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Abstract

A. L. Garkavi in 1967 characterized those compact metric spaces X with the property that the
space C(X) of real-valued continuous functions possesses Chebyshev subspaces of fine
codimension > 2. Here compact Hausdorff spaces with the same property are characterized
in terms of certain standard subspaces of the space [0, 1] x {0,1} equipped with a lexicographic
order topology. Garkavi's result for metric spaces is exhibited as a corollary. The proof depends
upon a simplification of a characterization by Garkavi of the Chebyshev subspaces of finite
codimension in C(X).

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 41 A 65, 46 E 15; secondary
54 G 99.

Chebyshev subspaces of finite codimension in general Banach spaces and, in
particular, in spaces of continuous functions were considered in the 1960's by,
amongst others, R. R. Phelps and A. L. Garkavi. An account of much of that work
can be found in the books of I. Singer (1970 and 1974) to which the reader can
refer for definitions and references.

Throughout the discussion X will denote a compact Hausdorff space and C(X)
the Banach space of real valued continuous functions on X.

Garkavi (1964,1967) characterized the Chebyshev subspaces of finite codimension
in C{X) in terms of the annihilators in the dual space C(X)*. In a subsequent
paper (1967a) he obtained a simple characterization of those compact metric
spaces X with the property that C(X) possesses Chebyshev subspaces of finite
codimension greater than one.

The present paper (1) simplifies Garkavi's characterization of the Chebyshev
subspaces of finite codimension in C(X); (2) shows that if C(X) possesses one
Chebyshev subspace of finite codimension greater than one then it possesses
Chebyshev subspaces of every finite codimension greater than one; and (3)
characterizes, in terms of the space [0, l]x{0,1} equipped with a lexicographic
order topology, those compact Hausdorff spaces X for which such Chebyshev
subspaces exist. Garkavi's result for metric spaces is exhibited as a corollary.

99

https://doi.org/10.1017/S1446788700011575 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011575
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The set of isolated points of X will be denoted by A. The dual space C(X)*
of C(X) will be identified with the space of regular Borel measures on X. If
fi e C(X)*, then /*+, /*~ and | /* | will have their standard connotations, the support
of fx will be denoted s(n) and if xe X we will occasionally write y.(x) in place of

1. Chebyshev subspaces

Garkavi's characterization of the Chebyshev subspaces of finite codimension in
C(X) is as follows.

A closed linear subspace M of finite codimension n > 1 in C(X) is Chebyshev if
and only if the annihilator M x of M in C(X)* satisfies the four conditions:

(a) s(ji+)ns(jt-) = 0 for each /x in Mx;
(b) (i is absolutely continuous with respect to v on s(v) for each /* and v in

(c) X\s(fi) has at most n— 1 points for each /x in M-L\{0};
(d) if r<« — 1 and x1,...,xr are distinct isolated points of X then

It is a simple consequence of (a) and (c) that
(e) S(JJ.+) and s(ji~) are open and closed subsets of X for each /x in Mx.

This characterization will be simplified by exploiting the ideas and arguments of
Garkavi's subsequent paper (1967a).

THEOREM 1. Let M be a closed linear subspace of finite codimension n ̂  1 in C(X),
let Aj,.... An be a basis ofMx and A = | Ax| +... +| An|. If M is a Chebyshev subspace
ofC(X) then:

(1) A is a positive measure with s(X) = X, and
(2) Mx is of the form M x = {/A: fe M}, where
(3) Si is an n-dimensional subspace ofC(x) such that for eachfe]iZ\{o}

(a) each xeX either is a local maximum of f or is a local minimum of f,
(P) *(f-\0)\A) = 0,and
(y) ifr^n and xlt ...,xr are distinct isolated points of X then

Conversely, if Mx is of the form (2) where conditions (1) and (3) are satisfied
then M is a Chebyshev subspace of C(X).

