that for each ε > 0,

∫ (∫
Sn−1

|μ̂(tσ)|2dσ

)2

ψ(2−jt)tn−1dt<∼
∫ 2j+2

2j−1

(∫
|μ̂(tσ)|2dσ

)
tn−1t−γs+εdt.

Then we see that

∑
j:1≤2j≤2c′′δ−1

∫ (∫
Sn−1

|μ̂(tσ)|2dσ

)2

ψ(2−jt)tn−1dt<∼
∫ 4c′′δ−1

0

(∫
|μ̂(tσ)|2dσ

)
tn−1t−γs+εdt.

Up to a multiple constant, the RHS above is equal to∫
|ω|≤4c′′δ−1

|μ̂(ω)|2|ω|−γs+εdω.

If In−γs−ε(μ) <∞, then the above integral is bounded uniformly for δ→ 0, in this case
D(F) would have positive Lebesgue measure. Therefore, we consider the case when
n − γs − s + ε > 0. By the discussions in Section 4, we see that∫

|ω|≤4c′′δ−1

|μ̂(ω)|2|ω|−γs+εdω<∼ δ− dimL2 ,γs+ε μ ≤ δ−(n−γs−s+ε).

For the rightmost inequality, we need the fact that μ is an s-Frostman measure. Thus, we
showed that ∫

ν2
δ (z)dz<∼

∫ ∫
fg,δ(z)dνg(z)dg<∼ δ−(n−γs−s+ε).

This concludes the case when k = 2.

6.2. Case k ≥ 3. We need to estimate the following integral∫
f k−1
g,δ (z)dνg(z).

We see that ∫
f k−1
g,δ (z)dνg(z)

[13, Formula (3.27)]=
∫
ν̂g(ω)

ˆ
f k−1

g,δ(ω)dω

=
∫
(f̂g,δ

(k−1)−times∗ · · · ∗ f̂g,δ )(−ω)ν̂g(ω)dω

We write the Littlewood–Paley decompositions ν̂g = ∑
j∈Z ν̂g,j and f̂g,δ = ∑

j∈Z f̂g,δ,j. Then,
we see that∫
(f̂g,δ

(k−1)−times∗ · · · ∗ f̂g,δ)(−ω)ν̂g(ω)dω=
∑

j1,j2,...,jk

∫
(f̂g,δ,j1

(k−1)−times∗ · · · ∗ f̂g,δ,jk−1 )(−ω)ν̂g,jk (ω)dω.
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Denote j∗ = max{j1, . . . , jk−1}. We see that f̂g,δ,j1
(k−1)−times∗ · · · ∗ f̂g,δ,jk−1 is supported on an annu-

lus. We can estimate the location of this annulus. First, each term of form f̂g,δ,j is supported

on an annulus with inner radius 2j−1 and outer radius 2j+2. Thus, f̂g,δ,j1
(k−1)−times∗ · · · ∗ f̂g,δ,jk−1

is supported on an annulus with inner radius at least 2j∗−1 and outer radius at most
(k − 1)2j∗+2. Thus, if either 2j1+2 < 2j∗−1 or 2j1−1 > (k − 1)2j∗+2 we see that∫

fg,δ,j1 (z) . . . fg,δ,jk−1 (z)νg,jk (z)dz =
∫
(f̂g,δ,j1

(k−1)−times∗ · · · ∗ f̂g,δ,jk−1 )(−ω)ν̂g,jk (ω)dω= 0.

For this reason, we only need to sum the terms indexed by j1, . . . , jk with |j∗ − jk | ≤ C(k)
for a constant C(k) depending only on k. Let j be any integer and we sum all the terms
j1, . . . , jk with |j1 − j| ≤ C(k)/2 and |j∗ − j| ≤ C(k)/2. The resulting sum is bounded from
above by a constant (depending on k) times the following expression

2j(n−s)(k−2)
∫ ∣∣∣∣∣∣

∑
|q|≤C(k)/2

fg,δ,j+q(z)

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
|q|≤C(k)/2

νg,j+q(z)

∣∣∣∣∣∣ dz. (6.3)

We need to sum the above expression for j ∈ Z. If 2j−C(k)/2 ≤ 2c′′δ−1, then (6.3) is bounded
from above by

c′′′′2j(n−s)(k−2)
∫ ∣∣∣∣∣∣

∑
|q|≤C(k)/2

νg,j+q(z)

∣∣∣∣∣∣
2

dz.