PROOF. Suppose that M is a Chebyshev subspace of C{X) ,so that conditions
(a) to (e) are satisfied. It follows from (c) and (d) that s(X) = X. (In particular an
isolated point of X has positive A-measure and, therefore, the set A of isolated
points is countable.)
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[3] Chebyshev subspaces of finite codimension 101

Let fieilfi\{0}. It follows from (e), applied to each of Als..., An that X can be
expressed as a union of not more than 2n pairwise disjoint open and closed subsets
of X on each of which A is a linear combination of Xlf..., Xn. Let X be a non-empty
intersection of one of these sets with S(JJL+) or s(ii~); it is open and closed. If
attention is restricted to X it may be supposed that both A and /x are positive and
are members of Mx.

The next steps of the proof come directly from Garkavi (1967a). For xeX let

<% = {U: xe U, U an open set of X)
and

g(U) = {E:Ea Borel subset of U, X(E)?0}.

Define / and/ by

supinf
*

Then/(jc) and/(^) are limits over the directed sets % and
0 </(*)</(*)< oo

(the final inequality being a consequence of the definition of A). It will be shown
that/(x) =/(*). Suppose that for some k and every

For each Ue<% choose Et and E2 in £(U) such that

Then

so that
S((JM-k\)~)nU^0, s(0*-kX)+)n

This implies that xes((ji—kX)~)ns(([i—kX)+) which contradicts (a) for the
measure fi—kX in Mx. This proves that (*) cannot hold for every Uetfl for any k.
In particular, f(x) =f(x).

Define / o n X by f{x) —f(x) =f(x). The function f is continuous and satisfies
condition (a). If xeX and e>0 then by the preceding paragraph with k =/(*)
there exists Uefy such that either

sup &<f(x)+e for all
A(£)

https://doi.org/10.1017/S1446788700011575 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011575


102 A. L. Brown

or

inf w!>/M- £ for

HV) A ( )
If ye U then in the first case

and in the second case

The assertion is proved.
The next step is to show that f is a Radon-Nykodym derivative of \i with respect

to A on X. It has to be shown that for every closed subset Eo of X

= f
Let e>0. For each x in Eo there is an open neighbourhood Ux of x such that for
all yeUx and all Ee£(Ux)

Xx)-e<fO>)<f(x) + e,

Let UXl,..., VXm be a finite cover of Eo and express Eo as a disjoint union Eo = U?Li
with Ej a Borel subset of Ux. Then

.'B,

<2eX(E0).

(Note that if \(E}) = 0 then n(E}) = 0.) The inequality holds for every e>0 and
so the assertion is proved.

It now follows that /x =/A for some feC(X) satisfying condition (3) (a).
Consequently, Mx is of the form (2) with M a linear subspace of C(X). The
measure A satisfies (1).

Condition (d) is now equivalent to the cases r^n—l of condition (3)(y). If
/GM then (X\s(f\))n A =/~1(0)n A. The case r = n of (3)(y) therefore follows
from (c).

Now suppose that fe]ft and that E is a Borel subset of/-1(0)\^- Then

(/A)(£) = JE./V/A = 0. Therefore, |/A|(/-1(0)\ A) = 0. It follows by condition (b)
that/"HO) \ A is ^-null for every ^ e M 1 and so, by the definition of A, also A-null.
Therefore, (3)(/3) is satisfied.

Conversely, suppose that M1- is of the form (2) and that conditions (1) and (3) are
satisfied. Conditions (a)-(d) must be verified.
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If/eiO" and k is any number then by (3) (a) and the continuity of / the sets
{x: f(x)<k}~ and {x: f{x)>k}~ are disjoint. Condition (a) follows from the
case k = 0.

It follows from the case r = n of (3) (y) that An/-1(0) contains at most n—\
points. Also Ar\j(/A)s/-1(0) and therefore (X\s(f))\A is an open set which is
A-null by (3) (fi) and so empty by (1). This establishes (c). Condition (d) is equivalent
to the cases r < n - 1 of (3) (y).

Now consider f,gel3\{0}. Suppose that E is a closed subset of X, that E is
(/A)-null and E^s(fX). Then En A = 0 and Enf~\0) is A-null by (3)(j3). There-
fore

= f S<*A = f *rfA = f C(/rfA) = 0.
.' E .1 E\f-H0) ->E\f-H0) J

This establishes (b).

2. Conditions for the existence of Chebyshev subspaces

In this section, we first obtain a preliminary characterization of those X for
which C{X) possesses Chebyshev subspaces of codimension > 2 and simultaneously
show that if C(X) possesses one such subspace then it possesses many.

THEOREM 2. The following conditions on a compact Hausdorff space X which is
not finite are equivalent:

(1) C(X) possesses Chebyshev subspaces of every finite codimension;
(2) C(X) possesses at least one Chebyshev subspace of finite codimension ^ 2 ;
(3) C{X) possesses a Chebyshev subspace of codimension 2;
(4) There exists a positive measure A and a function foeC(X) such that

(a) s(X) = X;
(j3) for each real number t the setf^\t) is the union of a X-null set and at most

one isolated point of X;
(y) each xeX either is a local maximum off0 or is a local minimum off0.

PROOF. (2)=>(3). It is a consequence of a theorem of Ewald, Larman and Rogers
(1970) that each finite dimensional normed linear space possesses Chebyshev
subspaces of dimension one. If E is a normed linear space and M is a Chebyshev
subspace of finite codimension n in E, then a simple calculation shows that corre-
sponding to a one-dimensional Chebyshev subspace of the quotient space EjM
there is a Chebyshev subspace of E that contains M and is of codimension n—1
(see Cheney and Wulbert, 1969). The implication (2)=>(3) is therefore true of any
normed linear space (it extends an observation of Griinbaum and Klee recorded in
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Klee (1969)). It is possible to prove it in the present context by a more elementary
argument based upon Theorem 1.

(3)=>(4). This implication is a straightforward deduction from the case n = 2
of Theorem 1. Suppose that M is a Chebyshev subspace of codimension 2. Let
\ , \ be a basis of M\ A = |A1|+|A2|. Then the conditions of Theorem 1 are
satisfied and \=fx\ Aj =/2A for somefx and/2 in C(X) with the property

By (1) and (3) of Theorem 1 the set A = {x:f2(x)>0}~ is an open and closed
subset of X. Let/0(x) =f1(x) ifxeA and/0(x) = -/i(*) if x$A, so that foeC(X).
IfO<f<l then

It follows thatyj, satisfies (4).
(4)=>(1). Suppose that A andf0 satisfy condition (4) and let n be an integer >2.

Let fit be the set of functions of the form p of0 where p is an algebraic polynomial
of degree <n—1. It is easily seen that (3) of Theorem 1 is satisfied so that fit
defines a Chebyshev subspace of codimension n in C(X). The proof of Theorem 2
is complete.

The next step is to introduce certain topological spaces in terms of which it is
possible to characterize those X which satisfy the conditions of Theorem 2.

DEFINITION. Let r o be the set ([0,1]X{0,1})\{(0,0) ,(1,1)} and let/>0: ro->[0,l]
andy0: ro->{0,1} be the projections onto the coordinate spaces. Let < denote
the lexicographic ordering on Fo: that is, <*</? if and only if either po(<x) <po(fi) or
Po(<*) =Po(P) andyo(a)^yo(j3). Then Fo is a compact Hausdorff space in the order
topology.

Relevant properties of the compact Hausdorff space r o will be listed.
(i) The sets of the form {aeT,: (s, l)<a^(/,0)} are a base of open and closed

sets for the topology of ro.
(ii) The space Fo has no isolated points.
(iii) The projection p0: ro->[0,1] is continuous (as a real-valued function)

and each point of Fo either is a local maximum of p0 or is a local minimum of p0.
(iv) The subspace Ftt = {a e Fo: j0(oi) = 1} of Fo is homeomorphic to the interval