Here we used Cauchy–Schwarz inequality, Plancherel’s theorem as well as the fact that
‖φ̂D‖∞ = c′′′′. If 2j−C(k)/2 > 2c′′δ−1, then (6.3) is equal to 0. In all, the sum for j ∈ Z of
(6.3) can be bounded from above by

c′′′′ ∑
2j≤2c′′δ−1

2j(n−s)(k−2)
∫ ∣∣∣∣∣∣

∑
|q|≤C(k)/2

νg,j+q(z)

∣∣∣∣∣∣
2

dz.

It is easy to check that the sum with j ≤ 0 gives another constant C(k, s, ν) depending on
k, s and ν. Then, we can summarise our results so far in the following inequality,∫

f k−1
g,δ (z)dνg(z) <∼

∑
1≤2j≤2c′′δ−1

2j(n−s)(k−2)
∫ ∣∣ν̃g,j(z)

∣∣2
dz + C(k, s, ν),

where we have written ν̃g,j = ∑
q νg,j+q for simplicity. The functions νg,j are real-valued for

all j ∈ Z because νg is a real-valued measure and ψ is a radial function. Then, we see that∫ ∣∣ν̃g,j(z)
∣∣2

dz =
∫

| ˆ̃νg,j(ω)|2dω.

Recall that νg =μ ∗ gμ, we see that∫
| ˆ̃νg,j(ω)|2dω≤

∫
|ω|∈[2j−C(k)/2−1,2j+C(k)/2+2]

|μ̂(ω)|2|μ̂(gω)|2dω.

The integral against dg of the RHS above is a constant multiple of∫ 2j+C(k)/2+2

2j−C(k)/2−1

(∫
|μ̂(tσ)|2dσ

)2

tn−1dt<∼
∫ 2j+C(k)/2+2

2j−C(k)/2−1

(∫
|μ̂(tσ)|2dσ

)
tn−1t−γs+εdt,
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where the above inequality holds for all ε > 0. As in the case when k = 2, we see that,∫ ∫
f k−1
g,δ (z)dνg(z)dg<∼ C(k, s, ν)+

∑
j:1≤2j≤2c′′δ−1

2−j(γs−ε)2j(n−s)2j(n−s)(k−2).

If (n − s)(k − 1)− γs + ε < 0, then ν would be an L2 function, otherwise we see that∫
ν2
δ (z)dz<∼ δ−((n−s)(k−1)−γs+ε).

This concludes the proof for the case when k ≥ 3.

7. Asymmetric distance sets. Let n ≥ 2 be an integer. Let F1, F2 are compact sets
in Rn with dimH F1 = s1, dimH F2 = s2. Let μ1, μ2 be probability measures supported on
F1, F2, respectively. For g ∈ O(n), the orthogonal group on Rn, we construct a measure νg

as follows: ∫
Rn

f (z)dνg(z)=
∫

F1

∫
F2

f (u − gv)dμ1(u)dμ2(v), f ∈ C0(R
n).

In other words, νg =μ1 ∗ gμ2. We also construct a measure ν by∫
f (t)dν(t)=

∫
f (|x1 − x2|)dμ1(x1)dμ2(x2).

It can be seen that ν is supported on

D(F1, F2)= {|x1 − x2| : x1 ∈ F1, x2 ∈ F2}.
Most of the argument in previous sections can be used here. In particular, one can show
that for each ε > 0

‖νδ‖2
2
<∼ δ−(n−γs1 −s2−ε)

and

‖νδ‖2
2
<∼ δ−(n−γs2 −s1−ε).

Therefore, we see that if max{γs1 + s2, γs2 + s1}> n, then D(F1, F2) has positive Lebesgue
measure. If s2 ≥ s1, then this is equivalent to s2 + 0.5s1 > 0.75n + 0.5. Now we turn to
Corollary 1.5. With the same arguments as above, we see that if s2 + 0.5s1 > 0.75n + 0.5,
then for almost all g ∈ O(n), νg is absolutely continuous with respect to the Lebesgue
measure. In general, we can consider k ≥ 3 and obtain conditions for νg to be Lk for almost
all g ∈ O(n).
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