[0,1) with a half-open interval topology.
(v) If A' is a separable metric space and p: X-> Fu is continuous then p(X) is

a countable subset of ru .
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PROOF OF (V). The following argument comes directly from Garkavi (1967a).
Suppose that X is a separable metric space and that p: X->[0,1) is continuous
with respect to the half-open interval topology corresponding to the topology of Tu.
Then for each xeX the set p~\[p(x), 1)) is a neighbourhood of x in X. Let

where B{x, 1/n) is the open ball in X with centre x and radius 1/w. Then
X= Un=i^n- F° r e a c n positive integer n the set An is separable. If
{xk:k=l,2,...} is a dense subset of An then ^n£Ufc=i^(J(:fc»1/w) an£l P is
constant on each of the sets AnnB(xk, 1/n). This proves (v).

(vi) If F is a closed subset of Fo then Fo\ F is a union of a family of pairwise
disjoint non-empty open intervals of Fo, each of the form {yeF0: a<y</?},
{y£F0: y<j9} or {yeF0: a<y} with a and /} in F. These will be referred to as the
complementary intervals of F, and the points a and /? as the end points.

DEFINITION. A subspace F of Fo will be called an RCI-subspace of Fo if it is a
closed subset of Fo, contains the point (1,0) (a convenient normalization) and
has the property that if a e F is the end point of a complementary interval of F
thenyo(a) = 0. Thus RCI-subspaces of Fo are ones for which the set of .Right-hand
end points of Complementary intervals of F coincides with the set of /solated
points of F.

(vii) If F is an RCI-subspace of Fo then there exists a unique regular Borel
measure Ar on F such that, for all a e F with jfo(a) = 0,

Ar({yeF:y*:<x}) =/>„(«).

Its support is F. (The measure on Fo can be thought of as a kind of Lebesgue
measure: its image under p0 is Lebesgue measure on [0,1]. For a general F the
measure Ar is obtained by sweeping the measure on a complementary interval
onto the isolated right-hand end point.)

PROOF OF (vii). Let xa denote the characteristic function of {yeF: y<«}. Then
(xa: aeF,yo(a) = 0} is a linearly independent subset of C(F) and, because F is
an RCI-subspace of Fo, the set separates the points of F. The set A of linear
combinations of these characteristic functions is a subalgebra of the algebra C(F)
and so, by the Stone-Weierstrass theorem, is dense in C(F). There exists a unique
linear functional Ar on A such that Ar(xa) = po(<x), this linear functional extends
by continuity to C(F) and the extension is unique.

The final theorem can now be stated.

https://doi.org/10.1017/S1446788700011575 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011575


106 A. L. Brown [8]

THEOREM 3. A necessary and sufficient condition on an infinite compact Hausdorff
space X in order that C(X) possess Chebyshev subspaces of finite codimension > 2
is that there exist a positive measure A on X, an RCI-subspace F of Fo and a
continuous surjection p: X-> F such that

(2) Ar is the image under p of the measure A, and
(3) p~\y) is a single point for each isolated point y ofY.
If X has no isolated points and the condition is satisfied then F = Fo. The condition

is satisfied by any space X that is an RCI-subspace of Fo.

PROOF. It must be shown that the condition is equivalent to (4) of Theorem 2.
Suppose that X, A a.ndf0 satisfy (4). It may be supposed that X(X) = 1. It follows
from (4)(j8) and (4)(y) that for any number k the sets {x:fo(x)<k}~ and
{x:fo(x)>k}~ are disjoint open and closed subsets of X, together containing all
but at most one point of X. Define p: X->F0 by

(A(0':/oOO</o(*)}),0) if xe{y:fo(y)<fo(x)}-,

}),l) ifxe{y:fo(y)>fo(x)}-,

and let F=p(X).
It will be shown that p: X-> Fo is continuous, that F is an RCI-subspace of Fo

and that conditions (2) and (3) of the theorem are satisfied. The final statements
of the theorem are straightforward. The verifications are elementary and unfortu-
nately a little tedious.

Consider an xeX such that xe{y: fo(y)>fo(x)}~. Let e>0. By the countable
additivity of A there exists a positive integer n such that

Let U be an open subset of X such that

xel/cz{y:My)>fo(x)}-
and, for all z e U,

If zeU then either /0(z) =/0(x) or fo(z)>fQ(x). By (4)(j8) the second case must
occur. In the first case p(z) = p{x). In the second case {y:fd(z)>fo(y)>fo(x)} is
open and non-empty and so, by (4) (a), is of positive A-measure, and therefore

PM.X))+e >po(p(z)) >Pc(Ax)).
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Therefore in both cases

(Po(P(x)) + e, 1) >p(z) >p(x).

This proves that p is continuous at x and that p{x) is not an isolated point of F.
It can be shown in the same way that p is continuous at points x such that

xe{y:f{y)<f(x)}~. It follows that p is continuous and that F is a closed subset
of IV

It follows from (4) (j8) that p(x) = (1,0) e F for some point x at which yj, attains
its maximum. In order to prove that F is an RCI-subspace of Fo it must be shown
that if xe{y:fo(y)>fo(x)}- then p(x) is not the end point of a complementary
interval of F. As it has been shown that such a p(x) is not an isolated point of F
it cannot be the left-hand end point of a complementary interval. If /jfH/oC*))
contains an isolated point of X then (po(p(x)), 0) e F and p{x) is not the right-hand
end point of a complementary interval of F. If /ĵ C/oOO) contains no isolated
point of X then, by (4) (fi), it is A-null and

If f0 attains its maximum on {y: fo(y) <fQ(x)}~ at an isolated point x' then
p{x') = CPoO>(*))>0); if^o attains its maximum on {y: fo(y)<fo(x)}~ at x', but not
at any isolated point, then again, by another appeal to (4)(]8),p(x') = (Pffjf(x)),0).
This proves that p(x) is in no case an end point of a complementary interval of F.

To prove that (2) is satisfied consider an x such that jro(/>(x)) = 0. If x is isolated
then

P(x)}) = {y:fo(y)<fo(x)}-v{x}

and by (4)(/J), the set on the right differs by a A-null set from {y:fo(y)^fo(x)}.
If x is not isolated then

p-\{y. P(y)<Kx)}) = {y:fo(y)<Mx)}-

and the set on the right differs by a A-null set from {y: fo(y) <fo(x)}.
In both cases

Kp-\{y: Piy) </**)») = PoOKx)).

Condition (2) now follows from (vii). Condition (3) clearly is satisfied.
Conversely, suppose that X, A, p and F satisfy the stated conditions. Let

fo —Po°P- ^ is n o w immediate that (4) of Theorem 2 is satisfied.

The corollaries of Theorems 2 and 3 include two results of Garkavi.

COROLLARY 1 (Garkavi (1967)). If A is countably infinite and dense in X then
C(X) possesses Chebyshev subspaces of every finite codimension.
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PROOF. Let xn, n = 1,2,..., be the distinct isolated points of X. The condition
of Theorem 3 is easily seen to be satisfied by a A and a p with

COROLLARY 2. If A is not dense in X then necessary conditions for X to possess
Chebyshev subspaces of finite codimension ^ 2 are:

(1) A is countable,
(2) there is a continuous surjection q: {X\ A~)~->- Fo.

PROOF. The necessity of (1) has been remarked and was well known. The necessity
of (2) is a consequence of Theorem 3 applied to (X\ A~)~: for if C(X) possesses
Chebyshev subspaces of finite codimension ^ 2 then X satisfies (4) of Theorem 2,
and so then does (X\ A~)~, and it has no isolated points.

COROLLARY 3 (Garkavi (1967a)). If X~tran infinite compact metric space then
C(X) possesses Chebyshev subspaces of finite codimension ^ 2 if and only if the set
A of isolated points of X is dense in X.

PROOF. The result follows from Corollaries 1 and 2, and property (v) of the
space Fo.

This paper was written, and the work presented in it, was completed while the
author enjoyed the relative freedom of a Draper Visiting Lectureship at the
University of Newcastle, New South Wales. The University's hospitality is
gratefully acknowledged.
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